""" Like described in the :mod:`jedi.parser.representation` module, there's a need for an ast like module to represent the states of parsed modules. But now there are also structures in Python that need a little bit more than that. An ``Instance`` for example is only a ``Class`` before it is instantiated. This class represents these cases. So, why is there also a ``Class`` class here? Well, there are decorators and they change classes in Python 3. Representation modules also define "magic methods". Those methods look like ``py__foo__`` and are typically mappable to the Python equivalents ``__call__`` and others. Here's a list: ====================================== ======================================== **Method** **Description** -------------------------------------- ---------------------------------------- py__call__(evaluator, params: Array) On callable objects, returns types. py__bool__() Returns True/False/None; None means that there's no certainty. py__bases__(evaluator) Returns a list of base classes. py__mro__(evaluator) Returns a list of classes (the mro). ====================================== ======================================== __ """ import copy import os import pkgutil from jedi._compatibility import use_metaclass, unicode, Python3Method from jedi.parser import representation as pr from jedi.parser.tokenize import Token from jedi import debug from jedi import common from jedi.cache import underscore_memoization from jedi.evaluate.cache import memoize_default, CachedMetaClass from jedi.evaluate import compiled from jedi.evaluate import recursion from jedi.evaluate import iterable from jedi.evaluate import docstrings from jedi.evaluate import helpers from jedi.evaluate import param from jedi.evaluate import flow_analysis def wrap(evaluator, element): if isinstance(element, pr.Class): return Class(evaluator, element) elif isinstance(element, pr.Function): return Function(evaluator, element) elif isinstance(element, (pr.Module)) \ and not isinstance(element, ModuleWrapper): return ModuleWrapper(evaluator, element) else: return element class Executed(pr.Base): """ An instance is also an executable - because __init__ is called :param var_args: The param input array, consist of `pr.Array` or list. """ def __init__(self, evaluator, base, var_args=()): self._evaluator = evaluator self.base = base self.var_args = var_args def is_scope(self): return True def get_parent_until(self, *args, **kwargs): return self.base.get_parent_until(*args, **kwargs) @common.safe_property def parent(self): return self.base.parent class Instance(use_metaclass(CachedMetaClass, Executed)): """ This class is used to evaluate instances. """ def __init__(self, evaluator, base, var_args=()): super(Instance, self).__init__(evaluator, base, var_args) if base.name.get_code() in ['list', 'set'] \ and compiled.builtin == base.get_parent_until(): # compare the module path with the builtin name. self.var_args = iterable.check_array_instances(evaluator, self) else: # Need to execute the __init__ function, because the dynamic param # searching needs it. with common.ignored(KeyError): self.execute_subscope_by_name('__init__', self.var_args) # Generated instances are classes that are just generated by self # (No var_args) used. self.is_generated = False @property def py__call__(self): def actual(evaluator, params): return evaluator.execute(method, params) try: method = self.get_subscope_by_name('__call__') except KeyError: # Means the Instance is not callable. raise AttributeError return actual def py__class__(self, evaluator): return self.base def py__bool__(self): # Signalize that we don't know about the bool type. return None @memoize_default() def _get_method_execution(self, func): func = get_instance_el(self._evaluator, self, func, True) return FunctionExecution(self._evaluator, func, self.var_args) def _get_func_self_name(self, func): """ Returns the name of the first param in a class method (which is normally self. """ try: return str(func.params[0].get_name()) except IndexError: return None @memoize_default([]) def get_self_attributes(self): def add_self_dot_name(name): """ Need to copy and rewrite the name, because names are now ``instance_usage.variable`` instead of ``self.variable``. """ n = copy.copy(name) n.names = n.names[1:] n._get_code = unicode(n.names[-1]) names.append(get_instance_el(self._evaluator, self, n)) names = [] # This loop adds the names of the self object, copies them and removes # the self. for sub in self.base.subscopes: if isinstance(sub, pr.Class): continue # Get the self name, if there's one. self_name = self._get_func_self_name(sub) if not self_name: continue if sub.name.get_code() == '__init__': # ``__init__`` is special because the params need are injected # this way. Therefore an execution is necessary. if not sub.decorators: # __init__ decorators should generally just be ignored, # because to follow them and their self variables is too # complicated. sub = self._get_method_execution(sub) for per_name_list in sub.get_names_dict().values(): for call in per_name_list: if unicode(call.name) == self_name \ and isinstance(call.next, pr.Call) \ and call.next.next is None: names.append(get_instance_el(self._evaluator, self, call.next.name)) #if unicode(n.names[0]) == self_name and len(n.names) == 2: # add_self_dot_name(n) for s in self.base.py__bases__(self._evaluator): if not isinstance(s, compiled.CompiledObject): for inst in self._evaluator.execute(s): names += inst.get_self_attributes() return names def get_subscope_by_name(self, name): sub = self.base.get_subscope_by_name(name) return get_instance_el(self._evaluator, self, sub, True) def execute_subscope_by_name(self, name, args=()): method = self.get_subscope_by_name(name) return self._evaluator.execute(method, args) def get_descriptor_return(self, obj): """ Throws a KeyError if there's no method. """ # Arguments in __get__ descriptors are obj, class. # `method` is the new parent of the array, don't know if that's good. args = [obj, obj.base] if isinstance(obj, Instance) else [compiled.none_obj, obj] return self.execute_subscope_by_name('__get__', args) def scope_names_generator(self, position=None): """ An Instance has two scopes: The scope with self names and the class scope. Instance variables have priority over the class scope. """ yield self, self.get_self_attributes() for scope, names in self.base.scope_names_generator(add_class_vars=False): yield self, [get_instance_el(self._evaluator, self, var, True) for var in names] def get_index_types(self, index_array): indexes = iterable.create_indexes_or_slices(self._evaluator, index_array) if any([isinstance(i, iterable.Slice) for i in indexes]): # Slice support in Jedi is very marginal, at the moment, so just # ignore them in case of __getitem__. # TODO support slices in a more general way. indexes = [] index = helpers.FakeStatement(indexes, parent=compiled.builtin) try: return self.execute_subscope_by_name('__getitem__', [index]) except KeyError: debug.warning('No __getitem__, cannot access the array.') return [] @property @underscore_memoization def name(self): name = self.base.name return helpers.FakeName(unicode(name), self, name.start_pos) def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'get_imports', 'doc', 'raw_doc', 'asserts']: raise AttributeError("Instance %s: Don't touch this (%s)!" % (self, name)) return getattr(self.base, name) def __repr__(self): return "" % \ (type(self).__name__, self.base, len(self.var_args or [])) def get_instance_el(evaluator, instance, var, is_class_var=False): """ Returns an InstanceElement if it makes sense, otherwise leaves the object untouched. """ if isinstance(var, (Instance, compiled.CompiledObject, pr.Operator, Token, pr.Module, FunctionExecution, pr.Name)): if isinstance(var, pr.Name): # TODO temp solution, remove later, Name should never get # here? par = get_instance_el(evaluator, instance, var.parent, is_class_var) return pr.Name(var._sub_module, unicode(var), par, var.start_pos) return var var = wrap(evaluator, var) return InstanceElement(evaluator, instance, var, is_class_var) class InstanceElement(use_metaclass(CachedMetaClass, pr.Base)): """ InstanceElement is a wrapper for any object, that is used as an instance variable (e.g. self.variable or class methods). """ def __init__(self, evaluator, instance, var, is_class_var): self._evaluator = evaluator self.instance = instance self.var = var self.is_class_var = is_class_var @common.safe_property @memoize_default() def parent(self): par = self.var.parent if isinstance(par, Class) and par == self.instance.base \ or