""" If you know what an abstract syntax tree (ast) is, you'll see that this module is pretty much that. The classes represent syntax elements: ``Import``, ``Function``. A very central class is ``Scope``. It is not used directly by the parser, but inherited. It's used by ``Function``, ``Class``, ``Flow``, etc. A ``Scope`` may have ``subscopes``, ``imports`` and ``statements``. The entire parser is based on scopes, because they also stand for indentation. One special thing: ``Array`` values are statements. But if you think about it, this makes sense. ``[1, 2+33]`` for example would be an Array with two ``Statement`` inside. This is the easiest way to write a parser. The same behaviour applies to ``Param``, which is being used in a function definition. The easiest way to play with this module is to use :class:`parsing.Parser`. :attr:`parsing.Parser.module` holds an instance of :class:`SubModule`: >>> from jedi.parser import Parser >>> parser = Parser('import os', 'example.py') >>> submodule = parser.module >>> submodule Any subclasses of :class:`Scope`, including :class:`SubModule` has attribute :attr:`imports `. This attribute has import statements in this scope. Check this out: >>> submodule.imports [] See also :attr:`Scope.subscopes` and :attr:`Scope.statements`. """ from __future__ import with_statement import os import re from inspect import cleandoc from ast import literal_eval from jedi._compatibility import next, Python3Method, encoding, unicode, is_py3k from jedi import common from jedi import debug from jedi.parser import tokenizer as tokenize class Base(object): """ This is just here to have an isinstance check, which is also used on evaluate classes. But since they have sometimes a special type of delegation, it is important for those classes to override this method. I know that there is a chance to do such things with __instancecheck__, but since Python 2.5 doesn't support it, I decided to do it this way. """ __slots__ = () def isinstance(self, *cls): return isinstance(self, cls) class Simple(Base): """ The super class for Scope, Import, Name and Statement. Every object in the parser tree inherits from this class. """ __slots__ = ('parent', '_sub_module', '_start_pos', 'use_as_parent', '_end_pos') def __init__(self, module, start_pos, end_pos=(None, None)): """ Initialize :class:`Simple`. :type module: :class:`SubModule` :param module: The module in which this Python object locates. :type start_pos: 2-tuple of int :param start_pos: Position (line, column) of the Statement. :type end_pos: 2-tuple of int :param end_pos: Same as `start_pos`. """ self._sub_module = module self._start_pos = start_pos self._end_pos = end_pos self.parent = None # use this attribute if parent should be something else than self. self.use_as_parent = self @property def start_pos(self): return self._sub_module.line_offset + self._start_pos[0], \ self._start_pos[1] @start_pos.setter def start_pos(self, value): self._start_pos = value @property def end_pos(self): if None in self._end_pos: return self._end_pos return self._sub_module.line_offset + self._end_pos[0], \ self._end_pos[1] @end_pos.setter def end_pos(self, value): self._end_pos = value @Python3Method def get_parent_until(self, classes=(), reverse=False, include_current=True): """ Takes always the parent, until one class (not a Class) """ if type(classes) not in (tuple, list): classes = (classes,) scope = self if include_current else self.parent while scope.parent is not None: if classes and reverse != scope.isinstance(*classes): break scope = scope.parent return scope def __repr__(self): code = self.get_code().replace('\n', ' ') if not is_py3k: code = code.encode(encoding, 'replace') return "<%s: %s@%s,%s>" % \ (type(self).__name__, code, self.start_pos[0], self.start_pos[1]) class IsScope(Base): pass class Scope(Simple, IsScope): """ Super class for the parser tree, which represents the state of a python text file. A Scope manages and owns its subscopes, which are classes and functions, as well as variables and imports. It is used to access the structure of python files. :param start_pos: The position (line and column) of the scope. :type start_pos: tuple(int, int) """ def __init__(self, module, start_pos): super(Scope, self).