from collections import defaultdict from jedi import debug from jedi.inference.utils import PushBackIterator from jedi.inference import analysis from jedi.inference.lazy_value import LazyKnownValue, \ LazyTreeValue, LazyUnknownValue from jedi.inference.value import iterable from jedi._compatibility import Parameter from jedi.inference.names import ParamName def _add_argument_issue(error_name, lazy_value, message): if isinstance(lazy_value, LazyTreeValue): node = lazy_value.data if node.parent.type == 'argument': node = node.parent return analysis.add(lazy_value.context, error_name, node, message) class ExecutedParamName(ParamName): def __init__(self, function_value, arguments, param_node, lazy_value, is_default=False): super(ExecutedParamName, self).__init__( function_value, param_node.name, arguments=arguments) self._lazy_value = lazy_value self._is_default = is_default def infer(self): return self._lazy_value.infer() def matches_signature(self): if self._is_default: return True argument_values = self.infer().py__class__() if self.get_kind() in (Parameter.VAR_POSITIONAL, Parameter.VAR_KEYWORD): return True annotations = self.infer_annotation(execute_annotation=False) if not annotations: # If we cannot infer annotations - or there aren't any - pretend # that the signature matches. return True matches = any(c1.is_sub_class_of(c2) for c1 in argument_values for c2 in annotations.gather_annotation_classes()) debug.dbg("param compare %s: %s <=> %s", matches, argument_values, annotations, color='BLUE') return matches def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.string_name) def get_executed_param_names_and_issues(function_value, arguments): def too_many_args(argument): m = _error_argument_count(funcdef, len(unpacked_va)) # Just report an error for the first param that is not needed (like # cPython). if arguments.get_calling_nodes(): # There might not be a valid calling node so check for that first. issues.append( _add_argument_issue( 'type-error-too-many-arguments', argument, message=m ) ) else: issues.append(None) issues = [] # List[Optional[analysis issue]] result_params = [] param_dict = {} funcdef = function_value.tree_node # Default params are part of the value where the function was defined. # This means that they might have access on class variables that the # function itself doesn't have. default_param_context = function_value.get_default_param_context() for param in funcdef.get_params(): param_dict[param.name.value] = param unpacked_va = list(arguments.unpack(funcdef)) var_arg_iterator = PushBackIterator(iter(unpacked_va)) non_matching_keys = defaultdict(lambda: []) keys_used = {} keys_only = False had_multiple_value_error = False for param in funcdef.get_params(): # The value and key can both be null. There, the defaults apply. # args / kwargs will just be empty arrays / dicts, respectively. # Wrong value count is just ignored. If you try to test cases that are # not allowed in Python, Jedi will maybe not show any completions. is_default = False key, argument = next(var_arg_iterator, (None, None)) while key is not None: keys_only = True try: key_param = param_dict[key] except KeyError: non_matching_keys[key] = argument else: if key in keys_used: had_multiple_value_error = True m = ("TypeError: %s() got multiple values for keyword argument '%s'." % (funcdef.name, key)) for contextualized_node in arguments.get_calling_nodes(): issues.append( analysis.add(contextualized_node.context, 'type-error-multiple-values', contextualized_node.node, message=m) ) else: keys_used[key] = ExecutedParamName( function_value, arguments, key_param, argument) key, argument = next(var_arg_iterator, (None, None)) try: result_params.append(keys_used[param.name.value]) continue except KeyError: pass if param.star_count == 1: # *args param lazy_value_list = [] if argument is not None: lazy_value_list.append(argument) for key, argument in var_arg_iterator: # Iterate until a key argument is found. if key: var_arg_iterator.push_back((key, argument)) break lazy_value_list.append(argument) seq = iterable.FakeTuple(function_value.inference_state, lazy_value_list) result_arg = LazyKnownValue(seq) elif param.star_count == 2: if argument is not None: too_many_args(argument) # **kwargs param dct = iterable.FakeDict(function_value.inference_state, dict(non_matching_keys)) result_arg = LazyKnownValue(dct) non_matching_keys = {} else: # normal param if argument is None: # No value: Return an empty container if param.default is None: result_arg = LazyUnknownValue() if not keys_only: for contextualized_node in arguments.get_calling_nodes(): m = _error_argument_count(funcdef, len(unpacked_va)) issues.append( analysis.add( contextualized_node.context, 'type-error-too-few-arguments', contextualized_node.node, message=m, ) ) else: result_arg = LazyTreeValue(default_param_context, param.default) is_default = True else: result_arg = argument result_params.append(ExecutedParamName( function_value, arguments, param, result_arg, is_default=is_default )) if not isinstance(result_arg, LazyUnknownValue): keys_used[param.name.value] = result_params[-1] if keys_only: # All arguments should be handed over to the next function. It's not # about the values inside, it's about the names. Jedi needs to now that # there's nothing to find for certain names. for k in set(param_dict) - set(keys_used): param = param_dict[k] if not (non_matching_keys or had_multiple_value_error or param.star_count or param.default): # add a warning only if there's not another one. for contextualized_node in arguments.get_calling_nodes(): m = _error_argument_count(funcdef, len(unpacked_va)) issues.append( analysis.add(contextualized_node.context, 'type-error-too-few-arguments', contextualized_node.node, message=m) ) for key, lazy_value in non_matching_keys.items(): m = "TypeError: %s() got an unexpected keyword argument '%s'." \ % (funcdef.name, key) issues.append( _add_argument_issue( 'type-error-keyword-argument', lazy_value, message=m ) ) remaining_arguments = list(var_arg_iterator) if remaining_arguments: first_key, lazy_value = remaining_arguments[0] too_many_args(lazy_value) return result_params, issues def get_executed_param_names(function_value, arguments): return get_executed_param_names_and_issues(function_value, arguments) def _error_argument_count(funcdef, actual_count): params = funcdef.get_params() default_arguments = sum(1 for p in params if p.default or p.star_count) if default_arguments == 0: before = 'exactly ' else: before = 'from %s to ' % (len(params) - default_arguments) return ('TypeError: %s() takes %s%s arguments (%s given).' % (funcdef.name, before, len(params), actual_count)) def _create_default_param(function_value, arguments, param): if param.star_count == 1: result_arg = LazyKnownValue( iterable.FakeTuple(function_value.inference_state, []) ) elif param.star_count == 2: result_arg = LazyKnownValue( iterable.FakeDict(function_value.inference_state, {}) ) elif param.default is None: result_arg = LazyUnknownValue() else: result_arg = LazyTreeValue(function_value.parent_context, param.default) return ExecutedParamName(function_value, arguments, param, result_arg) def create_default_params(function_value, funcdef): return [_create_default_param(function_value, None, p) for p in funcdef.get_params()]