isinstance(par, pr.Class) \ and par == self.instance.base.base: par = self.instance else: par = get_instance_el(self._evaluator, self.instance, par, self.is_class_var) return par def get_parent_until(self, *args, **kwargs): if isinstance(self.var, pr.Name): # TODO Name should never even be InstanceElements return pr.Simple.get_parent_until(self.parent, *args, **kwargs) return pr.Simple.get_parent_until(self, *args, **kwargs) def get_definition(self): return self.get_parent_until((pr.ExprStmt, pr.IsScope, pr.Import)) def get_decorated_func(self): """ Needed because the InstanceElement should not be stripped """ func = self.var.get_decorated_func() func = get_instance_el(self._evaluator, self.instance, func) return func def expression_list(self): # Copy and modify the array. return [get_instance_el(self._evaluator, self.instance, command, self.is_class_var) for command in self.var.expression_list()] @property @underscore_memoization def name(self): name = self.var.name return helpers.FakeName(unicode(name), self, name.start_pos) def __iter__(self): for el in self.var.__iter__(): yield get_instance_el(self._evaluator, self.instance, el, self.is_class_var) def __getitem__(self, index): return get_instance_el(self._evaluator, self.instance, self.var[index], self.is_class_var) def __getattr__(self, name): return getattr(self.var, name) def isinstance(self, *cls): return isinstance(self.var, cls) def is_scope(self): """ Since we inherit from Base, it would overwrite the action we want here. """ return self.var.is_scope() def py__call__(self, evaluator, params): return Function.py__call__(self, evaluator, params) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.var) class Wrapper(pr.Base): def is_scope(self): return True def is_class(self): return False @property @underscore_memoization def name(self): name = self.base.name return helpers.FakeName(unicode(name), self, name.start_pos) class Class(use_metaclass(CachedMetaClass, Wrapper)): """ This class is not only important to extend `pr.Class`, it is also a important for descriptors (if the descriptor methods are evaluated or not). """ def __init__(self, evaluator, base): self._evaluator = evaluator self.base = base @memoize_default(default=()) def py__mro__(self, evaluator): def add(cls): if cls not in mro: mro.append(cls) mro = [self] # TODO Do a proper mro resolution. Currently we are just listing # classes. However, it's a complicated algorithm. for cls in self.py__bases__(self._evaluator): # TODO detect for TypeError: duplicate base class str, # e.g. `class X(str, str): pass` add(cls) for cls_new in cls.py__mro__(evaluator): add(cls_new) return tuple(mro) @memoize_default(default=()) def py__bases__(self, evaluator): supers = [] for s in self.base.supers: # Super classes are statements. for cls in self._evaluator.eval_statement(s): if not isinstance(cls, (Class, compiled.CompiledObject)): debug.warning('Received non class as a super class.') continue # Just ignore other stuff (user input error). supers.append(cls) if not supers: # Add `object` to classes (implicit in Python 3.) supers.append(compiled.object_obj) return supers def py__call__(self, evaluator, params): return [Instance(evaluator, self, params)] def py__getattribute__(self, name): return self._evaluator.find_types(self, name) def scope_names_generator(self, position=None, add_class_vars=True): def in_iterable(name, iterable): """ checks if the name is in the variable 'iterable'. """ for i in iterable: # Only the last name is important, because these names have a # maximal length of 2, with the first one being `self`. if unicode(i.names[-1]) == unicode(name.names[-1]): return True return False all_names = [] for cls in self.py__mro__(self._evaluator): names = [] if isinstance(cls, compiled.CompiledObject): x = cls.instance_names() else: x = reversed(cls.base.get_defined_names()) for n in x: if not in_iterable(n, all_names): names.append(n) yield cls, names if add_class_vars: yield self, compiled.type_names def is_class(self): return True def get_subscope_by_name(self, name): for s in [self] + self.py__bases__(self._evaluator): for sub in reversed(s.subscopes): if sub.name.get_code() == name: return sub raise KeyError("Couldn't find subscope.") def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'parent', 'asserts', 'raw_doc', 'doc', 'get_imports', 'get_parent_until', 'get_code', 'subscopes']: raise AttributeError("Don't touch this: %s of %s !" % (name, self)) return getattr(self.base, name) def __repr__(self): return "" % (type(self).