""" If you know what an abstract syntax tree (ast) is, you'll see that this module is pretty much that. The classes represent syntax elements: ``Import``, ``Function``. A very central class is ``Scope``. It is not used directly by the parser, but inherited. It's used by ``Function``, ``Class``, ``Flow``, etc. A ``Scope`` may have ``subscopes``, ``imports`` and ``statements``. The entire parser is based on scopes, because they also stand for indentation. One special thing: ``Array`` values are statements. But if you think about it, this makes sense. ``[1, 2+33]`` for example would be an Array with two ``Statement`` inside. This is the easiest way to write a parser. The same behaviour applies to ``Param``, which is being used in a function definition. """ import os import re import tokenize from _compatibility import next, literal_eval, cleandoc, Python3Method, \ encoding, property, unicode, is_py3k import common import debug class Base(object): """ This is just here to have an isinstance check, which is also used on evaluate classes. But since they have sometimes a special type of delegation, it is important for those classes to override this method. I know that there is a chance to do such things with __instancecheck__, but since Python 2.5 doesn't support it, I decided to do it this way. """ __slots__ = () def isinstance(self, *cls): return isinstance(self, cls) class Simple(Base): """ The super class for Scope, Import, Name and Statement. Every object in the parser tree inherits from this class. """ __slots__ = ('parent', '_sub_module', '_start_pos', 'use_as_parent', '_end_pos') def __init__(self, module, start_pos, end_pos=(None, None)): """ Initialize :class:`Simple`. :type module: :class:`SubModule` :param module: The module in which this Python object locates. :type start_pos: 2-tuple of int :param start_pos: Position (line, column) of the Statement. :type end_pos: 2-tuple of int :param end_pos: Same as `start_pos`. """ self._sub_module = module self._start_pos = start_pos self._end_pos = end_pos self.parent = None # use this attribute if parent should be something else than self. self.use_as_parent = self @property def start_pos(self): return self._sub_module.line_offset + self._start_pos[0], \ self._start_pos[1] @start_pos.setter def start_pos(self, value): self._start_pos = value @property def end_pos(self): if None in self._end_pos: return self._end_pos return self._sub_module.line_offset + self._end_pos[0], \ self._end_pos[1] @end_pos.setter def end_pos(self, value): self._end_pos = value @Python3Method def get_parent_until(self, classes=(), reverse=False, include_current=True): """ Takes always the parent, until one class (not a Class) """ if type(classes) not in (tuple, list): classes = (classes,) scope = self if include_current else self.parent while scope.parent is not None: if classes and reverse != scope.isinstance(*classes): break scope = scope.parent return scope def __repr__(self): code = self.get_code().replace('\n', ' ') if not is_py3k: code = code.encode(encoding, 'replace') return "<%s: %s@%s,%s>" % \ (type(self).__name__, code, self.start_pos[0], self.start_pos[1]) class IsScope(Base): pass class Scope(Simple, IsScope): """ Super class for the parser tree, which represents the state of a python text file. A Scope manages and owns its subscopes, which are classes and functions, as well as variables and imports. It is used to access the structure of python files. :param start_pos: The position (line and column) of the scope. :type start_pos: tuple(int, int) """ def __init__(self, module, start_pos): super(Scope, self).__init__(module, start_pos) self.subscopes = [] self.imports = [] self.statements = [] self.docstr = '' self.asserts = [] def add_scope(self, sub, decorators): sub.parent = self.use_as_parent sub.decorators = decorators for d in decorators: # the parent is the same, because the decorator has not the scope # of the function d.parent = self.use_as_parent self.subscopes.append(sub) return sub def add_statement(self, stmt): """ Used to add a Statement or a Scope. A statement would be a normal command (Statement) or a Scope (Flow). """ stmt.parent = self.use_as_parent self.statements.append(stmt) return stmt def add_docstr(self, string): """ Clean up a docstring """ self.docstr = cleandoc(literal_eval(string)) def add_import(self, imp): self.imports.append(imp) imp.parent = self.use_as_parent def get_imports(self): """ Gets also the imports within flow statements """ i = [] + self.imports for s in self.statements: if isinstance(s, Scope): i += s.get_imports() return i def get_code(self, first_indent=False, indention=' '): """ :return: Returns the code of the current scope. :rtype: str """ string = "" if len(self.docstr) > 0: string += '"""' + self.docstr + '"""\n' for i in self.imports: string += i.get_code() for sub in self.subscopes: string += sub.get_code(first_indent=True, indention=indention) returns = self.returns if hasattr(self, 'returns') else [] ret_str = '' if isinstance(self, Lambda) else 'return ' for stmt in self.statements + returns: string += (ret_str if stmt in returns else '') + stmt.get_code() if first_indent: string = common.indent_block(string, indention=indention) return string @Python3Method def get_set_vars(self): """ Get all the names, that are active and accessible in the current scope. :return: list of Name :rtype: list """ n = [] for stmt in self.statements: try: n += stmt.get_set_vars(True) except TypeError: n += stmt.get_set_vars() # function and class names n += [s.name for s in self.subscopes] for i in self.imports: if not i.star: n += i.get_defined_names() return n def get_defined_names(self): return [n for n in self.get_set_vars() if isinstance(n, Import) or len(n) == 1] def is_empty(self): """ :return: True if there are no subscopes, imports and statements. :rtype: bool """ return not (self.imports or self.subscopes or self.statements) @Python3Method def get_statement_for_position(self, pos, include_imports=False): checks = self.statements + self.asserts if include_imports: checks += self.imports if self.isinstance(Function): checks += self.params + self.decorators checks += [r for r in self.returns if r is not None] for s in checks: if isinstance(s, Flow): p = s.get_statement_for_position(pos, include_imports) while s.next and not p: s = s.next p = s.get_statement_for_position(pos, include_imports) if p: return p elif s.start_pos <= pos < s.end_pos: return s for s in self.subscopes: if s.start_pos <= pos <= s.end_pos: p = s.get_statement_for_position(pos, include_imports) if p: return p def __repr__(self): try: name = self.path except AttributeError: try: name = self.name except AttributeError: name = self.command return "<%s: %s@%s-%s>" % (type(self).__name__, name, self.start_pos[0], self.end_pos[0]) class Module(IsScope): """ For isinstance checks. fast_parser.Module also inherits from this. """ pass class SubModule(Scope, Module): """ The top scope, which is always a module. Depending on the underlying parser this may be a full module or just a part of a module. """ def __init__(self, path, start_pos=(1, 0), top_module=None): super(SubModule, self).__init__(self, start_pos) self.path = path self.global_vars = [] self._name = None self.used_names = {} self.temp_used_names = [] # this may be changed depending on fast_parser self.line_offset = 0 self.use_as_parent = top_module or self def add_global(self, name): """ Global means in these context a function (subscope) which has a global statement. This is only relevant for the top scope. :param name: The name of the global. :type name: Name """ self.global_vars.append(name) # set no parent here, because globals are not defined in this scope. def get_set_vars(self): n = super(SubModule, self).get_set_vars() n += self.global_vars return n @property def name(self): """ This is used for the goto function. """ if self._name is not None: return self._name if self.path is None: string = '' # no path -> empty name else: sep = (re.escape(os.path.sep),) * 2 r = re.search(r'([^%s]*?)(%s__init__)?(\.py|\.so)?$' % sep, self.path) string = r.group(1) names = [(string, (0, 0))] self._name = Name(self, names, self.start_pos, self.end_pos, self.use_as_parent) return self._name def is_builtin(self): return not (self.path is None or self.path.endswith('.py')) class Class(Scope): """ Used to store the parsed contents of a python class. :param name: The Class name. :type name: str :param supers: The super classes of a Class. :type supers: list :param start_pos: The start position (line, column) of the class. :type start_pos: tuple(int, int) """ def __init__(self, module, name, supers, start_pos): super(Class, self).