""" Contains all classes and functions to deal with lists, dicts, generators and iterators in general. Array modifications ******************* If the content of an array (``set``/``list``) is requested somewhere, the current module will be checked for appearances of ``arr.append``, ``arr.insert``, etc. If the ``arr`` name points to an actual array, the content will be added This can be really cpu intensive, as you can imagine. Because |jedi| has to follow **every** ``append`` and check wheter it's the right array. However this works pretty good, because in *slow* cases, the recursion detector and other settings will stop this process. It is important to note that: 1. Array modfications work only in the current module. 2. Jedi only checks Array additions; ``list.pop``, etc are ignored. """ from itertools import chain from jedi import common from jedi import debug from jedi import settings from jedi._compatibility import use_metaclass, is_py3, unicode from jedi.parser import tree as pr from jedi.evaluate import compiled from jedi.evaluate import helpers from jedi.evaluate import precedence from jedi.evaluate.cache import CachedMetaClass, memoize_default, NO_DEFAULT from jedi.cache import underscore_memoization from jedi.evaluate import analysis def unite(iterable): """Turns a two dimensional array into a one dimensional.""" return list(chain.from_iterable(iterable)) class IterableWrapper(pr.Base): def is_class(self): return False class GeneratorMixin(object): @underscore_memoization def _get_defined_names(self): """ Returns a list of names that define a generator, which can return the content of a generator. """ executes_generator = '__next__', 'send', 'next' for name in compiled.generator_obj.get_defined_names(): if name.name in executes_generator: parent = GeneratorMethod(self, name.parent) yield helpers.FakeName(name.name, parent) else: yield name def scope_names_generator(self, position=None): yield self, self._get_defined_names() def get_index_types(self, evaluator, index_array): #debug.warning('Tried to get array access on a generator: %s', self) analysis.add(self._evaluator, 'type-error-generator', index_array) return [] def get_exact_index_types(self, index): """ Exact lookups are used for tuple lookups, which are perfectly fine if used with generators. """ return [self.iter_content()[index]] class Generator(use_metaclass(CachedMetaClass, IterableWrapper, GeneratorMixin)): """Handling of `yield` functions.""" def __init__(self, evaluator, func, var_args): super(Generator, self).__init__() self._evaluator = evaluator self.func = func self.var_args = var_args def iter_content(self): """ returns the content of __iter__ """ # Directly execute it, because with a normal call to py__call__ a # Generator will be returned. from jedi.evaluate.representation import FunctionExecution f = FunctionExecution(self._evaluator, self.func, self.var_args) return f.get_return_types(check_yields=True) def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'parent', 'get_imports', 'asserts', 'doc', 'docstr', 'get_parent_until', 'get_code', 'subscopes']: raise AttributeError("Accessing %s of %s is not allowed." % (self, name)) return getattr(self.func, name) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.func) class GeneratorMethod(IterableWrapper): """``__next__`` and ``send`` methods.""" def __init__(self, generator, builtin_func): self._builtin_func = builtin_func self._generator = generator def py__call__(self, evaluator, params): # TODO add TypeError if params are given. return self._generator.iter_content() def __getattr__(self, name): return getattr(self._builtin_func, name) class Comprehension(IterableWrapper): @staticmethod def from_atom(evaluator, atom): mapping = { '(': GeneratorComprehension, '[': ListComprehension } return mapping[atom.children[0]](evaluator, atom) def __init__(self, evaluator, atom): self._evaluator = evaluator self._atom = atom @memoize_default() def eval_node(self): """ The first part `x + 1` of the list comprehension: [x + 1 for x in foo] """ comprehension = self._atom.children[1] # For nested comprehensions we need to search the last one. last = comprehension.children[-1] last_comp = comprehension.children[1] while True: if isinstance(last, pr.CompFor): last_comp = last elif not pr.is_node(last, 'comp_if'): break last = last.children[-1] return helpers.deep_ast_copy(comprehension.children[0], {comprehension: last_comp}) def get_exact_index_types(self, index): return [self._evaluator.eval_element(self.eval_node())[index]] def __repr__(self): return "" % (type(self).