__init__(module, start_pos) self.subscopes = [] self.imports = [] self.statements = [] self.docstr = '' self.asserts = [] # Needed here for fast_parser, because the fast_parser splits and # returns will be in "normal" modules. self.returns = [] self.is_generator = False def add_scope(self, sub, decorators): sub.parent = self.use_as_parent sub.decorators = decorators for d in decorators: # the parent is the same, because the decorator has not the scope # of the function d.parent = self.use_as_parent self.subscopes.append(sub) return sub def add_statement(self, stmt): """ Used to add a Statement or a Scope. A statement would be a normal command (Statement) or a Scope (Flow). """ stmt.parent = self.use_as_parent self.statements.append(stmt) return stmt def add_docstr(self, string): """ Clean up a docstring """ self.docstr = cleandoc(literal_eval(string)) def add_import(self, imp): self.imports.append(imp) imp.parent = self.use_as_parent def get_imports(self): """ Gets also the imports within flow statements """ i = [] + self.imports for s in self.statements: if isinstance(s, Scope): i += s.get_imports() return i def get_code(self, first_indent=False, indention=' '): """ :return: Returns the code of the current scope. :rtype: str """ string = "" if len(self.docstr) > 0: string += '"""' + self.docstr + '"""\n' objs = self.subscopes + self.imports + self.statements + self.returns for obj in sorted(objs, key=lambda x: x.start_pos): if isinstance(obj, Scope): string += obj.get_code(first_indent=True, indention=indention) else: if obj in self.returns and not isinstance(self, Lambda): string += 'yield ' if self.is_generator else 'return ' string += obj.get_code() if first_indent: string = common.indent_block(string, indention=indention) return string @Python3Method def get_set_vars(self): """ Get all the names, that are active and accessible in the current scope. See :meth:`get_defined_names` for examples. :return: list of Name :rtype: list """ n = [] for stmt in self.statements: try: n += stmt.get_set_vars(True) except TypeError: n += stmt.get_set_vars() # function and class names n += [s.name for s in self.subscopes] for i in self.imports: if not i.star: n += i.get_defined_names() return n def get_defined_names(self): """ Get all defined names in this scope. >>> from jedi.parser import Parser >>> parser = Parser(''' ... a = x ... b = y ... b.c = z ... ''') >>> parser.module.get_defined_names() [, ] Note that unlike :meth:`get_set_vars`, assignment to object attribute does not change the result because it does not change the defined names in this scope. >>> parser.module.get_set_vars() [, , ] """ return [n for n in self.get_set_vars() if isinstance(n, Import) or (len(n) == 1)] def is_empty(self): """ :return: True if there are no subscopes, imports and statements. :rtype: bool """ return not (self.imports or self.subscopes or self.statements or self.returns) @Python3Method def get_statement_for_position(self, pos, include_imports=False): checks = self.statements + self.asserts if include_imports: checks += self.imports if self.isinstance(Function): checks += self.params + self.decorators checks += [r for r in self.returns if r is not None] for s in checks: if isinstance(s, Flow): p = s.get_statement_for_position(pos, include_imports) while s.next and not p: s = s.next p = s.get_statement_for_position(pos, include_imports) if p: return p elif s.start_pos <= pos <= s.end_pos: return s for s in self.subscopes: if s.start_pos <= pos <= s.end_pos: p = s.get_statement_for_position(pos, include_imports) if p: return p def __repr__(self): try: name = self.path except AttributeError: try: name = self.name except AttributeError: name = self.command return "<%s: %s@%s-%s>" % (type(self).__name__, name, self.start_pos[0], self.end_pos[0]) class Module(IsScope): """ For isinstance checks. fast_parser.Module also inherits from this. """ class SubModule(Scope, Module): """ The top scope, which is always a module. Depending on the underlying parser this may be a full module or just a part of a module. """ def __init__(self, path, start_pos=(1, 0), top_module=None): """ Initialize :class:`SubModule`. :type path: str :arg path: File path to this module. .. todo:: Document `top_module`. """ super(SubModule, self).__init__(self, start_pos) self.path = path self.global_vars = [] self._name = None self.used_names = {} self.temp_used_names = [] # this may be changed depending on fast_parser self.line_offset = 0 self.use_as_parent = top_module or self def add_global(self, name): """ Global means in these context a function (subscope) which has a global statement. This is only relevant for the top scope. :param name: The name of the global. :type name: Name """ # set no parent here, because globals are not defined in this scope. self.global_vars.append(name) def get_set_vars(self): n = super(SubModule, self).get_set_vars() n += self.global_vars return n @property def name(self): """ This is used for the goto functions. """ if self._name is not None: return self._name if self.path is None: string = '' # no path -> empty name else: sep = (re.escape(os.path.sep),) * 2 r = re.search(r'([^%s]*?)