__init__(module, start_pos) self.name = name name.parent = self.use_as_parent self.supers = supers for s in self.supers: s.parent = self.use_as_parent self.decorators = [] def get_code(self, first_indent=False, indention=' '): string = "\n".join('@' + stmt.get_code() for stmt in self.decorators) string += 'class %s' % (self.name) if len(self.supers) > 0: sup = ','.join(stmt.get_code() for stmt in self.supers) string += '(%s)' % sup string += ':\n' string += super(Class, self).get_code(True, indention) if self.is_empty(): string += "pass\n" return string @property def doc(self): """ Return a document string including call signature of __init__. """ for sub in self.subscopes: if sub.name.names[-1] == '__init__': return '%s\n\n%s' % ( sub.get_call_signature(funcname=self.name.names[-1]), self.docstr) return self.docstr class Function(Scope): """ Used to store the parsed contents of a python function. :param name: The Function name. :type name: str :param params: The parameters (Statement) of a Function. :type params: list :param start_pos: The start position (line, column) the Function. :type start_pos: tuple(int, int) """ def __init__(self, module, name, params, start_pos, annotation): super(Function, self).__init__(module, start_pos) self.name = name if name is not None: name.parent = self.use_as_parent self.params = params for p in params: p.parent = self.use_as_parent p.parent_function = self.use_as_parent self.decorators = [] self.returns = [] self.is_generator = False self.listeners = set() # not used here, but in evaluation. if annotation is not None: annotation.parent = self.use_as_parent self.annotation = annotation def get_code(self, first_indent=False, indention=' '): string = "\n".join('@' + stmt.get_code() for stmt in self.decorators) params = ','.join([stmt.get_code() for stmt in self.params]) string += "def %s(%s):\n" % (self.name, params) string += super(Function, self).get_code(True, indention) if self.is_empty(): string += "pass\n" return string def get_set_vars(self): n = super(Function, self).get_set_vars() for p in self.params: try: n.append(p.get_name()) except IndexError: debug.warning("multiple names in param %s" % n) return n def get_call_signature(self, width=72, funcname=None): """ Generate call signature of this function. :param width: Fold lines if a line is longer than this value. :type width: int :arg funcname: Override function name when given. :type funcname: str :rtype: str """ l = (funcname or self.name.names[-1]) + '(' lines = [] for (i, p) in enumerate(self.params): code = p.get_code(False) if i != len(self.params) - 1: code += ', ' if len(l + code) > width: lines.append(l[:-1] if l[-1] == ' ' else l) l = code else: l += code if l: lines.append(l) lines[-1] += ')' return '\n'.join(lines) @property def doc(self): """ Return a document string including call signature. """ return '%s\n\n%s' % (self.get_call_signature(), self.docstr) class Lambda(Function): def __init__(self, module, params, start_pos, parent): super(Lambda, self).__init__(module, None, params, start_pos, None) self.parent = parent def get_code(self, first_indent=False, indention=' '): params = ','.join([stmt.get_code() for stmt in self.params]) string = "lambda %s: " % params return string + super(Function, self).get_code(indention=indention) def __repr__(self): return "<%s @%s (%s-%s)>" % (type(self).__name__, self.start_pos[0], self.start_pos[1], self.end_pos[1]) class Flow(Scope): """ Used to describe programming structure - flow statements, which indent code, but are not classes or functions: - for - while - if - try - with Therefore statements like else, except and finally are also here, they are now saved in the root flow elements, but in the next variable. :param command: The flow command, if, while, else, etc. :type command: str :param inputs: The initializations of a flow -> while 'statement'. :type inputs: list(Statement) :param start_pos: Position (line, column) of the Flow statement. :type start_pos: tuple(int, int) :param set_vars: Local variables used in the for loop (only there). :type set_vars: list """ def __init__(self, module, command, inputs, start_pos, set_vars=None): self.next = None self.command = command super(Flow, self).