""" Contains all classes and functions to deal with lists, dicts, generators and iterators in general. Array modifications ******************* If the content of an array (``set``/``list``) is requested somewhere, the current module will be checked for appearances of ``arr.append``, ``arr.insert``, etc. If the ``arr`` name points to an actual array, the content will be added This can be really cpu intensive, as you can imagine. Because |jedi| has to follow **every** ``append`` and check wheter it's the right array. However this works pretty good, because in *slow* cases, the recursion detector and other settings will stop this process. It is important to note that: 1. Array modfications work only in the current module. 2. Jedi only checks Array additions; ``list.pop``, etc are ignored. """ from jedi.common import unite, safe_property from jedi import debug from jedi import settings from jedi._compatibility import use_metaclass, unicode, zip_longest from jedi.parser import tree from jedi.evaluate import compiled from jedi.evaluate import helpers from jedi.evaluate.cache import CachedMetaClass, memoize_default from jedi.evaluate import analysis from jedi.evaluate import pep0484 class IterableWrapper(tree.Base): def is_class(self): return False @memoize_default() def _get_names_dict(self, names_dict): builtin_methods = {} for cls in reversed(type(self).mro()): try: builtin_methods.update(cls.builtin_methods) except AttributeError: pass if not builtin_methods: return names_dict dct = {} for names in names_dict.values(): for name in names: name_str = name.value try: method = builtin_methods[name_str, self.type] except KeyError: dct[name_str] = [name] else: parent = BuiltinMethod(self, method, name.parent) dct[name_str] = [helpers.FakeName(name_str, parent, is_definition=True)] return dct class BuiltinMethod(IterableWrapper): """``Generator.__next__`` ``dict.values`` methods and so on.""" def __init__(self, builtin, method, builtin_func): self._builtin = builtin self._method = method self._builtin_func = builtin_func def py__call__(self, params): return self._method(self._builtin) def __getattr__(self, name): return getattr(self._builtin_func, name) def has_builtin_methods(cls): cls.builtin_methods = {} for func in cls.__dict__.values(): try: cls.builtin_methods.update(func.registered_builtin_methods) except AttributeError: pass return cls def register_builtin_method(method_name, type=None): def wrapper(func): dct = func.__dict__.setdefault('registered_builtin_methods', {}) dct[method_name, type] = func return func return wrapper @has_builtin_methods class GeneratorMixin(object): type = None @register_builtin_method('send') @register_builtin_method('next') @register_builtin_method('__next__') def py__next__(self): # TODO add TypeError if params are given. return unite(self.py__iter__()) @memoize_default() def names_dicts(self, search_global=False): # is always False gen_obj = compiled.get_special_object(self._evaluator, 'GENERATOR_OBJECT') yield self._get_names_dict(gen_obj.names_dict) def py__bool__(self): return True def py__class__(self): gen_obj = compiled.get_special_object(self._evaluator, 'GENERATOR_OBJECT') return gen_obj.py__class__() class Generator(use_metaclass(CachedMetaClass, IterableWrapper, GeneratorMixin)): """Handling of `yield` functions.""" def __init__(self, evaluator, func, var_args): super(Generator, self).__init__() self._evaluator = evaluator self.func = func self.var_args = var_args def py__iter__(self): from jedi.evaluate.representation import FunctionExecution f = FunctionExecution(self._evaluator, self.func, self.var_args) return f.get_yield_types() def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'parent', 'get_imports', 'doc', 'docstr', 'get_parent_until', 'get_code', 'subscopes']: raise AttributeError("Accessing %s of %s is not allowed." % (self, name)) return getattr(self.func, name) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.func) class Comprehension(IterableWrapper): @staticmethod def from_atom(evaluator, atom): bracket = atom.children[0] if bracket == '{': if atom.children[1].children[1] == ':': cls = DictComprehension else: cls = SetComprehension elif bracket == '(': cls = GeneratorComprehension elif bracket == '[': cls = ListComprehension return cls(evaluator, atom) def __init__(self, evaluator, atom): self._evaluator = evaluator self._atom = atom def _get_comprehension(self): # The atom contains a testlist_comp return self._atom.children[1] def _get_comp_for(self): # The atom contains a testlist_comp return self._get_comprehension().children[1] @memoize_default() def _eval_node(self, index=0): """ The first part `x + 1` of the list comprehension: [x + 1 for x in foo] """ comp_for = self._get_comp_for() # For nested comprehensions we need to search the last one. last_comp = list(comp_for.get_comp_fors())[-1] return helpers.deep_ast_copy(self._get_comprehension().children[index], parent=last_comp) @memoize_default() def _iterate(self): def nested(comp_fors): comp_for = comp_fors[0] input_node = comp_for.children[3] input_types = evaluator.eval_element(input_node) iterated = py__iter__(evaluator, input_types, input_node) exprlist = comp_for.children[1] for types in iterated: evaluator.predefined_if_name_dict_dict[comp_for] = \ unpack_tuple_to_dict(evaluator, types, exprlist) try: for result in nested(comp_fors[1:]): yield result except IndexError: iterated = evaluator.eval_element(self._eval_node()) if self.type == 'dict': yield iterated, evaluator.eval_element(self._eval_node(2)) else: yield iterated finally: del evaluator.predefined_if_name_dict_dict[comp_for] evaluator = self._evaluator comp_fors = list(self._get_comp_for().get_comp_fors()) for result in nested(comp_fors): yield result def py__iter__(self): return self._iterate() def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._atom) @has_builtin_methods class ArrayMixin(object): @memoize_default() def names_dicts(self, search_global=False): # Always False. # `array.type` is a string with the type, e.g. 'list'. scope = compiled.builtin_from_name(self._evaluator, self.type) # builtins only have one class -> [0] scopes = self._evaluator.execute_evaluated(scope, self) names_dicts = list(scopes)[0].names_dicts(search_global) #yield names_dicts[0] yield self._get_names_dict(names_dicts[1]) def py__bool__(self): return None # We don't know the length, because of appends. def py__class__(self): return compiled.builtin_from_name(self._evaluator, self.type) @safe_property def parent(self): return self._evaluator.BUILTINS @property def name(self): return FakeSequence(self._evaluator, [], self.type).name @memoize_default() def dict_values(self): return unite(self._evaluator.eval_element(v) for k, v in self._items()) @register_builtin_method('values', type='dict') def _imitate_values(self): items = self.dict_values() return create_evaluated_sequence_set(self._evaluator, items, type='list') #return set([FakeSequence(self._evaluator, [AlreadyEvaluated(items)], 'tuple')]) @register_builtin_method('items', type='dict') def _imitate_items(self): items = [set([FakeSequence(self._evaluator, (k, v), 'tuple')]) for k, v in self._items()] return create_evaluated_sequence_set(self._evaluator, *items, type='list') class ListComprehension(Comprehension, ArrayMixin): type = 'list' def py__getitem__(self, index): all_types = list(self.py__iter__()) return all_types[index] class SetComprehension(Comprehension, ArrayMixin): type = 'set' @has_builtin_methods class DictComprehension(Comprehension, ArrayMixin): type = 'dict' def _get_comp_for(self): return self._get_comprehension().children[3] def py__iter__(self): for keys, values in self._iterate(): yield keys def py__getitem__(self, index): for keys, values in self._iterate(): for k in keys: if isinstance(k, compiled.CompiledObject): if k.obj == index: return values return self.dict_values() def dict_values(self): return unite(values for keys, values in self._iterate()) @register_builtin_method('items', type='dict') def _imitate_items(self): items = set(FakeSequence(self._evaluator, (AlreadyEvaluated(keys), AlreadyEvaluated(values)), 'tuple') for keys, values in self._iterate()) return create_evaluated_sequence_set(self._evaluator, items, type='list') class GeneratorComprehension(Comprehension, GeneratorMixin): pass class Array(IterableWrapper, ArrayMixin): mapping = {'(': 'tuple', '[': 'list', '{': 'dict'} def __init__(self, evaluator, atom): self._evaluator = evaluator self.atom = atom self.type = Array.mapping[atom.children[0]] """The builtin name of the array (list, set, tuple or dict).""" c = self.atom.children array_node = c[1] if self.type == 'dict' and array_node != '}' \ and (not hasattr(array_node, 'children') or ':' not in array_node.children): self.type = 'set' @property def name(self): return helpers.FakeName(self.type, parent=self) def py__getitem__(self, index): """Here the index is an int/str. Raises IndexError/KeyError.""" if self.type == 'dict': for key, value in self._items(): for k in self._evaluator.eval_element(key): if isinstance(k, compiled.CompiledObject) \ and index == k.obj: return self._evaluator.eval_element(value) raise KeyError('No key found in dictionary %s.' % self) # Can raise an IndexError if isinstance(index, slice): return