(%s__init__)?(\.py|\.so)?$' % sep, self.path) # remove PEP 3149 names string = re.sub('\.[a-z]+-\d{2}[mud]{0,3}$', '', r.group(1)) # positions are not real therefore choose (0, 0) names = [(string, (0, 0))] self._name = Name(self, names, (0, 0), (0, 0), self.use_as_parent) return self._name def is_builtin(self): return not (self.path is None or self.path.endswith('.py')) @property def has_explicit_absolute_import(self): """ Checks if imports in this module are explicitly absolute, i.e. there is a ``__future__`` import. """ for imp in self.imports: if imp.from_ns is None or imp.namespace is None: continue namespace, feature = imp.from_ns.names[0], imp.namespace.names[0] if namespace == "__future__" and feature == "absolute_import": return True return False class Class(Scope): """ Used to store the parsed contents of a python class. :param name: The Class name. :type name: str :param supers: The super classes of a Class. :type supers: list :param start_pos: The start position (line, column) of the class. :type start_pos: tuple(int, int) """ def __init__(self, module, name, supers, start_pos): super(Class, self).__init__(module, start_pos) self.name = name name.parent = self.use_as_parent self.supers = supers for s in self.supers: s.parent = self.use_as_parent self.decorators = [] def get_code(self, first_indent=False, indention=' '): string = "\n".join('@' + stmt.get_code() for stmt in self.decorators) string += 'class %s' % (self.name) if len(self.supers) > 0: sup = ', '.join(stmt.get_code(False) for stmt in self.supers) string += '(%s)' % sup string += ':\n' string += super(Class, self).get_code(True, indention) if self.is_empty(): if self.docstr: string += indention string += "pass\n" return string @property def doc(self): """ Return a document string including call signature of __init__. """ for sub in self.subscopes: if sub.name.names[-1] == '__init__': return '%s\n\n%s' % ( sub.get_call_signature(funcname=self.name.names[-1]), self.docstr) return self.docstr class Function(Scope): """ Used to store the parsed contents of a python function. :param name: The Function name. :type name: str :param params: The parameters (Statement) of a Function. :type params: list :param start_pos: The start position (line, column) the Function. :type start_pos: tuple(int, int) """ def __init__(self, module, name, params, start_pos, annotation): super(Function, self).__init__(module, start_pos) self.name = name if name is not None: name.parent = self.use_as_parent self.params = params for p in params: p.parent = self.use_as_parent p.parent_function = self.use_as_parent self.decorators = [] self.listeners = set() # not used here, but in evaluation. if annotation is not None: annotation.parent = self.use_as_parent self.annotation = annotation def get_code(self, first_indent=False, indention=' '): string = "\n".join('@' + stmt.get_code() for stmt in self.decorators) params = ', '.join([stmt.get_code(False) for stmt in self.params]) string += "def %s(%s):\n" % (self.name, params) string += super(Function, self).get_code(True, indention) if self.is_empty(): if self.docstr: string += indention string += 'pass\n' return string def get_set_vars(self): n = super(Function, self).get_set_vars() for p in self.params: try: n.append(p.get_name()) except IndexError: debug.warning("multiple names in param %s" % n) return n def get_call_signature(self, width=72, funcname=None): """ Generate call signature of this function. :param width: Fold lines if a line is longer than this value. :type width: int :arg funcname: Override function name when given. :type funcname: str :rtype: str """ l = (funcname or self.name.names[-1]) + '(' lines = [] for (i, p) in enumerate(self.params): code = p.get_code(False) if i != len(self.params) - 1: code += ', ' if len(l + code) > width: lines.append(l[:-1] if l[-1] == ' ' else l) l = code else: l += code if l: lines.append(l) lines[-1] += ')' return '\n'.join(lines) @property def doc(self): """ Return a document string including call signature. """ return '%s\n\n%s' % (self.get_call_signature(), self.docstr) class Lambda(Function): def __init__(self, module, params, start_pos, parent): super(Lambda, self).__init__(module, None, params, start_pos, None) self.parent = parent def get_code(self, first_indent=False, indention=' '): params = ','.join([stmt.get_code() for stmt in self.params]) string = "lambda %s: " % params return string + super(Function, self).get_code(indention=indention) def __repr__(self): return "<%s @%s (%s-%s)>" % (type(self).