""" PEP 0484 ( https://www.python.org/dev/peps/pep-0484/ ) describes type hints through function annotations. There is a strong suggestion in this document that only the type of type hinting defined in PEP0484 should be allowed as annotations in future python versions. """ import re from parso import ParserSyntaxError, parse from jedi._compatibility import force_unicode from jedi.inference.cache import infer_state_method_cache from jedi.inference.base_value import ContextSet, NO_CONTEXTS from jedi.inference.gradual.typing import TypeVar, LazyGenericClass, \ AbstractAnnotatedClass from jedi.inference.gradual.typing import GenericClass from jedi.inference.helpers import is_string from jedi.inference.compiled import builtin_from_name from jedi import debug from jedi import parser_utils def infer_annotation(context, annotation): """ Inferes an annotation node. This means that it inferes the part of `int` here: foo: int = 3 Also checks for forward references (strings) """ context_set = context.infer_node(annotation) if len(context_set) != 1: debug.warning("Inferred typing index %s should lead to 1 object, " " not %s" % (annotation, context_set)) return context_set inferred_context = list(context_set)[0] if is_string(inferred_context): result = _get_forward_reference_node(context, inferred_context.get_safe_value()) if result is not None: return context.infer_node(result) return context_set def _infer_annotation_string(context, string, index=None): node = _get_forward_reference_node(context, string) if node is None: return NO_CONTEXTS context_set = context.infer_node(node) if index is not None: context_set = context_set.filter( lambda context: context.array_type == u'tuple' # noqa and len(list(context.py__iter__())) >= index ).py__simple_getitem__(index) return context_set def _get_forward_reference_node(context, string): try: new_node = context.infer_state.grammar.parse( force_unicode(string), start_symbol='eval_input', error_recovery=False ) except ParserSyntaxError: debug.warning('Annotation not parsed: %s' % string) return None else: module = context.tree_node.get_root_node() parser_utils.move(new_node, module.end_pos[0]) new_node.parent = context.tree_node return new_node def _split_comment_param_declaration(decl_text): """ Split decl_text on commas, but group generic expressions together. For example, given "foo, Bar[baz, biz]" we return ['foo', 'Bar[baz, biz]']. """ try: node = parse(decl_text, error_recovery=False).children[0] except ParserSyntaxError: debug.warning('Comment annotation is not valid Python: %s' % decl_text) return [] if node.type == 'name': return [node.get_code().strip()] params = [] try: children = node.children except AttributeError: return [] else: for child in children: if child.type in ['name', 'atom_expr', 'power']: params.append(child.get_code().strip()) return params @infer_state_method_cache() def infer_param(execution_context, param): contexts = _infer_param(execution_context, param) infer_state = execution_context.infer_state if param.star_count == 1: tuple_ = builtin_from_name(infer_state, 'tuple') return ContextSet([GenericClass( tuple_, generics=(contexts,), ) for c in contexts]) elif param.star_count == 2: dct = builtin_from_name(infer_state, 'dict') return ContextSet([GenericClass( dct, generics=(ContextSet([builtin_from_name(infer_state, 'str')]), contexts), ) for c in contexts]) pass return contexts def _infer_param(execution_context, param): """ Infers the type of a function parameter, using type annotations. """ annotation = param.annotation if annotation is None: # If no Python 3-style annotation, look for a Python 2-style comment # annotation. # Identify parameters to function in the same sequence as they would # appear in a type comment. all_params = [child for child in param.parent.children if child.type == 'param'] node = param.parent.parent comment = parser_utils.get_following_comment_same_line(node) if comment is None: return NO_CONTEXTS match = re.match(r"^#\s*type:\s*\(([^#]*)\)\s*->", comment) if not match: return NO_CONTEXTS params_comments = _split_comment_param_declaration(match.group(1)) # Find the specific param being investigated index = all_params.index(param) # If the number of parameters doesn't match length of type comment, # ignore first parameter (assume it's self). if len(params_comments) != len(all_params): debug.warning( "Comments length != Params length %s %s", params_comments, all_params ) from jedi.inference.context.instance import InstanceArguments if isinstance(execution_context.var_args, InstanceArguments): if index == 0: # Assume it's self, which is already handled return NO_CONTEXTS index -= 1 if index >= len(params_comments): return NO_CONTEXTS param_comment = params_comments[index] return _infer_annotation_string( execution_context.function_context.get_default_param_context(), param_comment ) # Annotations are like default params and resolve in the same way. context = execution_context.function_context.get_default_param_context() return infer_annotation(context, annotation) def py__annotations__(funcdef): dct = {} for function_param in funcdef.get_params(): param_annotation = function_param.annotation if param_annotation is not None: dct[function_param.name.value] = param_annotation return_annotation = funcdef.annotation if return_annotation: dct['return'] = return_annotation return dct @infer_state_method_cache() def infer_return_types(function_execution_context): """ Infers the type of a function's return value, according to type annotations. """ all_annotations = py__annotations__(function_execution_context.tree_node) annotation = all_annotations.get("return", None) if annotation is None: # If there is no Python 3-type annotation, look for a Python 2-type annotation node = function_execution_context.tree_node comment = parser_utils.get_following_comment_same_line(node) if