__init__(module, start_pos) self._parent = None # These have to be statements, because of with, which takes multiple. self.inputs = inputs for s in inputs: s.parent = self.use_as_parent if set_vars is None: self.set_vars = [] else: self.set_vars = set_vars for s in self.set_vars: s.parent.parent = self.use_as_parent s.parent = self.use_as_parent @property def parent(self): return self._parent @parent.setter def parent(self, value): self._parent = value if self.next: self.next.parent = value def get_code(self, first_indent=False, indention=' '): stmts = [] for s in self.inputs: stmts.append(s.get_code(new_line=False)) stmt = ', '.join(stmts) string = "%s %s:\n" % (self.command, stmt) string += super(Flow, self).get_code(True, indention) if self.next: string += self.next.get_code() return string def get_set_vars(self, is_internal_call=False): """ Get the names for the flow. This includes also a call to the super class. :param is_internal_call: defines an option for internal files to crawl through this class. Normally it will just call its superiors, to generate the output. """ if is_internal_call: n = list(self.set_vars) for s in self.inputs: n += s.set_vars if self.next: n += self.next.get_set_vars(is_internal_call) n += super(Flow, self).get_set_vars() return n else: return self.get_parent_until((Class, Function)).get_set_vars() def get_imports(self): i = super(Flow, self).get_imports() if self.next: i += self.next.get_imports() return i def set_next(self, next): """Set the next element in the flow, those are else, except, etc.""" if self.next: return self.next.set_next(next) else: self.next = next self.next.parent = self.parent return next class ForFlow(Flow): """ Used for the for loop, because there are two statement parts. """ def __init__(self, module, inputs, start_pos, set_stmt, is_list_comp=False): super(ForFlow, self).__init__(module, 'for', inputs, start_pos, set_stmt.used_vars) self.set_stmt = set_stmt set_stmt.parent = self.use_as_parent self.is_list_comp = is_list_comp def get_code(self, first_indent=False, indention=" " * 4): vars = ",".join(x.get_code() for x in self.set_vars) stmts = [] for s in self.inputs: stmts.append(s.get_code(new_line=False)) stmt = ', '.join(stmts) s = "for %s in %s:\n" % (vars, stmt) return s + super(Flow, self).get_code(True, indention) class Import(Simple): """ Stores the imports of any Scopes. >>> 1+1 2 :param start_pos: Position (line, column) of the Import. :type start_pos: tuple(int, int) :param namespace: The import, can be empty if a star is given :type namespace: Name :param alias: The alias of a namespace(valid in the current namespace). :type alias: Name :param from_ns: Like the namespace, can be equally used. :type from_ns: Name :param star: If a star is used -> from time import *. :type star: bool :param defunct: An Import is valid or not. :type defunct: bool """ def __init__(self, module, start_pos, end_pos, namespace, alias=None, from_ns=None, star=False, relative_count=0, defunct=False): super(Import, self).__init__(module, start_pos, end_pos) self.namespace = namespace self.alias = alias self.from_ns = from_ns for n in [namespace, alias, from_ns]: if n: n.parent = self.use_as_parent self.star = star self.relative_count = relative_count self.defunct = defunct def get_code(self, new_line=True): # in case one of the names is None alias = self.alias or '' namespace = self.namespace or '' from_ns = self.from_ns or '' if self.alias: ns_str = "%s as %s" % (namespace, alias) else: ns_str = str(namespace) nl = '\n' if new_line else '' if self.from_ns or self.relative_count: if self.star: ns_str = '*' dots = '.' * self.relative_count return "from %s%s import %s%s" % (dots, from_ns, ns_str, nl) else: return "import %s%s" % (ns_str, nl) def get_defined_names(self): if self.defunct: return [] if self.star: return [self] if self.alias: return [self.alias] if len(self.namespace) > 1: o = self.namespace n = Name(self._sub_module, [(o.names[0], o.start_pos)], o.start_pos, o.end_pos, parent=o.parent) return [n] else: return [self.namespace] def get_set_vars(self): return self.get_defined_names() def get_all_import_names(self): n = [] if self.from_ns: n.append(self.from_ns) if self.namespace: n.append(self.namespace) if self.alias: n.append(self.alias) return n