""" Docstrings are another source of information for functions and classes. :mod:`jedi.evaluate.dynamic` tries to find all executions of functions, while the docstring parsing is much easier. There are two different types of docstrings that |jedi| understands: - `Sphinx `_ - `Epydoc `_ For example, the sphinx annotation ``:type foo: str`` clearly states that the type of ``foo`` is ``str``. As an addition to parameter searching, this module also provides return annotations. """ from ast import literal_eval import re from textwrap import dedent from jedi._compatibility import u from jedi.common import unite from jedi.evaluate import context from jedi.evaluate.cache import evaluator_method_cache from jedi.common import indent_block from jedi.evaluate.iterable import SequenceLiteralContext, FakeSequence DOCSTRING_PARAM_PATTERNS = [ r'\s*:type\s+%s:\s*([^\n]+)', # Sphinx r'\s*:param\s+(\w+)\s+%s:[^\n]*', # Sphinx param with type r'\s*@type\s+%s:\s*([^\n]+)', # Epydoc ] DOCSTRING_RETURN_PATTERNS = [ re.compile(r'\s*:rtype:\s*([^\n]+)', re.M), # Sphinx re.compile(r'\s*@rtype:\s*([^\n]+)', re.M), # Epydoc ] REST_ROLE_PATTERN = re.compile(r':[^`]+:`([^`]+)`') try: from numpydoc.docscrape import NumpyDocString except ImportError: def _search_param_in_numpydocstr(docstr, param_str): return [] else: def _search_param_in_numpydocstr(docstr, param_str): """Search `docstr` (in numpydoc format) for type(-s) of `param_str`.""" params = NumpyDocString(docstr)._parsed_data['Parameters'] for p_name, p_type, p_descr in params: if p_name == param_str: m = re.match('([^,]+(,[^,]+)*?)(,[ ]*optional)?$', p_type) if m: p_type = m.group(1) if p_type.startswith('{'): types = set(type(x).__name__ for x in literal_eval(p_type)) return list(types) else: return [p_type] return [] def _search_param_in_docstr(docstr, param_str): """ Search `docstr` for type(-s) of `param_str`. >>> _search_param_in_docstr(':type param: int', 'param') ['int'] >>> _search_param_in_docstr('@type param: int', 'param') ['int'] >>> _search_param_in_docstr( ... ':type param: :class:`threading.Thread`', 'param') ['threading.Thread'] >>> bool(_search_param_in_docstr('no document', 'param')) False >>> _search_param_in_docstr(':param int param: some description', 'param') ['int'] """ # look at #40 to see definitions of those params patterns = [re.compile(p % re.escape(param_str)) for p in DOCSTRING_PARAM_PATTERNS] for pattern in patterns: match = pattern.search(docstr) if match: return [_strip_rst_role(match.group(1))] return (_search_param_in_numpydocstr(docstr, param_str) or []) def _strip_rst_role(type_str): """ Strip off the part looks like a ReST role in `type_str`. >>> _strip_rst_role(':class:`ClassName`') # strip off :class: 'ClassName' >>> _strip_rst_role(':py:obj:`module.Object`') # works with domain 'module.Object' >>> _strip_rst_role('ClassName') # do nothing when not ReST role 'ClassName' See also: http://sphinx-doc.org/domains.html#cross-referencing-python-objects """ match = REST_ROLE_PATTERN.match(type_str) if match: return match.group(1) else: return type_str def _evaluate_for_statement_string(module_context, string): code = dedent(u(""" def pseudo_docstring_stuff(): ''' Create a pseudo function for docstring statements. Need this docstring so that if the below part is not valid Python this is still a function. ''' {0} """)) if string is None: return [] for element in re.findall('((?:\w+\.)*\w+)\.', string): # Try to import module part in dotted name. # (e.g., 'threading' in 'threading.Thread'). string = 'import %s\n' % element + string # Take the default grammar here, if we load the Python 2.7 grammar here, it # will be impossible to use `...` (Ellipsis) as a token. Docstring types # don't need to conform with the current grammar. grammar = module_context.evaluator.latest_grammar module = grammar.parse(code.format(indent_block(string))) try: funcdef = next(module.iter_funcdefs()) # First pick suite, then simple_stmt and then the node, # which is also not the last item, because there's a newline. stmt = funcdef.children[-1].children[-1].children[-2] except (AttributeError, IndexError): return [] from jedi.evaluate.param import ValuesArguments from jedi.evaluate.representation import FunctionContext function_context = FunctionContext( module_context.evaluator, module_context, funcdef ) func_execution_context = function_context.get_function_execution( ValuesArguments([]) ) # Use the module of the param. # TODO this module is not the module of the param in case of a function # call. In that case it's the module of the function call. # stuffed with content from a function call. return list(_execute_types_in_stmt(func_execution_context, stmt)) def _execute_types_in_stmt(module_context, stmt): """ Executing all types or general elements that we find in a statement. This doesn't include tuple, list and dict literals, because the stuff they contain is executed. (Used as type information). """ definitions = module_context.eval_node(stmt) return unite(_execute_array_values(module_context.evaluator, d) for d in definitions) def _execute_array_values(evaluator, array): """ Tuples indicate that there's not just one return value, but the listed ones. `(str, int)` means that it returns a tuple with both types. """ if isinstance(array, SequenceLiteralContext): values = [] for lazy_context in array.py__iter__(): objects = unite(_execute_array_values(evaluator, typ) for typ in lazy_context.infer()) values.append(context.LazyKnownContexts(objects)) return set([FakeSequence(evaluator, array.array_type, values)]) else: return array.execute_evaluated() @evaluator_method_cache() def infer_param(execution_context, param): from jedi.evaluate.instance import AnonymousInstanceFunctionExecution def eval_docstring(docstring): return set( p for param_str in _search_param_in_docstr(docstring, param.name.value) for p in _evaluate_for_statement_string(module_context, param_str) ) module_context = execution_context.get_root_context() func = param.get_parent_function() if func.type == 'lambdef': return set() types = eval_docstring(execution_context.py__doc__()) if isinstance(execution_context, AnonymousInstanceFunctionExecution) and \ execution_context.function_context.name.string_name == '__init__': class_context = execution_context.instance.class_context types |= eval_docstring(class_context.py__doc__()) return types @evaluator_method_cache() def infer_return_types(function_context): def search_return_in_docstr(code): for p in DOCSTRING_RETURN_PATTERNS: match = p.search(code) if match: return _strip_rst_role(match.group(1)) type_str = search_return_in_docstr(function_context.py__doc__()) return _evaluate_for_statement_string(function_context.get_root_context(), type_str)