""" Contains all classes and functions to deal with lists, dicts, generators and iterators in general. Array modifications ******************* If the content of an array (``set``/``list``) is requested somewhere, the current module will be checked for appearances of ``arr.append``, ``arr.insert``, etc. If the ``arr`` name points to an actual array, the content will be added This can be really cpu intensive, as you can imagine. Because |jedi| has to follow **every** ``append`` and check wheter it's the right array. However this works pretty good, because in *slow* cases, the recursion detector and other settings will stop this process. It is important to note that: 1. Array modfications work only in the current module. 2. Jedi only checks Array additions; ``list.pop``, etc are ignored. """ from jedi import debug from jedi import settings from jedi._compatibility import force_unicode, is_py3 from jedi.cache import memoize_method from jedi.evaluate import compiled from jedi.evaluate import analysis from jedi.evaluate import recursion from jedi.evaluate.lazy_context import LazyKnownContext, LazyKnownContexts, \ LazyTreeContext from jedi.evaluate.helpers import get_int_or_none, is_string, \ predefine_names, evaluate_call_of_leaf, reraise_getitem_errors, \ SimpleGetItemNotFound from jedi.evaluate.utils import safe_property from jedi.evaluate.utils import to_list from jedi.evaluate.cache import evaluator_method_cache from jedi.evaluate.helpers import execute_evaluated from jedi.evaluate.filters import ParserTreeFilter, BuiltinOverwrite, \ publish_method from jedi.evaluate.base_context import ContextSet, NO_CONTEXTS, Context, \ TreeContext, ContextualizedNode, iterate_contexts from jedi.parser_utils import get_comp_fors class IterableMixin(object): def py__stop_iteration_returns(self): return ContextSet(compiled.builtin_from_name(self.evaluator, u'None')) class GeneratorBase(BuiltinOverwrite, IterableMixin): array_type = None special_object_identifier = u'GENERATOR_OBJECT' @publish_method('send') @publish_method('next', python_version_match=2) @publish_method('__next__', python_version_match=3) def py__next__(self): return ContextSet.from_sets(lazy_context.infer() for lazy_context in self.py__iter__()) @property def name(self): return compiled.CompiledContextName(self, 'generator') class Generator(GeneratorBase): """Handling of `yield` functions.""" def __init__(self, evaluator, func_execution_context): super(Generator, self).__init__(evaluator) self._func_execution_context = func_execution_context def py__iter__(self): return self._func_execution_context.get_yield_lazy_contexts() def py__stop_iteration_returns(self): return self._func_execution_context.get_return_values() def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._func_execution_context) class CompForContext(TreeContext): @classmethod def from_comp_for(cls, parent_context, comp_for): return cls(parent_context.evaluator, parent_context, comp_for) def get_node(self): return self.tree_node def get_filters(self, search_global, until_position=None, origin_scope=None): yield ParserTreeFilter(self.evaluator, self) def comprehension_from_atom(evaluator, context, atom): bracket = atom.children[0] if bracket == '{': if atom.children[1].children[1] == ':': cls = DictComprehension else: cls = SetComprehension elif bracket == '(': cls = GeneratorComprehension elif bracket == '[': cls = ListComprehension return cls(evaluator, context, atom) class ComprehensionMixin(object): def __init__(self, evaluator, defining_context, atom): super(ComprehensionMixin, self).__init__(evaluator) self._defining_context = defining_context self._atom = atom def _get_comprehension(self): "return 'a for a in b'" # The atom contains a testlist_comp return self._atom.children[1] def _get_comp_for(self): "return CompFor('for a in b')" return self._get_comprehension().children[1] def _eval_node(self, index=0): """ The first part `x + 1` of the list comprehension: [x + 1 for x in foo] """ return self._get_comprehension().children[index] @evaluator_method_cache() def _get_comp_for_context(self, parent_context, comp_for): # TODO shouldn't this be part of create_context? return CompForContext.from_comp_for(parent_context, comp_for) def _nested(self, comp_fors, parent_context=None): comp_for = comp_fors[0] is_async = 'async' == comp_for.children[comp_for.children.index('for') - 1] input_node = comp_for.children[comp_for.children.index('in') + 1] parent_context = parent_context or self._defining_context input_types = parent_context.eval_node(input_node) # TODO: simulate await if self.is_async cn = ContextualizedNode(parent_context, input_node) iterated = input_types.iterate(cn, is_async=is_async) exprlist = comp_for.children[comp_for.children.index('for') + 1] for i, lazy_context in enumerate(iterated): types = lazy_context.infer() dct = unpack_tuple_to_dict(parent_context, types, exprlist) context_ = self._get_comp_for_context( parent_context, comp_for, ) with predefine_names(context_, comp_for, dct): try: for result in self._nested(comp_fors[1:], context_): yield result except IndexError: iterated = context_.eval_node(self._eval_node()) if self.array_type == 'dict': yield iterated, context_.eval_node(self._eval_node(2)) else: yield iterated @evaluator_method_cache(default=[]) @to_list def _iterate(self): comp_fors = tuple(get_comp_fors(self._get_comp_for())) for result in self._nested(comp_fors): yield result def py__iter__(self): for set_ in self._iterate(): yield LazyKnownContexts(set_) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._atom) class Sequence(BuiltinOverwrite, IterableMixin): api_type = u'instance' @property def name(self): return compiled.CompiledContextName(self, self.array_type) @memoize_method def get_object(self): compiled_obj = compiled.builtin_from_name(self.evaluator, self.array_type) only_obj, = execute_evaluated(compiled_obj, self) return only_obj def py__bool__(self): return None # We don't know the length, because of appends. def py__class__(self): return compiled.builtin_from_name(self.evaluator, self.array_type) @safe_property def parent(self): return self.evaluator.builtins_module def py__getitem__(self, index_context, contextualized_node): if self.array_type == 'dict': return self._dict_values() return iterate_contexts(ContextSet(self)) class ListComprehension(ComprehensionMixin, Sequence): array_type = u'list' def py__simple_getitem__(self, index): if isinstance(index, slice): return ContextSet(self) all_types = list(self.py__iter__()) with reraise_getitem_errors(IndexError, TypeError): lazy_context = all_types[index] return lazy_context.infer() class SetComprehension(ComprehensionMixin, Sequence): array_type = u'set' class DictComprehension(ComprehensionMixin, Sequence): array_type = u'dict' def _get_comp_for(self): return self._get_comprehension().children[3] def py__iter__(self): for keys, values in self._iterate(): yield LazyKnownContexts(keys) def py__simple_getitem__(self, index): for keys, values in self._iterate(): for k in keys: if isinstance(k, compiled.CompiledObject): if k.get_safe_value(default=object()) == index: return values raise SimpleGetItemNotFound() def _dict_values(self): return ContextSet.from_sets(values for keys, values in self._iterate()) @publish_method('values') def _imitate_values(self): lazy_context = LazyKnownContexts(self._dict_values()) return ContextSet(FakeSequence(self.evaluator, u'list', [lazy_context])) @publish_method('items') def _imitate_items(self): lazy_contexts = [ LazyKnownContext( FakeSequence( self.evaluator, u'tuple', [LazyKnownContexts(key), LazyKnownContexts(value)] ) ) for key, value in self._iterate() ] return ContextSet(FakeSequence(self.evaluator, u'list', lazy_contexts)) class GeneratorComprehension(ComprehensionMixin, GeneratorBase): pass class SequenceLiteralContext(Sequence): _TUPLE_LIKE = 'testlist_star_expr', 'testlist', 'subscriptlist' mapping = {'(': u'tuple', '[': u'list', '{': u'set'} def __init__(self, evaluator, defining_context, atom): super(SequenceLiteralContext, self).__init__(evaluator) self.atom = atom self._defining_context = defining_context if self.atom.type in self._TUPLE_LIKE: self.array_type = u'tuple' else: self.array_type = SequenceLiteralContext.mapping[atom.children[0]] """The builtin name of the array (list, set, tuple or dict).""" def py__simple_getitem__(self, index): """Here the index is an int/str. Raises IndexError/KeyError.""" if self.array_type == u'dict': compiled_obj_index = compiled.create_simple_object(self.evaluator, index) for key, value in self._items(): for k in self._defining_context.eval_node(key): if isinstance(k, compiled.CompiledObject) \ and k.execute_operation(compiled_obj_index, u'==').get_safe_value(): return self._defining_context.eval_node(value) raise SimpleGetItemNotFound('No key found in dictionary %s.' % self) if isinstance(index, slice): return ContextSet(self) else: with reraise_getitem_errors(TypeError, KeyError, IndexError): node = self._items()[index] return self._defining_context.eval_node(node) def py__iter__(self): """ While values returns the possible values for any array field, this function returns the value for a certain index. """ if self.array_type == u'dict': # Get keys. types = ContextSet() for k, _ in self._items(): types |= self._defining_context.eval_node(k) # We don't know which dict index comes first, therefore always # yield all the types. for _ in types: yield LazyKnownContexts(types) else: for node in self._items(): yield LazyTreeContext(self._defining_context, node) for addition in check_array_additions(self._defining_context, self): yield addition def _dict_values(self): return ContextSet.from_sets( self._defining_context.eval_node(v) for k, v in self._items() ) def _items(self): c = self.atom.children if self.atom.type in self._TUPLE_LIKE: return c[::2] array_node = c[1] if array_node in (']', '}', ')'): return [] # Direct closing bracket, doesn't contain items. if array_node.type == 'testlist_comp': return array_node.children[::2] elif array_node.type == 'dictorsetmaker': kv = [] iterator = iter(array_node.children) for key in iterator: op = next(iterator, None) if op is None or op == ',': kv.append(key) # A set. else: assert op == ':' # A dict. kv.append((key, next(iterator))) next(iterator, None) # Possible comma. return kv else: return [array_node] def exact_key_items(self): """ Returns a generator of tuples like dict.items(), where the key is resolved (as a string) and the values are still lazy contexts. """ for key_node, value in self._items(): for key in self._defining_context.eval_node(key_node): if is_string(key): yield key.get_safe_value(), LazyTreeContext(self._defining_context, value) def __repr__(self): return "<%s of %s>" % (self.