""" If you know what an syntax tree is, you'll see that this module is pretty much that. The classes represent syntax elements like functions and imports. This is the "business logic" part of the parser. There's a lot of logic here that makes it easier for Jedi (and other libraries) to deal with a Python syntax tree. By using `get_code` on a module, you can get back the 1-to-1 representation of the input given to the parser. This is important if you are using refactoring. The easiest way to play with this module is to use :class:`parsing.Parser`. :attr:`parsing.Parser.module` holds an instance of :class:`Module`: >>> from jedi.parser.python import parse >>> parser = parse('import os') >>> module = parser.get_root_node() >>> module Any subclasses of :class:`Scope`, including :class:`Module` has an attribute :attr:`imports `: >>> module.imports [] See also :attr:`Scope.subscopes` and :attr:`Scope.statements`. """ from inspect import cleandoc from itertools import chain import textwrap from jedi._compatibility import (Python3Method, is_py3, utf8_repr, literal_eval, unicode) from jedi.parser.tree import Node, BaseNode, Leaf, ErrorNode, ErrorLeaf def _safe_literal_eval(value): first_two = value[:2].lower() if first_two[0] == 'f' or first_two in ('fr', 'rf'): # literal_eval is not able to resovle f literals. We have to do that # manually in a later stage return '' try: return literal_eval(value) except SyntaxError: # It's possible to create syntax errors with literals like rb'' in # Python 2. This should not be possible and in that case just return an # empty string. # Before Python 3.3 there was a more strict definition in which order # you could define literals. return '' def search_ancestor(node, node_type_or_types): if not isinstance(node_type_or_types, (list, tuple)): node_type_or_types = (node_type_or_types,) while True: node = node.parent if node is None or node.type in node_type_or_types: return node class DocstringMixin(object): __slots__ = () @property def raw_doc(self): """ Returns a cleaned version of the docstring token. """ if self.type == 'file_input': node = self.children[0] elif isinstance(self, ClassOrFunc): node = self.children[self.children.index(':') + 1] if node.type == 'suite': # Normally a suite node = node.children[1] # -> NEWLINE stmt else: # ExprStmt simple_stmt = self.parent c = simple_stmt.parent.children index = c.index(simple_stmt) if not index: return '' node = c[index - 1] if node.type == 'simple_stmt': node = node.children[0] if node.type == 'string': # TODO We have to check next leaves until there are no new # leaves anymore that might be part of the docstring. A # docstring can also look like this: ``'foo' 'bar' # Returns a literal cleaned version of the ``Token``. cleaned = cleandoc(_safe_literal_eval(node.value)) # Since we want the docstr output to be always unicode, just # force it. if is_py3 or isinstance(cleaned, unicode): return cleaned else: return unicode(cleaned, 'UTF-8', 'replace') return '' class PythonMixin(): def get_parent_scope(self, include_flows=False): """ Returns the underlying scope. """ scope = self.parent while scope is not None: if include_flows and isinstance(scope, Flow): return scope if scope.is_scope(): break scope = scope.parent return scope def get_definition(self): if self.type in ('newline', 'endmarker'): raise ValueError('Cannot get the indentation of whitespace or indentation.') scope = self while scope.parent is not None: parent = scope.parent if isinstance(scope, (PythonNode, PythonLeaf)) and parent.type != 'simple_stmt': if scope.type == 'testlist_comp': try: if scope.children[1].type == 'comp_for': return scope.children[1] except IndexError: pass scope = parent else: break return scope def is_scope(self): # Default is not being a scope. Just inherit from Scope. return False @Python3Method def name_for_position(self, position): for c in self.children: if isinstance(c, Leaf): if isinstance(c, Name) and c.start_pos <= position <= c.end_pos: return c else: result = c.name_for_position(position) if result is not None: return result return None @Python3Method def get_statement_for_position(self, pos): for c in self.children: if c.start_pos <= pos <= c.end_pos: if c.type not in ('decorated', 'simple_stmt', 'suite') \ and not isinstance(c, (Flow, ClassOrFunc)): return c else: try: return c.get_statement_for_position(pos) except AttributeError: pass # Must be a non-scope return None class PythonLeaf(Leaf, PythonMixin): __slots__ = () class _LeafWithoutNewlines(PythonLeaf): """ Simply here to optimize performance. """ __slots__ = () @property def end_pos(self): return self.line, self.indent + len(self.value) # Python base classes class PythonBaseNode(BaseNode, PythonMixin): __slots__ = () class PythonNode(Node, PythonMixin): __slots__ = () class PythonErrorNode(ErrorNode, PythonMixin): __slots__ = () class PythonErrorLeaf(ErrorLeaf, PythonMixin): __slots__ = () class EndMarker(_LeafWithoutNewlines): __slots__ = () type = 'endmarker' class Newline(PythonLeaf): """Contains NEWLINE and ENDMARKER tokens.""" __slots__ = () type = 'newline' @utf8_repr def __repr__(self): return "<%s: %s>" % (type(self).__name__, repr(self.value)) class Name(_LeafWithoutNewlines): """ A string. Sometimes it is important to know if the string belongs to a name or not. """ type = 'name' __slots__ = () def __str__(self): return self.value def __unicode__(self): return self.value def __repr__(self): return "<%s: %s@%s,%s>" % (type(self).__name__, self.value, self.line, self.indent) def is_definition(self): if self.parent.type in ('power', 'atom_expr'): # In `self.x = 3` self is not a definition, but x is. return False stmt = self.get_definition() if stmt.type in ('funcdef', 'classdef', 'param'): return self == stmt.name elif stmt.type == 'for_stmt': return self.start_pos < stmt.children[2].start_pos elif stmt.type == 'try_stmt': return self.get_previous_sibling() == 'as' else: return stmt.type in ('expr_stmt', 'import_name', 'import_from', 'comp_for', 'with_stmt') \ and self in stmt.get_defined_names() class Literal(PythonLeaf): __slots__ = () def eval(self): return _safe_literal_eval(self.value) class Number(Literal): type = 'number' __slots__ = () class String(Literal): type = 'string' __slots__ = () class Operator(_LeafWithoutNewlines): type = 'operator' __slots__ = () def __str__(self): return self.value def __eq__(self, other): """ Make comparisons with strings easy. Improves the readability of the parser. """ if isinstance(other, Operator): return self is other else: return self.value == other def __ne__(self, other): """Python 2 compatibility.""" return self.value != other def __hash__(self): return hash(self.value) class Keyword(_LeafWithoutNewlines): type = 'keyword' __slots__ = () def __eq__(self, other): """ Make comparisons with strings easy. Improves the readability of the parser. """ if isinstance(other, Keyword): return self is other return self.value == other def __ne__(self, other): """Python 2 compatibility.""" return not self.__eq__(other) def __hash__(self): return hash(self.value) class Scope(PythonBaseNode, DocstringMixin): """ Super class for the parser tree, which represents the state of a python text file. A Scope manages and owns its subscopes, which are classes and functions, as well as variables and imports. It is used to access the structure of python files. :param start_pos: The position (line and column) of the scope. :type start_pos: tuple(int, int) """ __slots__ = () def __init__(self, children): super(Scope, self).__init__(children) @property def returns(self): # Needed here for fast_parser, because the fast_parser splits and # returns will be in "normal" modules. return self._search_in_scope(ReturnStmt) @property def subscopes(self): return self._search_in_scope(Scope) @property def flows(self): return self._search_in_scope(Flow) @property def imports(self): return self._search_in_scope(Import) @Python3Method def _search_in_scope(self, typ): def scan(children): elements = [] for element in children: if isinstance(element, typ): elements.append(element) if element.type in ('suite', 'simple_stmt', 'decorated') \ or isinstance(element, Flow): elements += scan(element.children) return elements return scan(self.children) @property def statements(self): return self._search_in_scope((ExprStmt, KeywordStatement)) def is_scope(self): return True def __repr__(self): try: name = self.name except AttributeError: name = '' return "<%s: %s@%s-%s>" % (type(self).