""" If you know what an syntax tree is, you'll see that this module is pretty much that. The classes represent syntax elements like functions and imports. This is the "business logic" part of the parser. There's a lot of logic here that makes it easier for Jedi (and other libraries) to deal with a Python syntax tree. By using `get_code` on a module, you can get back the 1-to-1 representation of the input given to the parser. This is important if you are using refactoring. The easiest way to play with this module is to use :class:`parsing.Parser`. :attr:`parsing.Parser.module` holds an instance of :class:`Module`: >>> from jedi.parser.python import parse >>> parser = parse('import os') >>> module = parser.get_root_node() >>> module Any subclasses of :class:`Scope`, including :class:`Module` has an attribute :attr:`iter_imports `: >>> list(module.iter_imports()) [] """ from itertools import chain from jedi._compatibility import utf8_repr, unicode from jedi.parser.tree import Node, BaseNode, Leaf, ErrorNode, ErrorLeaf, \ search_ancestor class DocstringMixin(object): __slots__ = () def get_doc_node(self): """ Returns the string leaf of a docstring. e.g. ``r'''foo'''``. """ if self.type == 'file_input': node = self.children[0] elif isinstance(self, ClassOrFunc): node = self.children[self.children.index(':') + 1] if node.type == 'suite': # Normally a suite node = node.children[1] # -> NEWLINE stmt else: # ExprStmt simple_stmt = self.parent c = simple_stmt.parent.children index = c.index(simple_stmt) if not index: return None node = c[index - 1] if node.type == 'simple_stmt': node = node.children[0] if node.type == 'string': return node return None class PythonMixin(object): def get_parent_scope(self, include_flows=False): """ Returns the underlying scope. """ scope = self.parent while scope is not None: if include_flows and isinstance(scope, Flow): return scope if scope.is_scope(): break scope = scope.parent return scope def get_definition(self): if self.type in ('newline', 'endmarker'): raise ValueError('Cannot get the indentation of whitespace or indentation.') scope = self while scope.parent is not None: parent = scope.parent if isinstance(scope, (PythonNode, PythonLeaf)) and parent.type != 'simple_stmt': if scope.type == 'testlist_comp': try: if scope.children[1].type == 'comp_for': return scope.children[1] except IndexError: pass scope = parent else: break return scope def is_scope(self): # Default is not being a scope. Just inherit from Scope. return False def get_name_of_position(self, position): for c in self.children: if isinstance(c, Leaf): if c.type == 'name' and c.start_pos <= position <= c.end_pos: return c else: result = c.get_name_of_position(position) if result is not None: return result return None class PythonLeaf(Leaf, PythonMixin): __slots__ = () class _LeafWithoutNewlines(PythonLeaf): """ Simply here to optimize performance. """ __slots__ = () @property def end_pos(self): return self.line, self.indent + len(self.value) # Python base classes class PythonBaseNode(BaseNode, PythonMixin): __slots__ = () class PythonNode(Node, PythonMixin): __slots__ = () class PythonErrorNode(ErrorNode, PythonMixin): __slots__ = () class PythonErrorLeaf(ErrorLeaf, PythonMixin): __slots__ = () class EndMarker(_LeafWithoutNewlines): __slots__ = () type = 'endmarker' class Newline(PythonLeaf): """Contains NEWLINE and ENDMARKER tokens.""" __slots__ = () type = 'newline' @utf8_repr def __repr__(self): return "<%s: %s>" % (type(self).__name__, repr(self.value)) class Name(_LeafWithoutNewlines): """ A string. Sometimes it is important to know if the string belongs to a name or not. """ type = 'name' __slots__ = () def __repr__(self): return "<%s: %s@%s,%s>" % (type(self).__name__, self.value, self.line, self.indent) def is_definition(self): if self.parent.type in ('power', 'atom_expr'): # In `self.x = 3` self is not a definition, but x is. return False stmt = self.get_definition() if stmt.type in ('funcdef', 'classdef', 'param'): return self == stmt.name elif stmt.type == 'for_stmt': return self.start_pos < stmt.children[2].start_pos elif stmt.type == 'try_stmt': return self.get_previous_sibling() == 'as' else: return stmt.type in ('expr_stmt', 'import_name', 'import_from', 'comp_for', 'with_stmt') \ and self in stmt.get_defined_names() class Literal(PythonLeaf): __slots__ = () class Number(Literal): type = 'number' __slots__ = () class String(Literal): type = 'string' __slots__ = () class _StringComparisonMixin(object): def __eq__(self, other): """ Make comparisons with strings easy. Improves the readability of the parser. """ if isinstance(other, (str, unicode)): return self.value == other return self is other def __ne__(self, other): """Python 2 compatibility.""" return not self.