__class__.__name__, self.atom) class DictLiteralContext(SequenceLiteralContext): array_type = u'dict' def __init__(self, evaluator, defining_context, atom): super(SequenceLiteralContext, self).__init__(evaluator) self._defining_context = defining_context self.atom = atom @publish_method('values') def _imitate_values(self): lazy_context = LazyKnownContexts(self._dict_values()) return ContextSet(FakeSequence(self.evaluator, u'list', [lazy_context])) @publish_method('items') def _imitate_items(self): lazy_contexts = [ LazyKnownContext(FakeSequence( self.evaluator, u'tuple', (LazyTreeContext(self._defining_context, key_node), LazyTreeContext(self._defining_context, value_node)) )) for key_node, value_node in self._items() ] return ContextSet(FakeSequence(self.evaluator, u'list', lazy_contexts)) class _FakeArray(SequenceLiteralContext): def __init__(self, evaluator, container, type): super(SequenceLiteralContext, self).__init__(evaluator) self.array_type = type self.atom = container # TODO is this class really needed? class FakeSequence(_FakeArray): def __init__(self, evaluator, array_type, lazy_context_list): """ type should be one of "tuple", "list" """ super(FakeSequence, self).__init__(evaluator, None, array_type) self._lazy_context_list = lazy_context_list def py__simple_getitem__(self, index): with reraise_getitem_errors(IndexError, TypeError): lazy_context = self._lazy_context_list[index] return lazy_context.infer() def py__iter__(self): return self._lazy_context_list def py__bool__(self): return bool(len(self._lazy_context_list)) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._lazy_context_list) class FakeDict(_FakeArray): def __init__(self, evaluator, dct): super(FakeDict, self).__init__(evaluator, dct, u'dict') self._dct = dct def py__iter__(self): for key in self._dct: yield LazyKnownContext(compiled.create_simple_object(self.evaluator, key)) def py__simple_getitem__(self, index): if is_py3 and self.evaluator.environment.version_info.major == 2: # In Python 2 bytes and unicode compare. if isinstance(index, bytes): index_unicode = force_unicode(index) try: return self._dct[index_unicode].infer() except KeyError: pass elif isinstance(index, str): index_bytes = index.encode('utf-8') try: return self._dct[index_bytes].infer() except KeyError: pass with reraise_getitem_errors(KeyError): lazy_context = self._dct[index] return lazy_context.infer() @publish_method('values') def _values(self): return ContextSet(FakeSequence( self.evaluator, u'tuple', [LazyKnownContexts(self._dict_values())] )) def _dict_values(self): return ContextSet.from_sets(lazy_context.infer() for lazy_context in self._dct.values()) def exact_key_items(self): return self._dct.items() class MergedArray(_FakeArray): def __init__(self, evaluator, arrays): super(MergedArray, self).__init__(evaluator, arrays, arrays[-1].array_type) self._arrays = arrays def py__iter__(self): for array in self._arrays: for lazy_context in array.py__iter__(): yield lazy_context def py__simple_getitem__(self, index): return ContextSet.from_sets(lazy_context.infer() for lazy_context in self.py__iter__()) def _items(self): for array in self._arrays: for a in array._items(): yield a def __len__(self): return sum(len(a) for a in self._arrays) def unpack_tuple_to_dict(context, types, exprlist): """ Unpacking tuple assignments in for statements and expr_stmts. """ if exprlist.type == 'name': return {exprlist.value: types} elif exprlist.type == 'atom' and exprlist.children[0] in '([': return unpack_tuple_to_dict(context, types, exprlist.children[1]) elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist', 'testlist_star_expr'): dct = {} parts = iter(exprlist.children[::2]) n = 0 for lazy_context in types.iterate(exprlist): n += 1 try: part = next(parts) except StopIteration: # TODO this context is probably not right. analysis.add(context, 'value-error-too-many-values', part, message="ValueError: too many values to unpack (expected %s)" % n) else: dct.update(unpack_tuple_to_dict(context, lazy_context.infer(), part)) has_parts = next(parts, None) if types and has_parts is not None: # TODO this context is probably not right. analysis.add(context, 'value-error-too-few-values', has_parts, message="ValueError: need more than %s values to unpack" % n) return dct elif exprlist.type == 'power' or exprlist.type == 'atom_expr': # Something like ``arr[x], var = ...