__name__, name, self.start_pos[0], self.end_pos[0]) def walk(self): yield self for s in self.subscopes: for scope in s.walk(): yield scope for r in self.statements: while isinstance(r, Flow): for scope in r.walk(): yield scope r = r.next class Module(Scope): """ The top scope, which is always a module. Depending on the underlying parser this may be a full module or just a part of a module. """ __slots__ = ('_used_names',) type = 'file_input' def __init__(self, children): super(Module, self).__init__(children) self._used_names = None @property def has_explicit_absolute_import(self): """ Checks if imports in this module are explicitly absolute, i.e. there is a ``__future__`` import. """ # TODO this is a strange scan and not fully correct. I think Python's # parser does it in a different way and scans for the first # statement/import with a tokenizer (to check for syntax changes like # the future print statement). for imp in self.imports: if imp.type == 'import_from' and imp.level == 0: for path in imp.paths(): if [str(name) for name in path] == ['__future__', 'absolute_import']: return True return False @property def used_names(self): if self._used_names is None: # Don't directly use self._used_names to eliminate a lookup. dct = {} def recurse(node): try: children = node.children except AttributeError: if node.type == 'name': arr = dct.setdefault(node.value, []) arr.append(node) else: for child in children: recurse(child) recurse(self) self._used_names = dct return self._used_names class Decorator(PythonBaseNode): type = 'decorator' __slots__ = () class ClassOrFunc(Scope): __slots__ = () @property def name(self): return self.children[1] def get_decorators(self): decorated = self.parent if decorated.type == 'decorated': if decorated.children[0].type == 'decorators': return decorated.children[0].children else: return decorated.children[:1] else: return [] class Class(ClassOrFunc): """ Used to store the parsed contents of a python class. :param name: The Class name. :type name: str :param supers: The super classes of a Class. :type supers: list :param start_pos: The start position (line, column) of the class. :type start_pos: tuple(int, int) """ type = 'classdef' __slots__ = () def __init__(self, children): super(Class, self).__init__(children) def get_super_arglist(self): if self.children[2] != '(': # Has no parentheses return None else: if self.children[3] == ')': # Empty parentheses return None else: return self.children[3] @property def doc(self): """ Return a document string including call signature of __init__. """ docstr = self.raw_doc for sub in self.subscopes: if str(sub.name) == '__init__': return '%s\n\n%s' % ( sub.get_call_signature(func_name=self.name), docstr) return docstr def _create_params(parent, argslist_list): """ `argslist_list` is a list that can contain an argslist as a first item, but most not. It's basically the items between the parameter brackets (which is at most one item). This function modifies the parser structure. It generates `Param` objects from the normal ast. Those param objects do not exist in a normal ast, but make the evaluation of the ast tree so much easier. You could also say that this function replaces the argslist node with a list of Param objects. """ def check_python2_nested_param(node): """ Python 2 allows params to look like ``def x(a, (b, c))``, which is basically a way of unpacking tuples in params. Python 3 has ditched this behavior. Jedi currently just ignores those constructs. """ return node.type == 'tfpdef' and node.children[0] == '(' try: first = argslist_list[0] except IndexError: return [] if first.type in ('name', 'tfpdef'): if check_python2_nested_param(first): return [first] else: return [Param([first], parent)] elif first == '*': return [first] else: # argslist is a `typedargslist` or a `varargslist`. children = first.children new_children = [] start = 0 # Start with offset 1, because the end is higher. for end, child in enumerate(children + [None], 1): if child is None or child == ',': param_children = children[start:end] if param_children: # Could as well be comma and then end. if check_python2_nested_param(param_children[0]): new_children += param_children elif param_children[0] == '*' and param_children[1] == ',': new_children += param_children else: new_children.append(Param(param_children, parent)) start = end return new_children class Function(ClassOrFunc): """ Used to store the parsed contents of a python function. Children: 0) 1) 2) parameter list (including open-paren and close-paren s) 3 or 5) 4 or 6) Node() representing function body 3) -> (if annotation is also present) 4) annotation (if present) """ type = 'funcdef' def __init__(self, children): super(Function, self).