__eq__(other) def __hash__(self): return hash(self.value) class Operator(_LeafWithoutNewlines, _StringComparisonMixin): type = 'operator' __slots__ = () class Keyword(_LeafWithoutNewlines, _StringComparisonMixin): type = 'keyword' __slots__ = () class Scope(PythonBaseNode, DocstringMixin): """ Super class for the parser tree, which represents the state of a python text file. A Scope is either a function, class or lambda. """ __slots__ = () def __init__(self, children): super(Scope, self).__init__(children) def iter_funcdefs(self): """ Returns a generator of `funcdef` nodes. """ return self._search_in_scope('funcdef') def iter_classdefs(self): """ Returns a generator of `classdef` nodes. """ return self._search_in_scope('classdef') def iter_imports(self): """ Returns a generator of `import_name` and `import_from` nodes. """ return self._search_in_scope('import_name', 'import_from') def _search_in_scope(self, *names): def scan(children): for element in children: if element.type in names: yield element if element.type in ('suite', 'simple_stmt', 'decorated') \ or isinstance(element, Flow): for e in scan(element.children): yield e return scan(self.children) def is_scope(self): return True def get_suite(self): """ Returns the part that is executed by the function. """ return self.children[-1] def __repr__(self): try: name = self.name.value except AttributeError: name = '' return "<%s: %s@%s-%s>" % (type(self).__name__, name, self.start_pos[0], self.end_pos[0]) class Module(Scope): """ The top scope, which is always a module. Depending on the underlying parser this may be a full module or just a part of a module. """ __slots__ = ('_used_names',) type = 'file_input' def __init__(self, children): super(Module, self).__init__(children) self._used_names = None def iter_future_import_names(self): """ :return list of str: A list of future import names. """ # TODO this is a strange scan and not fully correct. I think Python's # parser does it in a different way and scans for the first # statement/import with a tokenizer (to check for syntax changes like # the future print statement). for imp in self.iter_imports(): if imp.type == 'import_from' and imp.level == 0: for path in imp.paths(): names = [name.value for name in path] if len(names) == 2 and names[0] == '__future__': yield names[1] def has_explicit_absolute_import(self): """ Checks if imports in this module are explicitly absolute, i.e. there is a ``__future__`` import. :return bool: """ for name in self.iter_future_import_names(): if name == 'absolute_import': return True return False def get_used_names(self): if self._used_names is None: # Don't directly use self._used_names to eliminate a lookup. dct = {} def recurse(node): try: children = node.children except AttributeError: if node.type == 'name': arr = dct.setdefault(node.value, []) arr.append(node) else: for child in children: recurse(child) recurse(self) self._used_names = dct return self._used_names class Decorator(PythonBaseNode): type = 'decorator' __slots__ = () class ClassOrFunc(Scope): __slots__ = () @property def name(self): return self.children[1] def get_decorators(self): decorated = self.parent if decorated.type == 'decorated': if decorated.children[0].type == 'decorators': return decorated.children[0].children else: return decorated.children[:1] else: return [] class Class(ClassOrFunc): """ Used to store the parsed contents of a python class. :param name: The Class name. :type name: str :param supers: The super classes of a Class. :type supers: list :param start_pos: The start position (line, column) of the class. :type start_pos: tuple(int, int) """ type = 'classdef' __slots__ = () def __init__(self, children): super(Class, self).