set([self]) else: return self._evaluator.eval_element(self._items()[index]) def __getattr__(self, name): if name not in ['start_pos', 'get_only_subelement', 'parent', 'get_parent_until', 'items']: raise AttributeError('Strange access on %s: %s.' % (self, name)) return getattr(self.atom, name) # @memoize_default() def py__iter__(self): """ While values returns the possible values for any array field, this function returns the value for a certain index. """ if self.type == 'dict': # Get keys. types = set() for k, _ in self._items(): types |= self._evaluator.eval_element(k) # We don't know which dict index comes first, therefore always # yield all the types. for _ in types: yield types else: for value in self._items(): yield self._evaluator.eval_element(value) additions = check_array_additions(self._evaluator, self) if additions: yield additions def _values(self): """Returns a list of a list of node.""" if self.type == 'dict': return unite(v for k, v in self._items()) else: return self._items() def _items(self): c = self.atom.children array_node = c[1] if array_node in (']', '}', ')'): return [] # Direct closing bracket, doesn't contain items. if tree.is_node(array_node, 'testlist_comp'): return array_node.children[::2] elif tree.is_node(array_node, 'dictorsetmaker'): kv = [] iterator = iter(array_node.children) for key in iterator: op = next(iterator, None) if op is None or op == ',': kv.append(key) # A set. else: assert op == ':' # A dict. kv.append((key, next(iterator))) next(iterator, None) # Possible comma. return kv else: return [array_node] def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.atom) class _FakeArray(Array): def __init__(self, evaluator, container, type): self.type = type self._evaluator = evaluator self.atom = container class ImplicitTuple(_FakeArray): def __init__(self, evaluator, testlist): super(ImplicitTuple, self).__init__(evaluator, testlist, 'tuple') self._testlist = testlist def _items(self): return self._testlist.children[::2] class FakeSequence(_FakeArray): def __init__(self, evaluator, sequence_values, type): """ type should be one of "tuple", "list" """ super(FakeSequence, self).__init__(evaluator, sequence_values, type) self._sequence_values = sequence_values def _items(self): return self._sequence_values def create_evaluated_sequence_set(evaluator, *types_order, **kwargs): """ ``sequence_type`` is a named argument, that doesn't work in Python2. For backwards compatibility reasons, we're now using kwargs. """ sequence_type = kwargs.get('sequence_type') sets = tuple(AlreadyEvaluated(types) for types in types_order) return set([FakeSequence(evaluator, sets, sequence_type)]) class AlreadyEvaluated(frozenset): """A simple container to add already evaluated objects to an array.""" def get_code(self, normalized=False): # For debugging purposes. return str(self) class MergedNodes(frozenset): pass class FakeDict(_FakeArray): def __init__(self, evaluator, dct): super(FakeDict, self).__init__(evaluator, dct, 'dict') self._dct = dct def py__iter__(self): yield set(compiled.create(self._evaluator, key) for key in self._dct) def py__getitem__(self, index): return unite(self._evaluator.eval_element(v) for v in self._dct[index]) def _items(self): for key, values in self._dct.items(): # TODO this is not proper. The values could be multiple values?! yield key, values[0] class MergedArray(_FakeArray): def __init__(self, evaluator, arrays): super(MergedArray, self).__init__(evaluator, arrays, arrays[-1].type) self._arrays = arrays def py__iter__(self): for array in self._arrays: for types in array.py__iter__(): yield types def py__getitem__(self, index): return unite(self.py__iter__()) def _items(self): for array in self._arrays: for a in array._items(): yield a def __len__(self): return sum(len(a) for a in self._arrays) def unpack_tuple_to_dict(evaluator, types, exprlist): """ Unpacking tuple assignments in for statements and expr_stmts. """ if exprlist.type == 'name': return {exprlist.value: types} elif exprlist.type == 'atom' and exprlist.children[0] in '([': return unpack_tuple_to_dict(evaluator, types, exprlist.children[1]) elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist', 'testlist_star_expr'): dct = {} parts = iter(exprlist.children[::2]) n = 0 for iter_types in py__iter__(evaluator, types, exprlist): n += 1 try: part = next(parts) except StopIteration: analysis.add(evaluator, 'value-error-too-many-values', part, message="ValueError: too many values to unpack (expected %s)" % n) else: dct.update(unpack_tuple_to_dict(evaluator, iter_types, part)) has_parts = next(parts, None) if types and has_parts is not None: analysis.add(evaluator, 'value-error-too-few-values', has_parts, message="ValueError: need more than %s values to unpack" % n) return dct elif exprlist.type == 'power' or exprlist.type == 'atom_expr': # Something like ``arr[x], var = ...