__name__, self.base) class Function(use_metaclass(CachedMetaClass, Wrapper)): """ Needed because of decorators. Decorators are evaluated here. """ def __init__(self, evaluator, func, is_decorated=False): """ This should not be called directly """ self._evaluator = evaluator self.base = self.base_func = func self.is_decorated = is_decorated @memoize_default() def _decorated_func(self): """ Returns the function, that is to be executed in the end. This is also the places where the decorators are processed. """ f = self.base_func # Only enter it, if has not already been processed. if not self.is_decorated: for dec in reversed(self.base_func.decorators): debug.dbg('decorator: %s %s', dec, f) dec_results = self._evaluator.eval_statement(dec) if not len(dec_results): debug.warning('decorator not found: %s on %s', dec, self.base_func) return None decorator = dec_results.pop() if dec_results: debug.warning('multiple decorators found %s %s', self.base_func, dec_results) # Create param array. old_func = Function(self._evaluator, f, is_decorated=True) wrappers = self._evaluator.execute(decorator, (old_func,)) if not len(wrappers): debug.warning('no wrappers found %s', self.base_func) return None if len(wrappers) > 1: # TODO resolve issue with multiple wrappers -> multiple types debug.warning('multiple wrappers found %s %s', self.base_func, wrappers) f = wrappers[0] debug.dbg('decorator end %s', f) if isinstance(f, pr.Function): f = Function(self._evaluator, f, True) return f def get_decorated_func(self): """ This function exists for the sole purpose of returning itself if the decorator doesn't turn out to "work". We just ignore the decorator here, because sometimes decorators are just really complicated and Jedi cannot understand them. """ return self._decorated_func() \ or Function(self._evaluator, self.base_func, True) def get_magic_function_names(self): return compiled.magic_function_class.get_defined_names() def get_magic_function_scope(self): return compiled.magic_function_class @Python3Method def py__call__(self, evaluator, params): if self.is_generator: return [iterable.Generator(evaluator, self, params)] else: return FunctionExecution(evaluator, self, params).get_return_types() def py__bool__(self): return True def __getattr__(self, name): return getattr(self.base_func, name) def __repr__(self): dec_func = self._decorated_func() dec = '' if not self.is_decorated and self.base_func.decorators: dec = " is " + repr(dec_func) return "" % (type(self).__name__, self.base_func, dec) class LazyDict(object): def __init__(self, old_dct, copy_func): self._copy_func = copy_func self._old_dct = old_dct def __getitem__(self, key): return self._copy_func(self._old_dct[key]) @underscore_memoization def values(self): # TODO REMOVE this. Not necessary with correct name lookups. for calls in self._old_dct.values(): yield self._copy_func(calls) class FunctionExecution(Executed): """ This class is used to evaluate functions and their returns. This is the most complicated class, because it contains the logic to transfer parameters. It is even more complicated, because there may be multiple calls to functions and recursion has to be avoided. But this is responsibility of the decorators. """ def __init__(self, evaluator, base, *args, **kwargs): super(FunctionExecution, self).__init__(evaluator, base, *args, **kwargs) # for deep_ast_copy self._copy_dict = {base.base_func: self} @memoize_default(default=()) @recursion.execution_recursion_decorator def get_return_types(self): func = self.base if func.listeners: # Feed the listeners, with the params. for listener in func.listeners: listener.execute(self._get_params()) # If we do have listeners, that means that there's not a regular # execution ongoing. In this case Jedi is interested in the # inserted params, not in the actual execution of the function. return [] types = list(docstrings.find_return_types(self._evaluator, func)) for r in self.returns: if isinstance(r, pr.KeywordStatement): stmt = r.stmt else: stmt = r # Lambdas if stmt is None: continue check = flow_analysis.break_check(self._evaluator, self, r.parent) if check is flow_analysis.UNREACHABLE: debug.dbg('Return unreachable: %s', r) else: types += self._evaluator.eval_statement(stmt) if check is flow_analysis.REACHABLE: debug.dbg('Return reachable: %s', r) break return types @underscore_memoization def get_names_dict(self): return LazyDict(self.base.get_names_dict(), self._copy_list) @memoize_default(default=()) def _get_params(self): """ This returns the params for an TODO and is injected as a 'hack' into the pr.Function class. This needs to be here, because Instance can have __init__ functions, which act the same way as normal functions. """ return param.get_params(self._evaluator, self.base, self.var_args) def get_defined_names(self): """ Call the default method with the own instance (self implements all the necessary functions). Add also the params. """ return self._get_params() + pr.Scope.get_defined_names(self) def scope_names_generator(self, position=None): names = pr.filter_after_position(pr.Scope.get_defined_names(self), position) yield self, self._get_params() + names def _copy_list(self, lst): """ Copies a list attribute of a parser Function. Copying is very expensive, because it is something like `copy.deepcopy`. However, these copied objects can be used for the executions, as if they were in the execution. """ objects = [] for element in lst: self._scope_copy(element.parent) copied = helpers.deep_ast_copy(element, self._copy_dict) objects.append(copied) return objects def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'imports', '_sub_module']: raise AttributeError('Tried to access %s: %s. Why?' % (name, self)) return getattr(self.base, name) def _scope_copy(self, scope): """ Copies a scope (e.g. `if foo:`) in an execution """ if scope != self.base.base_func: # Just make sure the parents been copied. self._scope_copy(scope.parent) helpers.deep_ast_copy(scope, self._copy_dict) @common.safe_property @memoize_default([]) def returns(self): return self._copy_list(self.base.returns) @common.safe_property @memoize_default([]) def asserts(self): return self._copy_list(self.base.asserts) @common.safe_property @memoize_default([]) def statements(self): return self._copy_list(self.base.statements) @common.safe_property @memoize_default([]) def subscopes(self): return self._copy_list(self.base.subscopes) def get_statement_for_position(self, pos): return pr.Scope.get_statement_for_position(self, pos) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.base) class ModuleWrapper(use_metaclass(CachedMetaClass, pr.Module, Wrapper)): def __init__(self, evaluator, module): self._evaluator = evaluator self.base = self._module = module def scope_names_generator(self, position=None): yield self, pr.filter_after_position(self._module.get_defined_names(), position) yield self, self._module_attributes() sub_modules = self._sub_modules() if sub_modules: yield self, self._sub_modules() @memoize_default() def _module_attributes(self): def parent_callback(): return Instance(self._evaluator, compiled.create(self._evaluator, str)) names = ['__file__', '__package__', '__doc__', '__name__', '__version__'] # All the additional module attributes are strings. return [helpers.LazyName(n, parent_callback) for n in names] @property @memoize_default() def name(self): return pr.Name(self, unicode(self.base.name), self, (1, 0)) @memoize_default() def _sub_modules(self): """ Lists modules in the directory of this module (if this module is a package). """ path = self._module.path names = [] if path is not None and path.endswith(os.path.sep + '__init__.py'): mods = pkgutil.iter_modules([os.path.dirname(path)]) for module_loader, name, is_pkg in mods: name = helpers.FakeName(name) # It's obviously a relative import to the current module. imp = helpers.FakeImport(name, self, level=1) name.parent = imp names.append(name) # TODO add something like this in the future, its cleaner than the # import hacks. # ``os.path`` is a hardcoded exception, because it's a # ``sys.modules`` modification. #if str(self.name) == 'os': # names.append(helpers.FakeName('path', parent=self)) return names def __getattr__(self, name): return getattr(self._module, name) def __repr__(self): return "<%s: %s>" % (type(self).__name__, self._module) def py__bool__(self): return True