__name__, self.start_pos[0], self.start_pos[1], self.end_pos[1]) class Flow(Scope): """ Used to describe programming structure - flow statements, which indent code, but are not classes or functions: - for - while - if - try - with Therefore statements like else, except and finally are also here, they are now saved in the root flow elements, but in the next variable. :param command: The flow command, if, while, else, etc. :type command: str :param inputs: The initializations of a flow -> while 'statement'. :type inputs: list(Statement) :param start_pos: Position (line, column) of the Flow statement. :type start_pos: tuple(int, int) """ def __init__(self, module, command, inputs, start_pos): self.next = None self.command = command super(Flow, self).__init__(module, start_pos) self._parent = None # These have to be statements, because of with, which takes multiple. self.inputs = inputs for s in inputs: s.parent = self.use_as_parent self.set_vars = [] @property def parent(self): return self._parent @parent.setter def parent(self, value): self._parent = value try: self.next.parent = value except AttributeError: return def get_code(self, first_indent=False, indention=' '): stmts = [] for s in self.inputs: stmts.append(s.get_code(new_line=False)) stmt = ', '.join(stmts) string = "%s %s:\n" % (self.command, stmt) string += super(Flow, self).get_code(True, indention) if self.next: string += self.next.get_code() return string def get_set_vars(self, is_internal_call=False): """ Get the names for the flow. This includes also a call to the super class. :param is_internal_call: defines an option for internal files to crawl through this class. Normally it will just call its superiors, to generate the output. """ if is_internal_call: n = list(self.set_vars) for s in self.inputs: n += s.get_set_vars() if self.next: n += self.next.get_set_vars(is_internal_call) n += super(Flow, self).get_set_vars() return n else: return self.get_parent_until((Class, Function)).get_set_vars() def get_imports(self): i = super(Flow, self).get_imports() if self.next: i += self.next.get_imports() return i def set_next(self, next): """Set the next element in the flow, those are else, except, etc.""" if self.next: return self.next.set_next(next) else: self.next = next self.next.parent = self.parent return next class ForFlow(Flow): """ Used for the for loop, because there are two statement parts. """ def __init__(self, module, inputs, start_pos, set_stmt, is_list_comp=False): super(ForFlow, self).__init__(module, 'for', inputs, start_pos) self.set_stmt = set_stmt set_stmt.parent = self.use_as_parent self.is_list_comp = is_list_comp self.set_vars = set_stmt.get_set_vars() for s in self.set_vars: s.parent.parent = self.use_as_parent s.parent = self.use_as_parent def get_code(self, first_indent=False, indention=" " * 4): vars = ",".join(x.get_code() for x in self.set_vars) stmts = [] for s in self.inputs: stmts.append(s.get_code(new_line=False)) stmt = ', '.join(stmts) s = "for %s in %s:\n" % (vars, stmt) return s + super(Flow, self).get_code(True, indention) class Import(Simple): """ Stores the imports of any Scopes. :param start_pos: Position (line, column) of the Import. :type start_pos: tuple(int, int) :param namespace: The import, can be empty if a star is given :type namespace: Name :param alias: The alias of a namespace(valid in the current namespace). :type alias: Name :param from_ns: Like the namespace, can be equally used. :type from_ns: Name :param star: If a star is used -> from time import *. :type star: bool :param defunct: An Import is valid or not. :type defunct: bool """ def __init__(self, module, start_pos, end_pos, namespace, alias=None, from_ns=None, star=False, relative_count=0, defunct=False): super(Import, self).__init__(module, start_pos, end_pos) self.namespace = namespace self.alias = alias self.from_ns = from_ns for n in [namespace, alias, from_ns]: if n: n.parent = self.use_as_parent self.star = star self.relative_count = relative_count self.defunct = defunct def get_code(self, new_line=True): # in case one of the names is None alias = self.alias or '' namespace = self.namespace or '' from_ns = self.from_ns or '' if self.alias: ns_str = "%s as %s" % (namespace, alias) else: ns_str = str(namespace) nl = '\n' if new_line else '' if self.from_ns or self.relative_count: if self.star: ns_str = '*' dots = '.' * self.relative_count return "from %s%s import %s%s" % (dots, from_ns, ns_str, nl) else: return "import %s%s" % (ns_str, nl) def get_defined_names(self): if self.defunct: return [] if self.star: return [self] if self.alias: return [self.alias] if len(self.namespace) > 1: o = self.namespace n = Name(self._sub_module, [(o.names[0], o.start_pos)], o.start_pos, o.end_pos, parent=o.parent) return [n] else: return [self.namespace] def get_set_vars(self): return self.get_defined_names() def get_all_import_names(self): n = [] if self.from_ns: n.append(self.from_ns) if self.namespace: n.append(self.namespace) if self.alias: n.append(self.alias) return n class Statement(Simple): """ This is the class for all the possible statements. Which means, this class stores pretty much all the Python code, except functions, classes, imports, and flow functions like if, for, etc. :type token_list: list :param token_list: List of tokens or names. Each element is either an instance of :class:`Name` or a tuple of token type value (e.g., :data:`tokenize.NUMBER`), token string (e.g., ``'='``), and start position (e.g., ``(1, 0)``). :type start_pos: 2-tuple of int :param start_pos: Position (line, column) of the Statement. """ __slots__ = ('token_list', '_set_vars', 'as_names', '_expression_list', '_assignment_details', 'docstr', '_names_are_set_vars') def __init__(self, module, token_list, start_pos, end_pos, parent=None, as_names=(), names_are_set_vars=False, set_name_parents=True): super(Statement, self).__init__(module, start_pos, end_pos) if isinstance(start_pos, list): raise NotImplementedError() self.token_list = token_list self._names_are_set_vars = names_are_set_vars if set_name_parents: for t in token_list: if isinstance(t, Name): t.parent = self.use_as_parent for n in as_names: n.parent = self.use_as_parent self.parent = parent self.docstr = '' self._set_vars = None self.as_names = list(as_names) # cache self._expression_list = None self._assignment_details = [] # this is important for other scripts def add_docstr(self, string): """ Clean up a docstring """ self.docstr = cleandoc(literal_eval(string)) def get_code(self, new_line=True): def assemble(command_list, assignment=None): pieces = [c.get_code() if isinstance(c, Simple) else unicode(c) for c in command_list] if assignment is None: return ''.join(pieces) return '%s %s ' % (''.join(pieces), assignment) code = ''.join(assemble(*a) for a in self.assignment_details) code += assemble(self.expression_list()) if self.docstr: code += '\n"""%s"""' % self.docstr if new_line: return code + '\n' else: return code def get_set_vars(self): """ Get the names for the statement. """ if self._set_vars is None: def search_calls(calls): for call in calls: if isinstance(call, Array): for stmt in call: search_calls(stmt.expression_list()) elif isinstance(call, Call): c = call # Check if there's an execution in it, if so this is # not a set_var. is_execution = False while c: if Array.is_type(c.execution, Array.TUPLE): is_execution = True c = c.next if is_execution: continue self._set_vars.append(call.name) self._set_vars = [] for calls, operation in self.assignment_details: search_calls(calls) if not self.assignment_details and self._names_are_set_vars: # In the case of Param, it's also a defining name without ``=`` search_calls(self.expression_list()) return self._set_vars + self.as_names def is_global(self): # first keyword of the first token is global -> must be a global return str(self.token_list[0]) == "global" @property def assignment_details(self): """ Returns an array of tuples of the elements before the assignment. For example the following code:: x = (y, z) = 2, '' would result in ``[(Name(x), '='), (Array([Name(y), Name(z)]), '=')]``. """ # parse statement which creates the assignment details. self.expression_list() return self._assignment_details def expression_list(self): if self._expression_list is None: self._expression_list = ['time neeeeed'] # avoid recursions self._expression_list = self._parse_statement() return self._expression_list def _parse_statement(self): """ This is not done in the main parser, because it might be slow and most of the statements won't need this data anyway. This is something 'like' a lazy execution. This is not really nice written, sorry for that. If you plan to replace it and make it nicer, that would be cool :-) """ def is_assignment(tok): return isinstance(tok, (str, unicode)) and tok.endswith('=') \ and not tok in ['>=', '<=', '==', '!