__init__(children) parameters = self.children[2] # After `def foo` parameters.children[1:-1] = _create_params(parameters, parameters.children[1:-1]) @property def params(self): return [p for p in self.children[2].children if p.type == 'param'] @property def name(self): return self.children[1] # First token after `def` @property def yields(self): # TODO This is incorrect, yields are also possible in a statement. return self._search_in_scope(YieldExpr) def is_generator(self): return bool(self.yields) def annotation(self): try: if self.children[3] == "->": return self.children[4] assert self.children[3] == ":" return None except IndexError: return None def get_call_signature(self, width=72, func_name=None): """ Generate call signature of this function. :param width: Fold lines if a line is longer than this value. :type width: int :arg func_name: Override function name when given. :type func_name: str :rtype: str """ func_name = func_name or self.name code = unicode(func_name) + self._get_paramlist_code() return '\n'.join(textwrap.wrap(code, width)) def _get_paramlist_code(self): return self.children[2].get_code() @property def doc(self): """ Return a document string including call signature. """ docstr = self.raw_doc return '%s\n\n%s' % (self.get_call_signature(), docstr) class Lambda(Function): """ Lambdas are basically trimmed functions, so give it the same interface. Children: 0) *) for each argument x -2) -1) Node() representing body """ type = 'lambda' __slots__ = () def __init__(self, children): # We don't want to call the Function constructor, call its parent. super(Function, self).__init__(children) lst = self.children[1:-2] # Everything between `lambda` and the `:` operator is a parameter. self.children[1:-2] = _create_params(self, lst) @property def name(self): # Borrow the position of the AST node. return Name('', self.children[0].start_pos) def _get_paramlist_code(self): return '(' + ''.join(param.get_code() for param in self.params).strip() + ')' @property def params(self): return self.children[1:-2] def is_generator(self): return False def annotation(self): # lambda functions do not support annotations return None @property def yields(self): return [] def __repr__(self): return "<%s@%s>" % (self.__class__.__name__, self.start_pos) class Flow(PythonBaseNode): __slots__ = () FLOW_KEYWORDS = ( 'try', 'except', 'finally', 'else', 'if', 'elif', 'with', 'for', 'while' ) def get_branch_keyword(self, node): start_pos = node.start_pos if not (self.start_pos < start_pos <= self.end_pos): raise ValueError('The node is not part of the flow.') keyword = None for i, child in enumerate(self.children): if start_pos < child.start_pos: return keyword first_leaf = child.get_first_leaf() if first_leaf in self.FLOW_KEYWORDS: keyword = first_leaf return 0 class IfStmt(Flow): type = 'if_stmt' __slots__ = () def check_nodes(self): """ Returns all the `test` nodes that are defined as x, here: if x: pass elif x: pass """ for i, c in enumerate(self.children): if c in ('elif', 'if'): yield self.children[i + 1] def node_in_which_check_node(self, node): """ Returns the check node (see function above) that a node is contained in. However if it the node is in the check node itself and not in the suite return None. """ start_pos = node.start_pos for check_node in reversed(list(self.check_nodes())): if check_node.start_pos < start_pos: if start_pos < check_node.end_pos: return None # In this case the node is within the check_node itself, # not in the suite else: return check_node def node_after_else(self, node): """ Checks if a node is defined after `else`. """ for c in self.children: if c == 'else': if node.start_pos > c.start_pos: return True else: return False class WhileStmt(Flow): type = 'while_stmt' __slots__ = () class ForStmt(Flow): type = 'for_stmt' __slots__ = () def get_input_node(self): """ Returns the input node ``y`` from: ``for x in y:``. """ return self.children[3] def defines_one_name(self): """ Returns True if only one name is returned: ``for x in y``. Returns False if the for loop is more complicated: ``for x, z in y``. :returns: bool """ return self.children[1].type == 'name' class TryStmt(Flow): type = 'try_stmt' __slots__ = () def except_clauses(self): """ Returns the ``test`` nodes found in ``except_clause`` nodes. Returns ``[None]`` for except clauses without an exception given. """ for node in self.children: if node.type == 'except_clause': yield node.children[1] elif node == 'except': yield None class WithStmt(Flow): type = 'with_stmt' __slots__ = () def get_defined_names(self): names = [] for with_item in self.children[1:-2:2]: # Check with items for 'as' names. if with_item.type == 'with_item': names += _defined_names(with_item.children[2]) return names def node_from_name(self, name): node = name while True: node = node.parent if node.type == 'with_item': return node.children[0] class Import(PythonBaseNode): __slots__ = () def path_for_name(self, name): try: # The name may be an alias. If it is, just map it back to the name. name = self.aliases()[name] except KeyError: pass for path in self.paths(): if name in path: return path[:path.index(name) + 1] raise ValueError('Name should be defined in the import itself') def is_nested(self): return False # By default, sub classes may overwrite this behavior def is_star_import(self): return self.children[-1] == '*' class ImportFrom(Import): type = 'import_from' __slots__ = () def get_defined_names(self): return [alias or name for name, alias in self._as_name_tuples()] def aliases(self): """Mapping from alias to its corresponding name.""" return dict((alias, name) for name, alias in self._as_name_tuples() if alias is not None) def get_from_names(self): for n in self.children[1:]: if n not in ('.', '...'): break if n.type == 'dotted_name': # from x.y import return n.children[::2] elif n == 'import': # from . import return [] else: # from x import return [n] @property def level(self): """The level parameter of ``__import__``.""" level = 0 for n in self.children[1:]: if n in ('.', '...'): level += len(n.value) else: break return level def _as_name_tuples(self): last = self.children[-1] if last == ')': last = self.children[-2] elif last == '*': return # No names defined directly. if last.type == 'import_as_names': as_names = last.children[::2] else: as_names = [last] for as_name in as_names: if as_name.type == 'name': yield as_name, None else: yield as_name.children[::2] # yields x, y -> ``x as y`` def star_import_name(self): """ The last name defined in a star import. """ return self.paths()[-1][-1] def paths(self): """ The import paths defined in an import statement. Typically an array like this: ``[, ]``. """ dotted = self.get_from_names() if self.children[-1] == '*': return [dotted] return [dotted + [name] for name, alias in self._as_name_tuples()] class ImportName(Import): """For ``import_name`` nodes. Covers normal imports without ``from``.""" type = 'import_name' __slots__ = () def get_defined_names(self): return [alias or path[0] for path, alias in self._dotted_as_names()] @property def level(self): """The level parameter of ``__import__``.""" return 0 # Obviously 0 for imports without from. def paths(self): return [path for path, alias in self._dotted_as_names()] def _dotted_as_names(self): """Generator of (list(path), alias) where alias may be None.""" dotted_as_names = self.children[1] if dotted_as_names.type == 'dotted_as_names': as_names = dotted_as_names.children[::2] else: as_names = [dotted_as_names] for as_name in as_names: if as_name.type == 'dotted_as_name': alias = as_name.children[2] as_name = as_name.children[0] else: alias = None if as_name.type == 'name': yield [as_name], alias else: # dotted_names yield as_name.children[::2], alias def is_nested(self): """ This checks for the special case of nested imports, without aliases and from statement:: import foo.bar """ return [1 for path, alias in self._dotted_as_names() if alias is None and len(path) > 1] def aliases(self): return dict((alias, path[-1]) for path, alias in self._dotted_as_names() if