comment is None: return NO_CONTEXTS match = re.match(r"^#\s*type:\s*\([^#]*\)\s*->\s*([^#]*)", comment) if not match: return NO_CONTEXTS return _infer_annotation_string( function_execution_context.function_context.get_default_param_context(), match.group(1).strip() ).execute_annotation() if annotation is None: return NO_CONTEXTS context = function_execution_context.function_context.get_default_param_context() unknown_type_vars = list(find_unknown_type_vars(context, annotation)) annotation_contexts = infer_annotation(context, annotation) if not unknown_type_vars: return annotation_contexts.execute_annotation() type_var_dict = infer_type_vars_for_execution(function_execution_context, all_annotations) return ContextSet.from_sets( ann.define_generics(type_var_dict) if isinstance(ann, (AbstractAnnotatedClass, TypeVar)) else ContextSet({ann}) for ann in annotation_contexts ).execute_annotation() def infer_type_vars_for_execution(execution_context, annotation_dict): """ Some functions use type vars that are not defined by the class, but rather only defined in the function. See for example `iter`. In those cases we want to: 1. Search for undefined type vars. 2. Infer type vars with the execution state we have. 3. Return the union of all type vars that have been found. """ context = execution_context.function_context.get_default_param_context() annotation_variable_results = {} executed_params, _ = execution_context.get_executed_params_and_issues() for executed_param in executed_params: try: annotation_node = annotation_dict[executed_param.string_name] except KeyError: continue annotation_variables = find_unknown_type_vars(context, annotation_node) if annotation_variables: # Infer unknown type var annotation_context_set = context.infer_node(annotation_node) star_count = executed_param._param_node.star_count actual_context_set = executed_param.infer(use_hints=False) if star_count == 1: actual_context_set = actual_context_set.merge_types_of_iterate() elif star_count == 2: # TODO _dict_values is not public. actual_context_set = actual_context_set.try_merge('_dict_values') for ann in annotation_context_set: _merge_type_var_dicts( annotation_variable_results, _infer_type_vars(ann, actual_context_set), ) return annotation_variable_results def _merge_type_var_dicts(base_dict, new_dict): for type_var_name, contexts in new_dict.items(): try: base_dict[type_var_name] |= contexts except KeyError: base_dict[type_var_name] = contexts def _infer_type_vars(annotation_context, context_set): """ This function tries to find information about undefined type vars and returns a dict from type var name to context set. This is for example important to understand what `iter([1])` returns. According to typeshed, `iter` returns an `Iterator[_T]`: def iter(iterable: Iterable[_T]) -> Iterator[_T]: ... This functions would generate `int` for `_T` in this case, because it unpacks the `Iterable`. """ type_var_dict = {} if isinstance(annotation_context, TypeVar): return {annotation_context.py__name__(): context_set.py__class__()} elif isinstance(annotation_context, LazyGenericClass): name = annotation_context.py__name__() if name == 'Iterable': given = annotation_context.get_generics() if given: for nested_annotation_context in given[0]: _merge_type_var_dicts( type_var_dict, _infer_type_vars( nested_annotation_context, context_set.merge_types_of_iterate() ) ) elif name == 'Mapping': given = annotation_context.get_generics() if len(given) == 2: for context in context_set: try: method = context.get_mapping_item_contexts except AttributeError: continue key_contexts, value_contexts = method() for nested_annotation_context in given[0]: _merge_type_var_dicts( type_var_dict, _infer_type_vars( nested_annotation_context, key_contexts, ) ) for nested_annotation_context in given[1]: _merge_type_var_dicts( type_var_dict, _infer_type_vars( nested_annotation_context, value_contexts, ) ) return type_var_dict def find_type_from_comment_hint_for(context, node, name): return _find_type_from_comment_hint(context, node, node.children[1], name) def find_type_from_comment_hint_with(context, node, name): assert len(node.children[1].children) == 3, \ "Can only be here when children[1] is 'foo() as f'" varlist = node.children[1].children[2] return _find_type_from_comment_hint(context, node, varlist, name) def find_type_from_comment_hint_assign(context, node, name): return _find_type_from_comment_hint(context, node, node.children[0], name) def _find_type_from_comment_hint(context, node, varlist, name): index = None if varlist.type in ("testlist_star_expr", "exprlist", "testlist"): # something like "a, b = 1, 2" index = 0 for child in varlist.children: if child == name: break if child.type == "operator": continue index += 1 else: return [] comment = parser_utils.get_following_comment_same_line(node) if comment is None: return [] match = re.match(r"^#\s*type:\s*([^#]*)", comment) if match is None: return [] return _infer_annotation_string( context, match.group(1).strip(), index ).execute_annotation() def find_unknown_type_vars(context, node): def check_node(node): if node.type in ('atom_expr', 'power'): trailer = node.children[-1] if trailer.type == 'trailer' and trailer.children[0] == '[': for subscript_node in _unpack_subscriptlist(trailer.children[1]): check_node(subscript_node) else: type_var_set = context.infer_node(node) for type_var in type_var_set: if isinstance(type_var, TypeVar) and type_var not in found: found.append(type_var) found = [] # We're not using a set, because the order matters. check_node(node) return found def _unpack_subscriptlist(subscriptlist): if subscriptlist.type == 'subscriptlist': for subscript in subscriptlist.children[::2]: if subscript.type != 'subscript': yield subscript else: if subscriptlist.type != 'subscript': yield subscriptlist