='] def parse_array(token_iterator, array_type, start_pos, add_el=None, added_breaks=()): arr = Array(self._sub_module, start_pos, array_type, self) if add_el is not None: arr.add_statement(add_el) maybe_dict = array_type == Array.SET break_tok = None is_array = None while True: stmt, break_tok = parse_stmt(token_iterator, maybe_dict, break_on_assignment=bool(add_el), added_breaks=added_breaks) if stmt is None: break else: if break_tok == ',': is_array = True is_key = maybe_dict and break_tok == ':' arr.add_statement(stmt, is_key) if break_tok in closing_brackets \ or break_tok in added_breaks \ or is_assignment(break_tok): break if arr.type == Array.TUPLE and len(arr) == 1 and not is_array: arr.type = Array.NOARRAY if not arr.values and maybe_dict: # this is a really special case - empty brackets {} are # always dictionaries and not sets. arr.type = Array.DICT c = token_iterator.current[1] arr.end_pos = c.end_pos if isinstance(c, Simple) \ else c.end_pos return arr, break_tok def parse_stmt(token_iterator, maybe_dict=False, added_breaks=(), break_on_assignment=False, stmt_class=Statement): token_list = [] level = 1 tok = None first = True end_pos = None, None for i, tok_temp in token_iterator: if isinstance(tok_temp, Base): # the token is a Name, which has already been parsed tok = tok_temp if first: start_pos = tok.start_pos first = False end_pos = tok.end_pos if isinstance(tok, ListComprehension): # it's not possible to set it earlier tok.parent = self else: tok = tok_temp.token start_tok_pos = tok_temp.start_pos last_end_pos = end_pos end_pos = tok_temp.end_pos if first: first = False start_pos = start_tok_pos if tok == 'lambda': lambd, tok = parse_lambda(token_iterator) if lambd is not None: token_list.append(lambd) elif tok == 'for': list_comp, tok = parse_list_comp( token_iterator, token_list, start_pos, last_end_pos ) if list_comp is not None: token_list = [list_comp] if tok in closing_brackets: level -= 1 elif tok in brackets.keys(): level += 1 if level == 0 and tok in closing_brackets \ or tok in added_breaks \ or level == 1 and ( tok == ',' or maybe_dict and tok == ':' or is_assignment(tok) and break_on_assignment ): end_pos = end_pos[0], end_pos[1] - 1 break token_list.append(tok_temp) if not token_list: return None, tok statement = stmt_class( self._sub_module, token_list, start_pos, end_pos, self.parent, set_name_parents=False ) return statement, tok def parse_lambda(token_iterator): params = [] start_pos = self.start_pos while True: param, tok = parse_stmt(token_iterator, added_breaks=[':'], stmt_class=Param) if param is None: break params.append(param) if tok == ':': break if tok != ':': return None, tok # since lambda is a Function scope, it needs Scope parents parent = self.get_parent_until(IsScope) lambd = Lambda(self._sub_module, params, start_pos, parent) ret, tok = parse_stmt(token_iterator) if ret is not None: ret.parent = lambd lambd.returns.append(ret) lambd.end_pos = self.end_pos return lambd, tok def parse_list_comp(token_iterator, token_list, start_pos, end_pos): def parse_stmt_or_arr( token_iterator, added_breaks=(), names_are_set_vars=False ): stmt, tok = parse_stmt(token_iterator, added_breaks=added_breaks) if not stmt: return None, tok if tok == ',': arr, tok = parse_array(token_iterator, Array.TUPLE, stmt.start_pos, stmt, added_breaks=added_breaks) token_list = [] for stmt in arr: token_list += stmt.token_list start_pos = arr.start_pos[0], arr.start_pos[1] - 1 stmt = Statement(self._sub_module, token_list, start_pos, arr.end_pos) arr.parent = stmt stmt.token_list = stmt._expression_list = [arr] else: for t in stmt.token_list: if isinstance(t, Name): t.parent = stmt stmt._names_are_set_vars = names_are_set_vars return stmt, tok st = Statement(self._sub_module, token_list, start_pos, end_pos, set_name_parents=False) middle, tok = parse_stmt_or_arr(token_iterator, ['in'], True) if tok != 'in' or middle is None: debug.warning('list comprehension middle @%s' % str(start_pos)) return None, tok in_clause, tok = parse_stmt_or_arr(token_iterator) if in_clause is None: debug.warning('list comprehension in @%s' % str(start_pos)) return None, tok return ListComprehension(st, middle, in_clause, self), tok # initializations result = [] is_chain = False brackets = {'(': Array.TUPLE, '[': Array.LIST, '{': Array.SET} closing_brackets = ')', '}', ']' token_iterator = common.PushBackIterator(enumerate(self.token_list)) for i, tok_temp in token_iterator: if isinstance(tok_temp, Base): # the token is a Name, which has already been parsed tok = tok_temp token_type = None start_pos = tok.start_pos end_pos = tok.end_pos else: token_type = tok_temp.token_type tok = tok_temp.token start_pos = tok_temp.start_pos end_pos = tok_temp.end_pos if is_assignment(tok): # This means, there is an assignment here. # Add assignments, which can be more than one self._assignment_details.append( (result, tok_temp.token) ) result = [] is_chain = False continue elif tok == 'as': # just ignore as, because it sets values next(token_iterator, None) continue if tok == 'lambda': lambd, tok = parse_lambda(token_iterator) if lambd is not None: result.append(lambd) else: continue is_literal = token_type in [tokenize.STRING, tokenize.NUMBER] if isinstance(tok, Name) or is_literal: cls = Call if is_literal: cls = String if token_type == tokenize.STRING else Number call = cls(self._sub_module, tok, start_pos, end_pos, self) if is_chain: result[-1].set_next(call) else: result.append(call) is_chain = False elif tok in brackets.keys(): arr, is_ass = parse_array( token_iterator, brackets[tok], start_pos ) if result and isinstance(result[-1], StatementElement): result[-1].set_execution(arr) else: arr.parent = self result.append(arr) elif tok == '.': if result and isinstance(result[-1], StatementElement): is_chain = True elif tok == ',': # implies a tuple # expression is now an array not a statement anymore t = result[0] start_pos = t[2] if isinstance(t, tuple) else t.start_pos # get the correct index i, tok = next(token_iterator, (len(self.token_list), None)) if tok is not None: token_iterator.push_back((i, tok)) t = self.token_list[i - 1] try: e = t.end_pos except AttributeError: e = (t[2][0], t[2][1] + len(t[1])) \ if isinstance(t, tuple) else t.start_pos stmt = Statement( self._sub_module, result, start_pos, e, self.parent, set_name_parents=False ) stmt._expression_list = result arr, break_tok = parse_array(token_iterator, Array.TUPLE, stmt.start_pos, stmt) result = [arr] if is_assignment(break_tok): self._assignment_details.append((result, break_tok)) result = [] is_chain = False else: if tok != '\n' and token_type != tokenize.COMMENT: result.append(tok) return result class Param(Statement): """ The class which shows definitions of params of classes and functions. But this is not to define function calls. """ __slots__ = ('position_nr', 'is_generated', 'annotation_stmt', 'parent_function') def __init__(self, *args, **kwargs): kwargs.pop('names_are_set_vars', None) super(Param, self).__init__(*args, names_are_set_vars=True, **kwargs) # this is defined by the parser later on, not at the initialization # it is the position in the call (first argument, second...) self.position_nr = None self.is_generated = False self.annotation_stmt = None self.parent_function = None def add_annotation(self, annotation_stmt): annotation_stmt.parent = self.use_as_parent self.annotation_stmt = annotation_stmt def get_name(self): """ get the name of the param """ n = self.get_set_vars() if len(n) > 1: debug.warning("Multiple param names (%s)." % n) return n[0] class StatementElement(Simple): def __init__(self, module, start_pos, end_pos, parent): super(StatementElement, self).__init__(module, start_pos, end_pos) # parent is not the oposite of next. The parent of c: a = [b.c] would # be an array. self.parent = parent self.next = None self.execution = None def set_next(self, call): """ Adds another part of the statement""" call.parent = self if self.next is not None: self.next.set_next(call) else: self.next = call def set_execution(self, call): """ An execution is nothing else than brackets, with params in them, which shows access on the internals of this name. """ call.parent = self if self.next is not None: self.next.set_execution(call) elif self.execution is not None: self.execution.set_execution(call) else: self.execution = call def generate_call_path(self): """ Helps to get the order in which statements are executed. """ try: for name_part in self.name.names: yield name_part except AttributeError: yield self if self.execution is not None: for y in self.execution.generate_call_path(): yield y if self.next is not None: for y in self.next.generate_call_path(): yield y def get_code(self): s = '' if self.execution is not None: s += self.execution.get_code() if self.next is not None: s += '.' + self.next.get_code() return s class Call(StatementElement): def __init__(self, module, name, start_pos, end_pos, parent=None): super(Call, self).__init__(module, start_pos, end_pos, parent) self.name = name def get_code(self): return self.name.get_code() + super(Call, self).get_code() def __repr__(self): return "<%s: %s>" % (type(self).__name__, self.name) class Literal(StatementElement): def __init__(self, module, literal, start_pos, end_pos, parent=None): super(Literal, self).__init__(module, start_pos, end_pos, parent) self.literal = literal self.value = literal_eval(literal) def get_code(self): return self.literal + super(Literal, self).get_code() def type_as_string(self): return type(self.value).