__init__(children) def get_super_arglist(self): if self.children[2] != '(': # Has no parentheses return None else: if self.children[3] == ')': # Empty parentheses return None else: return self.children[3] def _create_params(parent, argslist_list): """ `argslist_list` is a list that can contain an argslist as a first item, but most not. It's basically the items between the parameter brackets (which is at most one item). This function modifies the parser structure. It generates `Param` objects from the normal ast. Those param objects do not exist in a normal ast, but make the evaluation of the ast tree so much easier. You could also say that this function replaces the argslist node with a list of Param objects. """ def check_python2_nested_param(node): """ Python 2 allows params to look like ``def x(a, (b, c))``, which is basically a way of unpacking tuples in params. Python 3 has ditched this behavior. Jedi currently just ignores those constructs. """ return node.type == 'tfpdef' and node.children[0] == '(' try: first = argslist_list[0] except IndexError: return [] if first.type in ('name', 'tfpdef'): if check_python2_nested_param(first): return [first] else: return [Param([first], parent)] elif first == '*': return [first] else: # argslist is a `typedargslist` or a `varargslist`. children = first.children new_children = [] start = 0 # Start with offset 1, because the end is higher. for end, child in enumerate(children + [None], 1): if child is None or child == ',': param_children = children[start:end] if param_children: # Could as well be comma and then end. if check_python2_nested_param(param_children[0]): new_children += param_children elif param_children[0] == '*' and param_children[1] == ',': new_children += param_children else: new_children.append(Param(param_children, parent)) start = end return new_children class Function(ClassOrFunc): """ Used to store the parsed contents of a python function. Children: 0. 1. 2. parameter list (including open-paren and close-paren s) 3. or 5. 4. or 6. Node() representing function body 3. -> (if annotation is also present) 4. annotation (if present) """ type = 'funcdef' def __init__(self, children): super(Function, self).__init__(children) parameters = self.children[2] # After `def foo` parameters.children[1:-1] = _create_params(parameters, parameters.children[1:-1]) def _get_param_nodes(self): return self.children[2].children @property def params(self): """ Returns a list of `Param()`. """ return [p for p in self._get_param_nodes() if p.type == 'param'] @property def name(self): return self.children[1] # First token after `def` def iter_yield_exprs(self): """ Returns a generator of `yield_expr`. """ # TODO This is incorrect, yields are also possible in a statement. return self._search_in_scope('yield_expr') def iter_return_stmts(self): """ Returns a generator of `return_stmt`. """ return self._search_in_scope('return_stmt') def is_generator(self): """ :return bool: Checks if a function is a generator or not. """ return next(self.iter_yield_exprs(), None) is not None @property def annotation(self): """ Returns the test node after `->` or `None` if there is no annotation. """ try: if self.children[3] == "->": return self.children[4] assert self.children[3] == ":" return None except IndexError: return None def _get_paramlist_code(self): return self.children[2].get_code() class Lambda(Function): """ Lambdas are basically trimmed functions, so give it the same interface. Children: 0. *. for each argument x -2. -1. Node() representing body """ type = 'lambdef' __slots__ = () def __init__(self, children): # We don't want to call the Function constructor, call its parent. super(Function, self).__init__(children) # Everything between `lambda` and the `:` operator is a parameter. self.children[1:-2] = _create_params(self, self.children[1:-2]) @property def name(self): """ Raises an AttributeError. Lambdas don't have a defined name. """ raise AttributeError("lambda is not named.") def _get_paramlist_code(self): return '(' + ''.join(param.get_code() for param in self.params).strip() + ')' def _get_param_nodes(self): return self.children[1:-2] @property def annotation(self): """ Returns `None`, lambdas don't have annotations. """ # lambda functions do not support annotations return None def __repr__(self): return "<%s@%s>" % (self.__class__.__name__, self.start_pos) class Flow(PythonBaseNode): __slots__ = () class IfStmt(Flow): type = 'if_stmt' __slots__ = () def get_test_nodes(self): """ E.g. returns all the `test` nodes that are named as x, below: if x: pass elif x: pass """ for i, c in enumerate(self.children): if c in ('elif', 'if'): yield self.children[i + 1] def get_corresponding_test_node(self, node): """ Searches for the branch in which the node is and returns the corresponding test node (see function above). However if the node is in the test node itself and not in the suite return None. """ start_pos = node.start_pos for check_node in reversed(list(self.get_test_nodes())): if check_node.start_pos < start_pos: if start_pos < check_node.end_pos: return None # In this case the node is within the check_node itself, # not in the suite else: return check_node def is_node_after_else(self, node): """ Checks if a node is defined after `else`. """ for c in self.children: if c == 'else': if node.start_pos > c.start_pos: return True else: return False class WhileStmt(Flow): type = 'while_stmt' __slots__ = () class ForStmt(Flow): type = 'for_stmt' __slots__ = () def get_testlist(self): """ Returns the input node ``y`` from: ``for x in y:``. """ return self.children[3] class TryStmt(Flow): type = 'try_stmt' __slots__ = () def get_except_clause_tests(self): """ Returns the ``test`` nodes found in ``except_clause`` nodes. Returns ``[None]`` for except clauses without an exception given. """ for node in self.children: # TODO this is not correct. We're not returning an except clause. if node.type == 'except_clause': yield node.children[1] elif node == 'except': yield None class WithStmt(Flow): type = 'with_stmt' __slots__ = () def get_defined_names(self): names = [] for with_item in self.children[1:-2:2]: # Check with items for 'as' names. if with_item.type == 'with_item': names += _defined_names(with_item.children[2]) return names def get_context_manager_from_name(self, name): # TODO Replace context_manager with test? node = name.parent if node.type != 'with_item': raise ValueError('The name is not actually part of a with statement.') return node.children[0] class Import(PythonBaseNode): __slots__ = () def get_path_for_name(self, name): try: # The name may be an alias. If it is, just map it back to the name. name = self.aliases()[name] except KeyError: pass for path in self.paths(): if name in path: return path[:path.index(name) + 1] raise ValueError('Name should be defined in the import itself') def is_nested(self): return False # By default, sub classes may overwrite this behavior def is_star_import(self): return self.children[-1] == '*' class ImportFrom(Import): type = 'import_from' __slots__ = () def get_defined_names(self): return [alias or name for name, alias in self._as_name_tuples()] def aliases(self): """Mapping from alias to its corresponding name.""" return dict((alias, name) for name, alias in self._as_name_tuples() if alias is not None) def get_from_names(self): for n in self.children[1:]: if n not in ('.', '...'): break if n.type == 'dotted_name': # from x.y import return n.children[::2] elif n == 'import': # from . import return [] else: # from x import return [n] @property def level(self): """The level parameter of ``__import__``.""" level = 0 for n in self.children[1:]: if n in ('.', '...'): level += len(n.value) else: break return level def _as_name_tuples(self): last = self.children[-1] if last == ')': last = self.children[-2] elif last == '*': return # No names defined directly. if last.type == 'import_as_names': as_names = last.children[::2] else: as_names = [last] for as_name in as_names: if as_name.type == 'name': yield as_name, None else: yield as_name.children[::2] # yields x, y -> ``x as y`` def star_import_name(self): """ The last name defined in a star import. """ return self.paths()[-1][-1] def paths(self): """ The import paths defined in an import statement. Typically an array like this: ``[, ]``. """ dotted = self.get_from_names() if self.children[-1] == '*': return [dotted] return [dotted + [name] for name, alias in self._as_name_tuples()] class ImportName(Import): """For ``import_name`` nodes. Covers normal imports without ``from``.""" type = 'import_name' __slots__ = () def get_defined_names(self): return [alias or path[0] for path, alias in self._dotted_as_names()] @property def level(self): """The level parameter of ``__import__``.""" return 0 # Obviously 0 for imports without from. def paths(self): return [path for path, alias in self._dotted_as_names()] def _dotted_as_names(self): """Generator of (list(path), alias) where alias may be None.""" dotted_as_names = self.children[1] if dotted_as_names.type == 'dotted_as_names': as_names = dotted_as_names.children[::2] else: as_names = [dotted_as_names] for as_name in as_names: if as_name.type == 'dotted_as_name': alias = as_name.children[2] as_name = as_name.children[0] else: alias = None if as_name.type == 'name': yield [as_name], alias else: # dotted_names yield as_name.children[::2], alias def is_nested(self): """ This checks for the special case of nested imports, without aliases and from statement:: import foo.bar """ return [1 for path, alias in