__name__, self._atom) class ListComprehension(Comprehension): def get_index_types(self, evaluator, index): return self.iter_content() def iter_content(self): return self._evaluator.eval_element(self.eval_node()) @property def name(self): return FakeSequence(self._evaluator, [], pr.Array.LIST).name class GeneratorComprehension(Comprehension, GeneratorMixin): def iter_content(self): return self._evaluator.eval_element(self.eval_node()) class Array(IterableWrapper): """ Used as a mirror to pr.Array, if needed. It defines some getter methods which are important in this module. """ mapping = {'(': pr.Array.TUPLE, '[': pr.Array.LIST, '{': pr.Array.DICT} def __init__(self, evaluator, atom): self._evaluator = evaluator self._atom = atom self.type = Array.mapping[atom.children[0]] c = self._atom.children array_node = c[1] if self.type == pr.Array.DICT and array_node != '}' \ and (not hasattr(array_node, 'children') or ':' not in array_node.children): self.type = pr.Array.SET @property def name(self): return helpers.FakeName(self.type, parent=self) def py__bool__(self): return None # We don't know the length, because of appends. @memoize_default(NO_DEFAULT) def get_index_types(self, evaluator, index=()): """ Get the types of a specific index or all, if not given. :param index: A subscriptlist node (or subnode). """ indexes = create_indexes_or_slices(evaluator, index) lookup_done = False types = [] for index in indexes: if isinstance(index, Slice): types += [self] lookup_done = True elif isinstance(index, compiled.CompiledObject) \ and isinstance(index.obj, (int, str, unicode)): with common.ignored(KeyError, IndexError, TypeError): types += self.get_exact_index_types(index.obj) lookup_done = True return types if lookup_done else self.values() @memoize_default(NO_DEFAULT) def values(self): result = unite(self._evaluator.eval_element(v) for v in self._values()) # TODO reenable #result += check_array_additions(self._evaluator, self) return result def get_exact_index_types(self, mixed_index): """ Here the index is an int/str. Raises IndexError/KeyError """ if self.type == pr.Array.DICT: for key, values in self._items(): # Because we only want the key to be a string. keys = self._evaluator.eval_element(key) for k in keys: if isinstance(k, compiled.CompiledObject) \ and mixed_index == k.obj: for value in values: return self._evaluator.eval_element(value) raise KeyError('No key found in dictionary %s.' % self) # Can raise an IndexError return self._evaluator.eval_element(self._items()[mixed_index]) def scope_names_generator(self, position=None): """ It returns e.g. for a list: append, pop, ... """ # `array.type` is a string with the type, e.g. 'list'. scope = self._evaluator.find_types(compiled.builtin, self.type)[0] scope = self._evaluator.execute(scope)[0] # builtins only have one class for _, names in scope.scope_names_generator(): yield self, names @common.safe_property def parent(self): return compiled.builtin def get_parent_until(self): return compiled.builtin def __getattr__(self, name): if name not in ['start_pos', 'get_only_subelement', 'parent', 'get_parent_until', 'items']: raise AttributeError('Strange access on %s: %s.' % (self, name)) return getattr(self._atom, name) def _values(self): """Returns a list of a list of node.""" if self.type == pr.Array.DICT: return list(chain.from_iterable(v for k, v in self._items())) else: return self._items() def _items(self): c = self._atom.children array_node = c[1] if array_node in (']', '}', ')'): return [] # Direct closing bracket, doesn't contain items. if pr.is_node(array_node, 'testlist_comp'): return array_node.children[::2] elif pr.is_node(array_node, 'dictorsetmaker'): kv = [] iterator = iter(array_node.children) for key in iterator: op = next(iterator, None) if op is None or op == ',': kv.append(key) # A set. elif op == ':': # A dict. kv.append((key, [next(iterator)])) next(iterator, None) # Possible comma. else: raise NotImplementedError('dict/set comprehensions') return kv else: return [array_node] def __iter__(self): return iter(self._items()) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._atom) class _FakeArray(Array): def __init__(self, evaluator, container, type): self.type = type self._evaluator = evaluator self._atom = container class ImplicitTuple(_FakeArray): def __init__(self, evaluator, testlist): super(ImplicitTuple, self).__init__(evaluator, testlist, pr.Array.TUPLE) self._testlist = testlist def _items(self): return self._testlist.children[::2] class FakeSequence(_FakeArray): def __init__(self, evaluator, sequence_values, type): super(FakeSequence, self).__init__(evaluator, sequence_values, type) self._sequence_values = sequence_values def _items(self): return self._sequence_values def get_exact_index_types(self, index): value = self._sequence_values[index] return self._evaluator.eval_element(value) class AlreadyEvaluated(frozenset): """A simple container to add already evaluated objects to an array.""" pass class MergedNodes(frozenset): pass class FakeDict(_FakeArray): def __init__(self, evaluator, dct): super(FakeDict, self).__init__(evaluator, dct, pr.Array.DICT) self._dct = dct def get_exact_index_types(self, index): return list(chain.from_iterable(self._evaluator.eval_element(v) for v in self._dct[index])) def _items(self): return self._dct.items() class MergedArray(_FakeArray): def __init__(self, evaluator, arrays): super(MergedArray, self).