``. # This is something that is not yet supported, would also be difficult # to write into a dict. return {} raise NotImplementedError def py__iter__(evaluator, types, node=None): debug.dbg('py__iter__') type_iters = [] for typ in types: try: iter_method = typ.py__iter__ except AttributeError: if node is not None: analysis.add(evaluator, 'type-error-not-iterable', node, message="TypeError: '%s' object is not iterable" % typ) else: type_iters.append(iter_method()) #for result in iter_method(): #yield result for t in zip_longest(*type_iters, fillvalue=set()): yield unite(t) def py__iter__types(evaluator, types, node=None): """ Calls `py__iter__`, but ignores the ordering in the end and just returns all types that it contains. """ return unite(py__iter__(evaluator, types, node)) def py__getitem__(evaluator, types, trailer): from jedi.evaluate.representation import Class result = set() trailer_op, node, trailer_cl = trailer.children assert trailer_op == "[" assert trailer_cl == "]" # special case: PEP0484 typing module, see # https://github.com/davidhalter/jedi/issues/663 for typ in list(types): if isinstance(typ, Class): typing_module_types = \ pep0484.get_types_for_typing_module(evaluator, typ, node) if typing_module_types is not None: types.remove(typ) result |= typing_module_types if not types: # all consumed by special cases return result for index in create_index_types(evaluator, node): if isinstance(index, (compiled.CompiledObject, Slice)): index = index.obj if type(index) not in (float, int, str, unicode, slice): # If the index is not clearly defined, we have to get all the # possiblities. for typ in list(types): if isinstance(typ, Array) and typ.type == 'dict': types.remove(typ) result |= typ.dict_values() return result | py__iter__types(evaluator, types) for typ in types: # The actual getitem call. try: getitem = typ.py__getitem__ except AttributeError: analysis.add(evaluator, 'type-error-not-subscriptable', trailer_op, message="TypeError: '%s' object is not subscriptable" % typ) else: try: result |= getitem(index) except IndexError: result |= py__iter__types(evaluator, set([typ])) except KeyError: # Must be a dict. Lists don't raise KeyErrors. result |= typ.dict_values() return result def check_array_additions(evaluator, array): """ Just a mapper function for the internal _check_array_additions """ if array.type not in ('list', 'set'): # TODO also check for dict updates return set() is_list = array.type == 'list' try: current_module = array.atom.get_parent_until() except AttributeError: # If there's no get_parent_until, it's a FakeSequence or another Fake # type. Those fake types are used inside Jedi's engine. No values may # be added to those after their creation. return set() return _check_array_additions(evaluator, array, current_module, is_list) @memoize_default(default=set(), evaluator_is_first_arg=True) @debug.increase_indent def _check_array_additions(evaluator, compare_array, module, is_list): """ Checks if a `Array` has "add" (append, insert, extend) statements: >>> a = [""] >>> a.append(1) """ debug.dbg('Dynamic array search for %s' % compare_array, color='MAGENTA') if not settings.dynamic_array_additions or isinstance(module, compiled.CompiledObject): debug.dbg('Dynamic array search aborted.', color='MAGENTA') return set() def check_additions(arglist, add_name): params = list(param.Arguments(evaluator, arglist).unpack()) result = set() if add_name in ['insert']: params = params[1:] if add_name in ['append', 'add', 'insert']: for key, nodes in params: result |= unite(evaluator.eval_element(node) for node in nodes) elif add_name in ['extend', 'update']: for key, nodes in params: for node in nodes: types = evaluator.eval_element(node) result |= py__iter__types(evaluator, types, node) return result from jedi.evaluate import representation as er, param def get_execution_parent(element): """ Used to get an Instance/FunctionExecution parent """ if isinstance(element, Array): node = element.atom else: # Is an Instance with an # Arguments([AlreadyEvaluated([_ArrayInstance])]) inside # Yeah... I know... It's complicated ;-) node = list(element.var_args.argument_node[0])[0].var_args.trailer if isinstance(node, er.InstanceElement): return node return node.get_parent_until(er.FunctionExecution) temp_param_add, settings.dynamic_params_for_other_modules = \ settings.dynamic_params_for_other_modules, False search_names = ['append', 'extend', 'insert'] if is_list else ['add', 'update'] comp_arr_parent = get_execution_parent(compare_array) added_types = set() for add_name in search_names: try: possible_names = module.used_names[add_name] except KeyError: continue else: for name in possible_names: # Check if the original scope is an execution. If it is, one # can search for the same statement, that is in the module # dict. Executions are somewhat special in jedi, since they # literally copy the contents of a function. if isinstance(comp_arr_parent, er.FunctionExecution): if comp_arr_parent.start_pos < name.start_pos < comp_arr_parent.end_pos: name = comp_arr_parent.name_for_position(name.start_pos) else: # Don't check definitions that are not defined in the # same function. This is not "proper" anyway. It also # improves Jedi's speed for array lookups, since we # don't have to check the whole source tree anymore. continue trailer = name.parent power = trailer.parent trailer_pos = power.children.index(trailer) try: execution_trailer = power.children[trailer_pos + 1] except IndexError: continue else: if execution_trailer.type != 'trailer' \ or execution_trailer.children[0] != '(' \ or execution_trailer.children[1] == ')': continue power = helpers.call_of_name(name, cut_own_trailer=True) # InstanceElements are special, because they don't get copied, # but have this wrapper around them. if isinstance(comp_arr_parent, er.InstanceElement): power = er.get_instance_el(evaluator, comp_arr_parent.instance, power) if evaluator.recursion_detector.push_stmt(power): # Check for recursion. Possible by using 'extend' in # combination with function calls. continue if compare_array in evaluator.eval_element(power): # The arrays match. Now add the results added_types |= check_additions(execution_trailer.children[1], add_name) evaluator.recursion_detector.pop_stmt() # reset settings settings.dynamic_params_for_other_modules = temp_param_add debug.dbg('Dynamic array result %s' % added_types, color='MAGENTA') return added_types def check_array_instances(evaluator, instance): """Used for set() and list() instances.""" if not settings.dynamic_array_additions: return instance.var_args ai = _ArrayInstance(evaluator, instance) from jedi.evaluate import param return param.Arguments(evaluator, [AlreadyEvaluated([ai])]) class _ArrayInstance(IterableWrapper): """ Used for the usage of set() and list(). This is definitely a hack, but a good one :-) It makes it possible to use set/list conversions. In contrast to Array, ListComprehension and all other iterable types, this is something that is only used inside `evaluate/compiled/fake/builtins.py` and therefore doesn't need `names_dicts`, `py__bool__` and so on, because we don't use these operations in `builtins.py`. """ def __init__(self, evaluator, instance): self._evaluator = evaluator self.instance = instance self.var_args = instance.var_args def py__iter__(self): try: _, first_nodes = next(self.var_args.unpack()) except StopIteration: types = set() else: types = unite(self._evaluator.eval_element(node) for node in first_nodes) for types in py__iter__(self._evaluator, types, first_nodes[0]): yield types module = self.var_args.get_parent_until() is_list = str(self.instance.name) == 'list' additions = _check_array_additions(self._evaluator, self.instance, module, is_list) if additions: yield additions class Slice(object): def __init__(self, evaluator, start, stop, step): self._evaluator = evaluator # all of them are either a Precedence or None. self._start = start self._stop = stop self._step = step @property def obj(self): """ Imitate CompiledObject.obj behavior and return a ``builtin.slice()`` object. """ def get(element): if element is None: return None result = self._evaluator.eval_element(element) if len(result) != 1: # For simplicity, we want slices to be clear defined with just # one type. Otherwise we will return an empty slice object. raise IndexError try: return list(result)[0].obj except AttributeError: return None try: return slice(get(self._start), get(self._stop), get(self._step)) except IndexError: return slice(None, None, None) def create_index_types(evaluator, index): """ Handles slices in subscript nodes. """ if tree.is_node(index, 'subscript'): # subscript is a slice operation. start, stop, step = None, None, None result = [] for el in index.children: if el == ':': if not result: result.append(None) elif tree.is_node(el, 'sliceop'): if len(el.children) == 2: result.append(el.children[1]) else: result.append(el) result += [None] * (3 - len(result)) return set([Slice(evaluator, *result)]) return evaluator.eval_element(index)