class Statement(Simple): """ This is the class for all the possible statements. Which means, this class stores pretty much all the Python code, except functions, classes, imports, and flow functions like if, for, etc. :type set_vars: list of :class:`Name` :param set_vars: The variables which are defined by the statement. :type used_vars: list of :class:`Name` :param used_vars: The variables which are used by the statement. :type token_list: list :param token_list: List of tokens or names. Each element is either an instance of :class:`Name` or a tuple of token type value (e.g., :data:`tokenize.NUMBER`), token string (e.g., ``'='``), and start position (e.g., ``(1, 0)``). :type start_pos: 2-tuple of int :param start_pos: Position (line, column) of the Statement. """ __slots__ = ('token_list', 'used_vars', 'set_vars', '_commands', '_assignment_details') def __init__(self, module, set_vars, used_vars, token_list, start_pos, end_pos, parent=None): super(Statement, self).__init__(module, start_pos, end_pos) self.used_vars = used_vars self.token_list = token_list for s in set_vars + used_vars: s.parent = self.use_as_parent self.set_vars = self._remove_executions_from_set_vars(set_vars) self.parent = parent # cache self._commands = None self._assignment_details = [] # this is important for other scripts def _remove_executions_from_set_vars(self, set_vars): """ Important mainly for assosiative arrays:: a = 3 b = {} b[a] = 3 `a` is in this case not a set_var, it is used to index the dict. """ if not set_vars: return set_vars result = set(set_vars) last = None in_execution = 0 for tok in self.token_list: if isinstance(tok, Name): if tok not in result: break if in_execution: result.remove(tok) elif isinstance(tok, tuple): tok = tok[1] if tok in ['(', '['] and isinstance(last, Name): in_execution += 1 elif tok in [')', ']'] and in_execution > 0: in_execution -= 1 last = tok return list(result) def get_code(self, new_line=True): def assemble(command_list, assignment=None): pieces = [c.get_code() if isinstance(c, Simple) else unicode(c) for c in command_list] if assignment is None: return ''.join(pieces) return '%s %s ' % (''.join(pieces), assignment) code = ''.join(assemble(*a) for a in self.assignment_details) code += assemble(self.get_commands()) if new_line: return code + '\n' else: return code def get_set_vars(self): """ Get the names for the statement. """ return list(self.set_vars) def is_global(self): # first keyword of the first token is global -> must be a global return str(self.token_list[0]) == "global" def get_command(self, index): commands = self.get_commands() try: return commands[index] except IndexError: return None @property def assignment_details(self): # parse statement which creates the assignment details. self.get_commands() return self._assignment_details def get_commands(self): if self._commands is None: self._commands = ['time neeeeed'] # avoid recursions result = self._parse_statement() self._commands = result return self._commands def _parse_statement(self): """ This is not done in the main parser, because it might be slow and most of the statements won't need this data anyway. This is something 'like' a lazy execution. This is not really nice written, sorry for that. If you plan to replace it and make it nicer, that would be cool :-) """ def is_assignment(tok): return isinstance(tok, (str, unicode)) and tok.endswith('=') \ and not tok in ['>=', '<=', '==', '!='] def parse_array(token_iterator, array_type, start_pos, add_el=None, added_breaks=()): arr = Array(self._sub_module, start_pos, array_type, self) if add_el is not None: arr.add_statement(add_el) maybe_dict = array_type == Array.SET break_tok = None is_array = None while True: stmt, break_tok = parse_stmt(token_iterator, maybe_dict, break_on_assignment=bool(add_el), added_breaks=added_breaks) if stmt is None: break else: if break_tok == ',': is_array = True is_key = maybe_dict and break_tok == ':' arr.add_statement(stmt, is_key) if break_tok in closing_brackets \ or break_tok in added_breaks \ or is_assignment(break_tok): break if arr.type == Array.TUPLE and len(arr) == 1 and not is_array: arr.type = Array.NOARRAY if not arr.values and maybe_dict: # this is a really special case - empty brackets {} are # always dictionaries and not sets. arr.type = Array.DICT k, v = arr.keys, arr.values latest = (v[-1] if v else k[-1] if k else None) end_pos = latest.end_pos if latest is not None \ else (start_pos[0], start_pos[1] + 1) arr.end_pos = end_pos[0], end_pos[1] + (len(break_tok) if break_tok else 0) return arr, break_tok def parse_stmt(token_iterator, maybe_dict=False, added_breaks=(), break_on_assignment=False, stmt_class=Statement): token_list = [] used_vars = [] level = 1 tok = None first = True end_pos = None for i, tok_temp in token_iterator: if isinstance(tok_temp, Base): # the token is a Name, which has already been parsed tok = tok_temp if first: start_pos = tok.start_pos first = False end_pos = tok.end_pos if isinstance(tok, ListComprehension): # it's not possible to set it earlier tok.parent = self if isinstance(tok, Name): used_vars.append(tok) else: token_type, tok, start_tok_pos = tok_temp last_end_pos = end_pos end_pos = start_tok_pos[0], start_tok_pos[1] + len(tok) if first: first = False start_pos = start_tok_pos if tok == 'lambda': lambd, tok = parse_lambda(token_iterator) if lambd is not None: token_list.append(lambd) elif tok == 'for': list_comp, tok = parse_list_comp(token_iterator, token_list, start_pos, last_end_pos) if list_comp is not None: token_list = [list_comp] if tok in closing_brackets: level -= 1 elif tok in brackets.keys(): level += 1 if level == 0 and tok in closing_brackets \ or tok in added_breaks \ or level == 1 and (tok == ',' or maybe_dict and tok == ':' or is_assignment(tok) and break_on_assignment): end_pos = end_pos[0], end_pos[1] - 1 break token_list.append(tok_temp) if not token_list: return None, tok statement = stmt_class(self._sub_module, [], [], token_list, start_pos, end_pos, self.parent) statement.used_vars = used_vars return statement, tok def parse_lambda(token_iterator): params = [] start_pos = self.start_pos while True: param, tok = parse_stmt(token_iterator, added_breaks=[':'], stmt_class=Param) if param is None: break params.append(param) if tok == ':': break if tok != ':': return None, tok # since lambda is a Function scope, it needs Scope parents parent = self.get_parent_until(IsScope) lambd = Lambda(self._sub_module, params, start_pos, parent) ret, tok = parse_stmt(token_iterator) if ret is not None: ret.parent = lambd lambd.returns.append(ret) lambd.end_pos = self.end_pos return lambd, tok def parse_list_comp(token_iterator, token_list, start_pos, end_pos): def parse_stmt_or_arr(token_iterator, added_breaks=()): stmt, tok = parse_stmt(token_iterator, added_breaks=added_breaks) if not stmt: return None, tok if tok == ',': arr, tok = parse_array(token_iterator, Array.TUPLE, stmt.start_pos, stmt, added_breaks=added_breaks) used_vars = [] for stmt in arr: used_vars += stmt.used_vars start_pos = arr.start_pos[0], arr.start_pos[1] - 1 stmt = Statement(self._sub_module, [], used_vars, [], start_pos, arr.end_pos) arr.parent = stmt stmt.token_list = stmt._commands = [arr] else: for v in stmt.used_vars: v.parent = stmt return stmt, tok st = Statement(self._sub_module, [], [], token_list, start_pos, end_pos) middle, tok = parse_stmt_or_arr(token_iterator, added_breaks=['in']) if tok != 'in' or middle is None: debug.warning('list comprehension middle @%s' % str(start_pos)) return None, tok in_clause, tok = parse_stmt_or_arr(token_iterator) if in_clause is None: debug.warning('list comprehension in @%s' % str(start_pos)) return None, tok return ListComprehension(st, middle, in_clause, self), tok # initializations result = [] is_chain = False brackets = {'(': Array.TUPLE, '[': Array.LIST, '{': Array.SET} closing_brackets = ')', '}', ']' token_iterator = common.PushBackIterator(enumerate(self.token_list)) for i, tok_temp in token_iterator: if isinstance(tok_temp, Base): # the token is a Name, which has already been parsed tok = tok_temp token_type = None start_pos = tok.start_pos else: token_type, tok, start_pos = tok_temp if is_assignment(tok): # This means, there is an assignment here. # Add assignments, which can be more than one self._assignment_details.append((result, tok)) result = [] is_chain = False continue elif tok == 'as': # just ignore as, because it sets values next(token_iterator, None) continue if tok == 'lambda': lambd, tok = parse_lambda(token_iterator) if lambd is not None: result.append(lambd) is_literal = token_type in [tokenize.STRING, tokenize.NUMBER] if isinstance(tok, Name) or is_literal: c_type = Call.NAME if is_literal: tok = literal_eval(tok) if token_type == tokenize.STRING: c_type = Call.STRING elif token_type == tokenize.NUMBER: c_type = Call.NUMBER call = Call(self._sub_module, tok, c_type, start_pos, self) if is_chain: result[-1].set_next(call) else: result.append(call) is_chain = False elif tok in brackets.keys(): arr, is_ass = parse_array(token_iterator, brackets[tok], start_pos) if result and isinstance(result[-1], Call): result[-1].set_execution(arr) else: arr.parent = self result.append(arr) elif tok == '.': if result and isinstance(result[-1], Call): is_chain = True elif tok == ',': # implies a tuple # commands is now an array not a statement anymore t = result[0] start_pos = t[2] if isinstance(t, tuple) else t.start_pos # get the correct index i, tok = next(token_iterator, (len(self.token_list), None)) if tok is not None: token_iterator.push_back((i, tok)) t = self.token_list[i - 1] try: end_pos = t.end_pos except AttributeError: end_pos = (t[2][0], t[2][1] + len(t[1])) \ if isinstance(t, tuple) else t.start_pos stmt = Statement(self._sub_module, [], [], result, start_pos, end_pos, self.parent) stmt._commands = result arr, break_tok = parse_array(token_iterator, Array.TUPLE, stmt.start_pos, stmt) result = [arr] if is_assignment(break_tok): self._assignment_details.append((result, break_tok)) result = [] is_chain = False else: if tok != '\n': result.append(tok) return result class Param(Statement): """ The class which shows definitions of params of classes and functions. But this is not to define function calls. """ __slots__ = ('position_nr', 'is_generated', 'annotation_stmt', 'parent_function') def __init__(self, module, set_vars, used_vars, token_list, start_pos, end_pos, parent=None): super(Param, self).__init__(module, set_vars, used_vars, token_list, start_pos, end_pos, parent) # this is defined by the parser later on, not at the initialization # it is the position in the call (first argument, second...) self.position_nr = None self.is_generated = False self.annotation_stmt = None self.parent_function = None def add_annotation(self, annotation_stmt): annotation_stmt.parent = self.use_as_parent self.annotation_stmt = annotation_stmt def get_name(self): """ get the name of the param """ n = self.set_vars or self.used_vars if len(n) > 1: debug.warning("Multiple param names (%s)." % n) return n[0] class Call(Simple): """ `Call` contains a call, e.g. `foo.bar` and owns the executions of those calls, which are `Array`s. """ NAME = 1 NUMBER = 2 STRING = 3 def __init__(self, module, name, type, start_pos, parent=None): super(Call, self).__init__(module, start_pos) self.name = name # parent is not the oposite of next. The parent of c: a = [b.c] would # be an array. self.parent = parent self.type = type self.next = None self.execution = None def set_next(self, call): """ Adds another part of the statement""" call.parent = self if self.next is not None: self.next.set_next(call) else: self.next = call def set_execution(self, call): """ An execution is nothing else than brackets, with params in them, which shows access on the internals of this name. """ call.parent = self if self.next is not None: self.next.set_execution(call) elif self.execution is not None: self.execution.set_execution(call) else: self.execution = call def generate_call_path(self): """ Helps to get the order in which statements are executed. """ try: for name_part in self.name.names: yield name_part except AttributeError: yield self if self.execution is not None: for y in self.execution.generate_call_path(): yield y if self.next is not None: for y in self.next.generate_call_path(): yield y def get_code(self): if self.type == Call.NAME: s = self.name.get_code() else: if not is_py3k and isinstance(self.name, str)\ and "'" not in self.name: # This is a very rough spot, because of repr not supporting # unicode signs, see `test_unicode_script`. s = "'%s'" % unicode(self.name, 'UTF-8') else: s = '' if self.name is None else repr(self.name) if self.execution is not None: s += self.execution.get_code() if self.next is not None: s += '.' + self.next.get_code() return s def __repr__(self): return "<%s: %s>" % \ (type(self).