__init__(evaluator, arrays, arrays[-1].type) self._arrays = arrays def get_index_types(self, evaluator, mixed_index): return list(chain(*(a.values() for a in self._arrays))) def get_exact_index_types(self, mixed_index): raise IndexError def __iter__(self): for array in self._arrays: for a in array: yield a def __len__(self): return sum(len(a) for a in self._arrays) def get_iterator_types(inputs): """Returns the types of any iterator (arrays, yields, __iter__, etc).""" iterators = [] # Take the first statement (for has always only # one, remember `in`). And follow it. for it in inputs: if isinstance(it, (Generator, Array, ArrayInstance, Comprehension)): iterators.append(it) else: if not hasattr(it, 'execute_subscope_by_name'): debug.warning('iterator/for loop input wrong: %s', it) continue try: iterators += it.execute_subscope_by_name('__iter__') except KeyError: debug.warning('iterators: No __iter__ method found.') result = [] from jedi.evaluate.representation import Instance for it in iterators: if isinstance(it, Array): # Array is a little bit special, since this is an internal array, # but there's also the list builtin, which is another thing. result += it.values() elif isinstance(it, Instance): # __iter__ returned an instance. name = '__next__' if is_py3 else 'next' try: result += it.execute_subscope_by_name(name) except KeyError: debug.warning('Instance has no __next__ function in %s.', it) else: # TODO this is not correct, __iter__ can return arbitrary input! # Is a generator. result += it.iter_content() return result def check_array_additions(evaluator, array): """ Just a mapper function for the internal _check_array_additions """ if not pr.Array.is_type(array._array, pr.Array.LIST, pr.Array.SET): # TODO also check for dict updates return [] is_list = array._array.type == 'list' current_module = array._array.get_parent_until() res = _check_array_additions(evaluator, array, current_module, is_list) return res @memoize_default([], evaluator_is_first_arg=True) def _check_array_additions(evaluator, compare_array, module, is_list): """ Checks if a `pr.Array` has "add" statements: >>> a = [""] >>> a.append(1) """ if not settings.dynamic_array_additions or isinstance(module, compiled.CompiledObject): return [] def check_power(power): """ The power node is compared with the original Array. """ # TODO remove unused. result = [] x = evaluator.eval_element(power) #print(power, compare_array in x, x, compare_array) if 0: call_path = list(c.generate_call_path()) call_path_simple = [unicode(n) if isinstance(n, pr.Name) else n for n in call_path] separate_index = call_path_simple.index(add_name) if add_name == call_path_simple[-1] or separate_index == 0: # this means that there is no execution -> [].append # or the keyword is at the start -> append() continue backtrack_path = iter(call_path[:separate_index]) position = c.start_pos scope = c.get_parent_scope() found = evaluator.eval_call_path(backtrack_path, scope, position) if not compare_array in found: continue def get_additions(arglist, add_name): params = list(param.Arguments(evaluator, arglist).unpack()) result = [] if add_name in ['insert']: params = params[1:] if add_name in ['append', 'add', 'insert']: for key, nodes in params: result += unite(evaluator.eval_element(node) for node in nodes) elif add_name in ['extend', 'update']: for key, nodes in params: iterators = unite(evaluator.eval_element(node) for node in nodes) result += get_iterator_types(iterators) return result # TODO REMOVE """ params = call_path[separate_index + 1] if not params.values: #continue # no params: just ignore it pass if add_name in ['append', 'add']: for p in params: result += evaluator.eval_statement(p) elif add_name in ['insert']: try: second_param = params[1] except IndexError: #continue pass else: result += evaluator.eval_statement(second_param) elif add_name in ['extend', 'update']: for p in params: iterators = evaluator.eval_statement(p) result += get_iterator_types(iterators) return result """ from jedi.evaluate import representation as er, param def get_execution_parent(element, *stop_classes): """ Used to get an Instance/FunctionExecution parent """ if isinstance(element, Array): # TODO remove! stmt = element._array.parent else: # is an Instance with an ArrayInstance inside stmt = element.var_args[0].var_args.parent if isinstance(stmt, er.InstanceElement): stop_classes = list(stop_classes) + [er.Function] return stmt.get_parent_until(stop_classes) temp_param_add, settings.dynamic_params_for_other_modules = \ settings.dynamic_params_for_other_modules, False search_names = ['append', 'extend', 'insert'] if is_list else ['add', 'update'] #comp_arr_parent = get_execution_parent(compare_array, er.FunctionExecution) res = [] for add_name in search_names: try: possible_names = module.used_names[add_name] except KeyError: continue else: for name in possible_names: # Check if the original scope is an execution. If it is, one # can search for the same statement, that is in the module # dict. Executions are somewhat special in jedi, since they # literally copy the contents of a function. """ if isinstance(comp_arr_parent, er.FunctionExecution): stmt = comp_arr_parent. \ get_statement_for_position(stmt.start_pos) if stmt is None: continue # InstanceElements are special, because they don't get copied, # but have this wrapper around them. if isinstance(comp_arr_parent, er.InstanceElement): stmt = er.get_instance_el(comp_arr_parent.instance, stmt) """ trailer = name.parent power = trailer.parent trailer_pos = power.children.index(trailer) try: execution_trailer = power.children[trailer_pos + 1] except IndexError: continue else: if execution_trailer.type != 'trailer' \ or execution_trailer.children[0] != '(' \ or execution_trailer.children[1] == ')': continue power = helpers.call_of_name(name, cut_own_trailer=True) #if evaluator.recursion_detector.push_stmt(stmt): # check recursion # continue if compare_array in evaluator.eval_element(power): # The arrays match. res += get_additions(execution_trailer.children[1], add_name) #res += check_power(call) #evaluator.recursion_detector.pop_stmt() # reset settings settings.dynamic_params_for_other_modules = temp_param_add return res def check_array_instances(evaluator, instance): """Used for set() and list() instances.""" if not settings.dynamic_array_additions: return instance.var_args ai = ArrayInstance(evaluator, instance) from jedi.evaluate import param return param.Arguments(evaluator, [AlreadyEvaluated([ai])]) class ArrayInstance(IterableWrapper): """ Used for the usage of set() and list(). This is definitely a hack, but a good one :-) It makes it possible to use set/list conversions. """ def __init__(self, evaluator, instance): self._evaluator = evaluator self.instance = instance self.var_args = instance.var_args def iter_content(self): """ The index is here just ignored, because of all the appends, etc. lists/sets are too complicated too handle that. """ items = [] from jedi.evaluate.representation import Instance for key, nodes in self.var_args.unpack(): for node in nodes: for typ in self._evaluator.eval_element(node): if isinstance(typ, Instance) and len(typ.var_args): array = typ.var_args[0] if isinstance(array, ArrayInstance): # Certain combinations can cause recursions, see tests. if not self._evaluator.recursion_detector.push_stmt(self.var_args): items += array.iter_content() self._evaluator.recursion_detector.pop_stmt() items += get_iterator_types([typ]) # TODO remove? """ # TODO check if exclusion of tuple is a problem here. if isinstance(self.var_args, tuple) or self.var_args.parent is None: return [] # generated var_args should not be checked for arrays """ module = self.var_args.argument_node.get_parent_until() is_list = str(self.instance.name) == 'list' items += _check_array_additions(self._evaluator, self.instance, module, is_list) return items class Slice(object): def __init__(self, evaluator, start, stop, step): self._evaluator = evaluator # all of them are either a Precedence or None. self._start = start self._stop = stop self._step = step @property def obj(self): """ Imitate CompiledObject.obj behavior and return a ``builtin.slice()`` object. """ def get(element): if element is None: return None result = precedence.process_precedence_element(self._evaluator, element) if len(result) != 1: # We want slices to be clear defined with just one type. # Otherwise we will return an empty slice object. raise IndexError try: return result[0].obj except AttributeError: return None try: return slice(get(self._start), get(self._stop), get(self._step)) except IndexError: return slice(None, None, None) def create_indexes_or_slices(evaluator, index): if pr.is_node(index, 'subscript'): # subscript is a slice operation. start, stop, step = None, None, None result = [] for el in index.children: if el == ':' and not result: result.append(None) elif pr.is_node(el, 'sliceop'): if len(el.children) == 2: result.append(el.children[1]) else: result.append(result) result += [None] * (3 - len(result)) return (Slice(evaluator, *result),) return evaluator.eval_element(index) # TODO delete the rest? # Just take the first part of the "array", because this is Python stdlib # behavior. Numpy et al. perform differently, but Jedi won't understand # that anyway. expression_list = index[0].expression_list() prec = precedence.create_precedence(expression_list) # check for slices if isinstance(prec, precedence.Precedence) and prec.operator == ':': start = prec.left if isinstance(start, precedence.Precedence) and start.operator == ':': stop = start.right start = start.left step = prec.right else: stop = prec.right step = None return (Slice(evaluator, start, stop, step),) else: return tuple(precedence.process_precedence_element(evaluator, prec))