alias is not None) class KeywordStatement(PythonBaseNode): """ For the following statements: `assert`, `del`, `global`, `nonlocal`, `raise`, `return`, `yield`, `return`, `yield`. `pass`, `continue` and `break` are not in there, because they are just simple keywords and the parser reduces it to a keyword. """ __slots__ = () @property def type(self): """ Keyword statements start with the keyword and end with `_stmt`. You can crosscheck this with the Python grammar. """ return '%s_stmt' % self.keyword @property def keyword(self): return self.children[0].value class AssertStmt(KeywordStatement): __slots__ = () def assertion(self): return self.children[1] class GlobalStmt(KeywordStatement): __slots__ = () def get_defined_names(self): return [] def get_global_names(self): return self.children[1::2] class ReturnStmt(KeywordStatement): __slots__ = () class YieldExpr(PythonBaseNode): __slots__ = () @property def type(self): return 'yield_expr' def _defined_names(current): """ A helper function to find the defined names in statements, for loops and list comprehensions. """ names = [] if current.type in ('testlist_star_expr', 'testlist_comp', 'exprlist'): for child in current.children[::2]: names += _defined_names(child) elif current.type in ('atom', 'star_expr'): names += _defined_names(current.children[1]) elif current.type in ('power', 'atom_expr'): if current.children[-2] != '**': # Just if there's no operation trailer = current.children[-1] if trailer.children[0] == '.': names.append(trailer.children[1]) else: names.append(current) return names class ExprStmt(PythonBaseNode, DocstringMixin): type = 'expr_stmt' __slots__ = () def get_defined_names(self): names = [] if self.children[1].type == 'annassign': names = _defined_names(self.children[0]) return list(chain.from_iterable( _defined_names(self.children[i]) for i in range(0, len(self.children) - 2, 2) if '=' in self.children[i + 1].value) ) + names def get_rhs(self): """Returns the right-hand-side of the equals.""" return self.children[-1] def first_operation(self): """ Returns `+=`, `=`, etc or None if there is no operation. """ try: return self.children[1] except IndexError: return None class Param(PythonBaseNode): """ It's a helper class that makes business logic with params much easier. The Python grammar defines no ``param`` node. It defines it in a different way that is not really suited to working with parameters. """ type = 'param' def __init__(self, children, parent): super(Param, self).__init__(children) self.parent = parent for child in children: child.parent = self @property def stars(self): first = self.children[0] if first in ('*', '**'): return len(first.value) return 0 @property def default(self): try: return self.children[int(self.children[0] in ('*', '**')) + 2] except IndexError: return None def annotation(self): tfpdef = self._tfpdef() if tfpdef.type == 'tfpdef': assert tfpdef.children[1] == ":" assert len(tfpdef.children) == 3 annotation = tfpdef.children[2] return annotation else: return None def _tfpdef(self): """ tfpdef: see grammar.txt. """ offset = int(self.children[0] in ('*', '**')) return self.children[offset] @property def name(self): if self._tfpdef().type == 'tfpdef': return self._tfpdef().children[0] else: return self._tfpdef() @property def position_nr(self): index = self.parent.children.index(self) try: keyword_only_index = self.parent.children.index('*') if index > keyword_only_index: # Skip the ` *, ` index -= 2 except ValueError: pass return index - 1 def get_parent_function(self): return search_ancestor(self, ('funcdef', 'lambda')) def __repr__(self): default = '' if self.default is None else '=%s' % self.default.get_code() return '<%s: %s>' % (type(self).__name__, str(self._tfpdef()) + default) def get_description(self): children = self.children if children[-1] == ',': children = children[:-1] return self._get_code_for_children(children, False, False) class CompFor(PythonBaseNode): type = 'comp_for' __slots__ = () def get_comp_fors(self): yield self last = self.children[-1] while True: if isinstance(last, CompFor): yield last elif not last.type == 'comp_if': break last = last.children[-1] def is_scope(self): return True def get_defined_names(self): return _defined_names(self.children[1])