self._dotted_as_names() if alias is None and len(path) > 1] def aliases(self): return dict((alias, path[-1]) for path, alias in self._dotted_as_names() if alias is not None) class KeywordStatement(PythonBaseNode): """ For the following statements: `assert`, `del`, `global`, `nonlocal`, `raise`, `return`, `yield`, `return`, `yield`. `pass`, `continue` and `break` are not in there, because they are just simple keywords and the parser reduces it to a keyword. """ __slots__ = () @property def type(self): """ Keyword statements start with the keyword and end with `_stmt`. You can crosscheck this with the Python grammar. """ return '%s_stmt' % self.keyword @property def keyword(self): return self.children[0].value class AssertStmt(KeywordStatement): __slots__ = () @property def assertion(self): return self.children[1] class GlobalStmt(KeywordStatement): __slots__ = () def get_global_names(self): return self.children[1::2] class ReturnStmt(KeywordStatement): __slots__ = () class YieldExpr(PythonBaseNode): type = 'yield_expr' __slots__ = () def _defined_names(current): """ A helper function to find the defined names in statements, for loops and list comprehensions. """ names = [] if current.type in ('testlist_star_expr', 'testlist_comp', 'exprlist'): for child in current.children[::2]: names += _defined_names(child) elif current.type in ('atom', 'star_expr'): names += _defined_names(current.children[1]) elif current.type in ('power', 'atom_expr'): if current.children[-2] != '**': # Just if there's no operation trailer = current.children[-1] if trailer.children[0] == '.': names.append(trailer.children[1]) else: names.append(current) return names class ExprStmt(PythonBaseNode, DocstringMixin): type = 'expr_stmt' __slots__ = () def get_defined_names(self): names = [] if self.children[1].type == 'annassign': names = _defined_names(self.children[0]) return list(chain.from_iterable( _defined_names(self.children[i]) for i in range(0, len(self.children) - 2, 2) if '=' in self.children[i + 1].value) ) + names def get_rhs(self): """Returns the right-hand-side of the equals.""" return self.children[-1] def yield_operators(self): """ Returns a generator of `+=`, `=`, etc. or None if there is no operation. """ first = self.children[1] if first.type == 'annassign': if len(first.children) <= 2: return # No operator is available, it's just PEP 484. first = first.children[2] yield first for operator in self.children[3::2]: yield operator class Param(PythonBaseNode): """ It's a helper class that makes business logic with params much easier. The Python grammar defines no ``param`` node. It defines it in a different way that is not really suited to working with parameters. """ type = 'param' def __init__(self, children, parent): super(Param, self).__init__(children) self.parent = parent for child in children: child.parent = self @property def star_count(self): first = self.children[0] if first in ('*', '**'): return len(first.value) return 0 @property def default(self): try: return self.children[int(self.children[0] in ('*', '**')) + 2] except IndexError: return None @property def annotation(self): tfpdef = self._tfpdef() if tfpdef.type == 'tfpdef': assert tfpdef.children[1] == ":" assert len(tfpdef.children) == 3 annotation = tfpdef.children[2] return annotation else: return None def _tfpdef(self): """ tfpdef: see grammar.txt. """ offset = int(self.children[0] in ('*', '**')) return self.children[offset] @property def name(self): if self._tfpdef().type == 'tfpdef': return self._tfpdef().children[0] else: return self._tfpdef() @property def position_index(self): """ Returns the positional index of a paramter. """ index = self.parent.children.index(self) try: keyword_only_index = self.parent.children.index('*') if index > keyword_only_index: # Skip the ` *, ` index -= 2 except ValueError: pass return index - 1 def get_parent_function(self): """ Returns the function/lambda a paramter is defined in. """ return search_ancestor(self, ('funcdef', 'lambdef')) def get_description(self): # TODO Remove? children = self.children if children[-1] == ',': children = children[:-1] return self._get_code_for_children(children, False, False) def __repr__(self): default = '' if self.default is None else '=%s' % self.default.get_code() return '<%s: %s>' % (type(self).__name__, str(self._tfpdef()) + default) class CompFor(PythonBaseNode): type = 'comp_for' __slots__ = () def is_scope(self): return True def get_defined_names(self): return _defined_names(self.children[1])