__name__, self.name) class Array(Call): """ Describes the different python types for an array, but also empty statements. In the Python syntax definitions this type is named 'atom'. http://docs.python.org/py3k/reference/grammar.html Array saves sub-arrays as well as normal operators and calls to methods. :param array_type: The type of an array, which can be one of the constants below. :type array_type: int """ NOARRAY = None # just brackets, like `1 * (3 + 2)` TUPLE = 'tuple' LIST = 'list' DICT = 'dict' SET = 'set' def __init__(self, module, start_pos, arr_type=NOARRAY, parent=None): super(Array, self).__init__(module, None, arr_type, start_pos, parent) self.values = [] self.keys = [] self.end_pos = None, None def add_statement(self, statement, is_key=False): """Just add a new statement""" statement.parent = self if is_key: self.type = self.DICT self.keys.append(statement) else: self.values.append(statement) @staticmethod def is_type(instance, *types): """ This is not only used for calls on the actual object, but for ducktyping, to invoke this function with anything as `self`. """ if isinstance(instance, Array): if instance.type in types: return True return False def __len__(self): return len(self.values) def __getitem__(self, key): if self.type == self.DICT: raise TypeError('no dicts allowed') return self.values[key] def __iter__(self): if self.type == self.DICT: raise TypeError('no dicts allowed') return iter(self.values) def items(self): if self.type != self.DICT: raise TypeError('only dicts allowed') return zip(self.keys, self.values) def get_code(self): map = {self.NOARRAY: '(%s)', self.TUPLE: '(%s)', self.LIST: '[%s]', self.DICT: '{%s}', self.SET: '{%s}' } inner = [] for i, stmt in enumerate(self.values): s = '' try: key = self.keys[i] except IndexError: pass else: s += key.get_code(new_line=False) + ': ' s += stmt.get_code(new_line=False) inner.append(s) add = ',' if self.type == self.TUPLE and len(self) == 1 else '' s = map[self.type] % (', '.join(inner) + add) return s + super(Array, self).get_code() def __repr__(self): if self.type == self.NOARRAY: typ = 'noarray' else: typ = self.type return "<%s: %s%s>" % (type(self).__name__, typ, self.values) class NamePart(str): """ A string. Sometimes it is important to know if the string belongs to a name or not. """ # Unfortunately there's no way to use slots for str (non-zero __itemsize__) # -> http://utcc.utoronto.ca/~cks/space/blog/python/IntSlotsPython3k #__slots__ = ('_start_pos', 'parent') def __new__(cls, s, parent, start_pos): self = super(NamePart, cls).__new__(cls, s) self._start_pos = start_pos self.parent = parent return self @property def start_pos(self): offset = self.parent._sub_module.line_offset return offset + self._start_pos[0], self._start_pos[1] @property def end_pos(self): return self.start_pos[0], self.start_pos[1] + len(self) def __getnewargs__(self): return str(self), self.parent, self._start_pos class Name(Simple): """ Used to define names in python. Which means the whole namespace/class/function stuff. So a name like "module.class.function" would result in an array of [module, class, function] """ __slots__ = ('names',) def __init__(self, module, names, start_pos, end_pos, parent=None): super(Name, self).__init__(module, start_pos, end_pos) self.names = tuple(n if isinstance(n, NamePart) else NamePart(n[0], self, n[1]) for n in names) if parent is not None: self.parent = parent def get_code(self): """ Returns the names in a full string format """ return ".".join(self.names) def __str__(self): return self.get_code() def __len__(self): return len(self.names) class ListComprehension(Base): """ Helper class for list comprehensions """ def __init__(self, stmt, middle, input, parent): self.stmt = stmt self.middle = middle self.input = input for s in [stmt, middle, input]: s.parent = self self.parent = parent def get_parent_until(self, *args, **kwargs): return Simple.get_parent_until(self, *args, **kwargs) @property def start_pos(self): return self.stmt.start_pos @property def end_pos(self): return self.stmt.end_pos def __repr__(self): return "<%s: %s>" % \ (type(self).__name__, self.get_code()) def get_code(self): statements = self.stmt, self.middle, self.input code = [s.get_code().replace('\n', '') for s in statements] return "%s for %s in %s" % tuple(code)