``. # This is something that is not yet supported, would also be difficult # to write into a dict. return {} elif exprlist.type == 'star_expr': # `a, *b, c = x` type unpackings # Currently we're not supporting them. return {} raise NotImplementedError def check_array_additions(context, sequence): """ Just a mapper function for the internal _check_array_additions """ if sequence.array_type not in ('list', 'set'): # TODO also check for dict updates return NO_CONTEXTS return _check_array_additions(context, sequence) @evaluator_method_cache(default=NO_CONTEXTS) @debug.increase_indent def _check_array_additions(context, sequence): """ Checks if a `Array` has "add" (append, insert, extend) statements: >>> a = [""] >>> a.append(1) """ from jedi.evaluate import arguments debug.dbg('Dynamic array search for %s' % sequence, color='MAGENTA') module_context = context.get_root_context() if not settings.dynamic_array_additions or isinstance(module_context, compiled.CompiledObject): debug.dbg('Dynamic array search aborted.', color='MAGENTA') return ContextSet() def find_additions(context, arglist, add_name): params = list(arguments.TreeArguments(context.evaluator, context, arglist).unpack()) result = set() if add_name in ['insert']: params = params[1:] if add_name in ['append', 'add', 'insert']: for key, whatever in params: result.add(whatever) elif add_name in ['extend', 'update']: for key, lazy_context in params: result |= set(lazy_context.infer().iterate()) return result temp_param_add, settings.dynamic_params_for_other_modules = \ settings.dynamic_params_for_other_modules, False is_list = sequence.name.string_name == 'list' search_names = (['append', 'extend', 'insert'] if is_list else ['add', 'update']) added_types = set() for add_name in search_names: try: possible_names = module_context.tree_node.get_used_names()[add_name] except KeyError: continue else: for name in possible_names: context_node = context.tree_node if not (context_node.start_pos < name.start_pos < context_node.end_pos): continue trailer = name.parent power = trailer.parent trailer_pos = power.children.index(trailer) try: execution_trailer = power.children[trailer_pos + 1] except IndexError: continue else: if execution_trailer.type != 'trailer' \ or execution_trailer.children[0] != '(' \ or execution_trailer.children[1] == ')': continue random_context = context.create_context(name) with recursion.execution_allowed(context.evaluator, power) as allowed: if allowed: found = evaluate_call_of_leaf( random_context, name, cut_own_trailer=True ) if sequence in found: # The arrays match. Now add the results added_types |= find_additions( random_context, execution_trailer.children[1], add_name ) # reset settings settings.dynamic_params_for_other_modules = temp_param_add debug.dbg('Dynamic array result %s' % added_types, color='MAGENTA') return added_types def get_dynamic_array_instance(instance, arguments): """Used for set() and list() instances.""" ai = _ArrayInstance(instance, arguments) from jedi.evaluate import arguments return arguments.ValuesArguments([ContextSet(ai)]) class _ArrayInstance(object): """ Used for the usage of set() and list(). This is definitely a hack, but a good one :-) It makes it possible to use set/list conversions. In contrast to Array, ListComprehension and all other iterable types, this is something that is only used inside `evaluate/compiled/fake/builtins.py` and therefore doesn't need filters, `py__bool__` and so on, because we don't use these operations in `builtins.py`. """ def __init__(self, instance, var_args): self.instance = instance self.var_args = var_args def py__iter__(self): var_args = self.var_args try: _, lazy_context = next(var_args.unpack()) except StopIteration: pass else: for lazy in lazy_context.infer().iterate(): yield lazy from jedi.evaluate import arguments if isinstance(var_args, arguments.TreeArguments): additions = _check_array_additions(var_args.context, self.instance) for addition in additions: yield addition def iterate(self, contextualized_node=None, is_async=False): return self.py__iter__() class Slice(Context): def __init__(self, context, start, stop, step): super(Slice, self).__init__( context.evaluator, parent_context=context.evaluator.builtins_module ) self._context = context # all of them are either a Precedence or None. self._start = start self._stop = stop self._step = step @property def obj(self): """ Imitate CompiledObject.obj behavior and return a ``builtin.slice()`` object. """ def get(element): if element is None: return None result = self._context.eval_node(element) if len(result) != 1: # For simplicity, we want slices to be clear defined with just # one type. Otherwise we will return an empty slice object. raise IndexError context, = result return get_int_or_none(context) try: return slice(get(self._start), get(self._stop), get(self._step)) except IndexError: return slice(None, None, None)