__name__ def __repr__(self): if is_py3k: s = self.literal else: s = self.literal.encode('ascii', 'replace') return "<%s: %s>" % (type(self).__name__, s) class String(Literal): pass class Number(Literal): pass class Array(StatementElement): """ Describes the different python types for an array, but also empty statements. In the Python syntax definitions this type is named 'atom'. http://docs.python.org/py3k/reference/grammar.html Array saves sub-arrays as well as normal operators and calls to methods. :param array_type: The type of an array, which can be one of the constants below. :type array_type: int """ NOARRAY = None # just brackets, like `1 * (3 + 2)` TUPLE = 'tuple' LIST = 'list' DICT = 'dict' SET = 'set' def __init__(self, module, start_pos, arr_type=NOARRAY, parent=None): super(Array, self).__init__(module, start_pos, (None, None), parent) self.end_pos = None, None self.type = arr_type self.values = [] self.keys = [] def add_statement(self, statement, is_key=False): """Just add a new statement""" statement.parent = self if is_key: self.type = self.DICT self.keys.append(statement) else: self.values.append(statement) @staticmethod def is_type(instance, *types): """ This is not only used for calls on the actual object, but for ducktyping, to invoke this function with anything as `self`. """ try: if instance.type in types: return True except AttributeError: pass return False def __len__(self): return len(self.values) def __getitem__(self, key): if self.type == self.DICT: raise TypeError('no dicts allowed') return self.values[key] def __iter__(self): if self.type == self.DICT: raise TypeError('no dicts allowed') return iter(self.values) def items(self): if self.type != self.DICT: raise TypeError('only dicts allowed') return zip(self.keys, self.values) def get_code(self): map = { self.NOARRAY: '(%s)', self.TUPLE: '(%s)', self.LIST: '[%s]', self.DICT: '{%s}', self.SET: '{%s}' } inner = [] for i, stmt in enumerate(self.values): s = '' with common.ignored(IndexError): key = self.keys[i] s += key.get_code(new_line=False) + ': ' s += stmt.get_code(new_line=False) inner.append(s) add = ',' if self.type == self.TUPLE and len(self) == 1 else '' s = map[self.type] % (', '.join(inner) + add) return s + super(Array, self).get_code() def __repr__(self): if self.type == self.NOARRAY: typ = 'noarray' else: typ = self.type return "<%s: %s%s>" % (type(self).__name__, typ, self.values) class NamePart(str): """ A string. Sometimes it is important to know if the string belongs to a name or not. """ # Unfortunately there's no way to use slots for str (non-zero __itemsize__) # -> http://utcc.utoronto.ca/~cks/space/blog/python/IntSlotsPython3k #__slots__ = ('_start_pos', 'parent') def __new__(cls, s, parent, start_pos): self = super(NamePart, cls).__new__(cls, s) self._start_pos = start_pos self.parent = parent return self @property def start_pos(self): offset = self.parent._sub_module.line_offset return offset + self._start_pos[0], self._start_pos[1] @property def end_pos(self): return self.start_pos[0], self.start_pos[1] + len(self) def __getnewargs__(self): return str(self), self.parent, self._start_pos class Name(Simple): """ Used to define names in python. Which means the whole namespace/class/function stuff. So a name like "module.class.function" would result in an array of [module, class, function] """ __slots__ = ('names',) def __init__(self, module, names, start_pos, end_pos, parent=None): super(Name, self).__init__(module, start_pos, end_pos) self.names = tuple(n if isinstance(n, NamePart) else NamePart(n[0], self, n[1]) for n in names) if parent is not None: self.parent = parent def get_code(self): """ Returns the names in a full string format """ return ".".join(self.names) @property def docstr(self): """Return attribute docstring (PEP 257) if exists.""" return self.parent.docstr def __str__(self): return self.get_code() def __len__(self): return len(self.names) class ListComprehension(Base): """ Helper class for list comprehensions """ def __init__(self, stmt, middle, input, parent): self.stmt = stmt self.middle = middle self.input = input for s in [stmt, middle, input]: s.parent = self self.parent = parent def get_parent_until(self, *args, **kwargs): return Simple.get_parent_until(self, *args, **kwargs) @property def start_pos(self): return self.stmt.start_pos @property def end_pos(self): return self.stmt.end_pos def __repr__(self): return "<%s: %s>" % \ (type(self).__name__, self.get_code()) def get_code(self): statements = self.stmt, self.middle, self.input code = [s.get_code().replace('\n', '') for s in statements] return "%s for %s in %s" % tuple(code)