""" Used only for REPL Completion. """ import inspect from jedi import common from jedi.parser.fast import FastParser from jedi.evaluate import compiled from jedi.cache import underscore_memoization, memoize_method from jedi.evaluate.cache import memoize_default class MixedObject(object): """ A ``MixedObject`` is used in two ways: 1. It uses the default logic of ``parser.tree`` objects, 2. except for getattr calls. The names dicts are generated in a fashion like ``CompiledObject``. This combined logic makes it possible to provide more powerful REPL completion. It allows side effects that are not noticable with the default parser structure to still be completeable. The biggest difference from CompiledObject to MixedObject is that we are generally dealing with Python code and not with C code. This will generate fewer special cases, because we in Python you don't have the same freedoms to modify the runtime. """ def __init__(self, evaluator, obj, node_name): self._evaluator = evaluator self.obj = obj self.node_name = node_name self._definition = node_name.get_definition() def names_dicts(self, search_global): assert search_global is False return [LazyMixedNamesDict(self._evaluator, self, is_instance=False)] def __repr__(self): return '<%s: %s>' % (type(self).__name__, repr(self.obj)) def __getattr__(self, name): return getattr(self._definition, name) class MixedName(compiled.CompiledName): """ The ``CompiledName._compiled_object`` is our MixedObject. """ @property @underscore_memoization def parent(self): return create(self._evaluator, getattr(self._compiled_obj.obj, self.name)) @parent.setter def parent(self, value): pass # Just ignore this, Name tries to overwrite the parent attribute. @property def start_pos(self): if isinstance(self.parent, MixedObject): return self.parent.node_name.start_pos # This means a start_pos that doesn't exist (compiled objects). return (0, 0) class LazyMixedNamesDict(compiled.LazyNamesDict): name_class = MixedName def parse(grammar, path): with open(path) as f: source = f.read() source = common.source_to_unicode(source) return FastParser(grammar, source, path) def _load_module(evaluator, path, python_object): module = parse(evaluator.grammar, path).module python_module = inspect.getmodule(python_object) evaluator.modules[python_module.__name__] = module return module def find_syntax_node_name(evaluator, python_object): try: path = inspect.getsourcefile(python_object) except TypeError: # The type might not be known (e.g. class_with_dict.__weakref__) return None if path is None: return None module = _load_module(evaluator, path, python_object) if inspect.ismodule(python_object): # We don't need to check names for modules, because there's not really # a way to write a module in a module in Python (and also __name__ can # be something like ``email.utils``). return module try: names = module.used_names[python_object.__name__] except NameError: return None names = [n for n in names if n.is_definition()] try: code = python_object.__code__ # By using the line number of a code object we make the lookup in a # file pretty easy. There's still a possibility of people defining # stuff like ``a = 3; foo(a); a = 4`` on the same line, but if people # do so we just don't care. line_nr = code.co_firstlineno except AttributeError: pass else: line_names = [name for name in names if name.start_pos[0] == line_nr] # There's a chance that the object is not available anymore, because # the code has changed in the background. if line_names: return line_names[-1] # It's really hard to actually get the right definition, here as a last # resort we just return the last one. This chance might lead to odd # completions at some points but will lead to mostly correct type # inference, because people tend to define a public name in a module only # once. return names[-1] @memoize_default(evaluator_is_first_arg=True) def create(evaluator, obj): name = find_syntax_node_name(evaluator, obj) if name is None: return compiled.create(evaluator, obj) else: return MixedObject(evaluator, obj, name)