""" The ``Parser`` tries to convert the available Python code in an easy to read format, something like an abstract syntax tree. The classes who represent this tree, are sitting in the :mod:`jedi.parser.tree` module. The Python module ``tokenize`` is a very important part in the ``Parser``, because it splits the code into different words (tokens). Sometimes it looks a bit messy. Sorry for that! You might ask now: "Why didn't you use the ``ast`` module for this? Well, ``ast`` does a very good job understanding proper Python code, but fails to work as soon as there's a single line of broken code. There's one important optimization that needs to be known: Statements are not being parsed completely. ``Statement`` is just a representation of the tokens within the statement. This lowers memory usage and cpu time and reduces the complexity of the ``Parser`` (there's another parser sitting inside ``Statement``, which produces ``Array`` and ``Call``). """ import os import re from jedi.parser import tree as pt from jedi.parser import tokenize from jedi.parser import token from jedi.parser.pgen2.pgen import generate_grammar from jedi.parser.pgen2.parse import PgenParser OPERATOR_KEYWORDS = 'and', 'for', 'if', 'else', 'in', 'is', 'lambda', 'not', 'or' # Not used yet. In the future I intend to add something like KeywordStatement STATEMENT_KEYWORDS = 'assert', 'del', 'global', 'nonlocal', 'raise', \ 'return', 'yield', 'pass', 'continue', 'break' _loaded_grammars = {} def load_grammar(file='grammar3.4'): # For now we only support two different Python syntax versions: The latest # Python 3 and Python 2. This may change. if file.startswith('grammar3'): file = 'grammar3.4' else: file = 'grammar2.7' global _loaded_grammars path = os.path.join(os.path.dirname(__file__), file) + '.txt' try: return _loaded_grammars[path] except KeyError: return _loaded_grammars.setdefault(path, generate_grammar(path)) class ErrorStatement(object): def __init__(self, stack, next_token, next_start_pos): self.stack = stack self.next_token = next_token self.next_start_pos = next_start_pos @property def first_pos(self): first_type, nodes = self.stack[0] return nodes[0].start_pos @property def first_type(self): first_type, nodes = self.stack[0] return first_type class Parser(object): """ This class is used to parse a Python file, it then divides them into a class structure of different scopes. :param grammar: The grammar object of pgen2. Loaded by load_grammar. :param source: The codebase for the parser. Must be unicode. :param module_path: The path of the module in the file system, may be None. :type module_path: str :param top_module: Use this module as a parent instead of `self.module`. """ def __init__(self, grammar, source, module_path=None, tokenizer=None): self._ast_mapping = { 'expr_stmt': pt.ExprStmt, 'classdef': pt.Class, 'funcdef': pt.Function, 'file_input': pt.SubModule, 'import_name': pt.ImportName, 'import_from': pt.ImportFrom, 'break_stmt': pt.KeywordStatement, 'continue_stmt': pt.KeywordStatement, 'return_stmt': pt.ReturnStmt, 'raise_stmt': pt.KeywordStatement, 'yield_expr': pt.YieldExpr, 'del_stmt': pt.KeywordStatement, 'pass_stmt': pt.KeywordStatement, 'global_stmt': pt.GlobalStmt, 'nonlocal_stmt': pt.KeywordStatement, 'assert_stmt': pt.AssertStmt, 'if_stmt': pt.IfStmt, 'with_stmt': pt.WithStmt, 'for_stmt': pt.ForStmt, 'while_stmt': pt.WhileStmt, 'try_stmt': pt.TryStmt, 'comp_for': pt.CompFor, 'decorator': pt.Decorator, 'lambdef': pt.Lambda, 'old_lambdef': pt.Lambda, 'lambdef_nocond': pt.Lambda, } self.global_names = [] self._omit_dedent = 0 self._last_failed_start_pos = (0, 0) # TODO do print absolute import detection here. #try: # del python_grammar_no_print_statement.keywords["print"] #except KeyError: # pass # Doesn't exist in the Python 3 grammar. #if self.options["print_function"]: # python_grammar = pygram.python_grammar_no_print_statement #else: self.used_names = {} self.scope_names_stack = [{}] self.error_statement_stacks = [] added_newline = False # The Python grammar needs a newline at the end of each statement. if not source.endswith('\n'): source += '\n' added_newline = True # For the fast parser. self.position_modifier = pt.PositionModifier() p = PgenParser(grammar, self.convert_node, self.convert_leaf, self.error_recovery) tokenizer = tokenizer or tokenize.source_tokens(source) self.module = p.parse(self._tokenize(tokenizer)) if added_newline: self.remove_last_newline() self.module.used_names = self.used_names self.module.path = module_path self.module.global_names = self.global_names self.module.error_statement_stacks = self.error_statement_stacks self.grammar_symbols = grammar.number2symbol def convert_node(self, grammar, type, children): """ Convert raw node information to a Node instance. This is passed to the parser driver which calls it whenever a reduction of a grammar rule produces a new complete node, so that the tree is build strictly bottom-up. """ symbol = grammar.number2symbol[type] try: new_node = self._ast_mapping[symbol](children) except KeyError: new_node = pt.Node(symbol, children) # We need to check raw_node always, because the same node can be # returned by convert multiple times. if symbol == 'global_stmt': self.global_names += new_node.get_global_names() elif isinstance(new_node, pt.Lambda): new_node.names_dict = self.scope_names_stack.pop() elif isinstance(new_node, (pt.ClassOrFunc, pt.Module)) \ and symbol in ('funcdef', 'classdef', 'file_input'): # scope_name_stack handling scope_names = self.scope_names_stack.pop() if isinstance(new_node, pt.ClassOrFunc): n = new_node.name scope_names[n.value].remove(n) # Set the func name of the current node arr = self.scope_names_stack[-1].setdefault(n.value, []) arr.append(n) new_node.names_dict = scope_names elif isinstance(new_node, pt.CompFor): # The name definitions of comprehenions shouldn't be part of the # current scope. They are part of the comprehension scope. for n in new_node.get_defined_names(): self.scope_names_stack[-1][n.value].remove(n) return new_node def convert_leaf(self, grammar, type, value, prefix, start_pos): #print('leaf', value, pytree.type_repr(type)) if type == tokenize.NAME: if value in grammar.keywords: if value in ('def', 'class', 'lambda'): self.scope_names_stack.append({}) return pt.Keyword(self.position_modifier, value, start_pos, prefix) else: name = pt.Name(self.position_modifier, value, start_pos, prefix) # Keep a listing of all used names arr = self.used_names.setdefault(name.value, []) arr.append(name) arr = self.scope_names_stack[-1].setdefault(name.value, []) arr.append(name) return name elif type == token.STRING: return pt.String(self.position_modifier, value, start_pos, prefix) elif type == token.NUMBER: return pt.Number(self.position_modifier, value, start_pos, prefix) elif type in (token.NEWLINE, token.ENDMARKER): return pt.Whitespace(self.position_modifier, value, start_pos, prefix) else: return pt.Operator(self.position_modifier, value, start_pos, prefix) def error_recovery(self, grammar, stack, typ, value, start_pos, prefix, add_token_callback): """ This parser is written in a dynamic way, meaning that this parser allows using different grammars (even non-Python). However, error recovery is purely written for Python. """ def current_suite(stack): # For now just discard everything that is not a suite or # file_input, if we detect an error. for index, (dfa, state, (typ, nodes)) in reversed(list(enumerate(stack))): # `suite` can sometimes be only simple_stmt, not stmt. symbol = grammar.number2symbol[typ] if symbol == 'file_input': break elif symbol == 'suite' and len(nodes) > 1: # suites without an indent in them get discarded. break elif symbol == 'simple_stmt' and len(nodes) > 1: # simple_stmt can just be turned into a Node, if there are # enough statements. Ignore the rest after that. break return index, symbol, nodes index, symbol, nodes = current_suite(stack) if symbol == 'simple_stmt': index -= 2 (_, _, (typ, suite_nodes)) = stack[index] symbol = grammar.number2symbol[typ] suite_nodes.append(pt.Node(symbol, list(nodes))) # Remove nodes[:] = [] nodes = suite_nodes stack[index] #print('err', token.tok_name[typ], repr(value), start_pos, len(stack), index) self._stack_removal(grammar, stack, index + 1, value, start_pos) if typ == token.INDENT: # For every deleted INDENT we got to delete a DEDENT as well. # Otherwise the parser will get into trouble and DEDENT too early. self._omit_dedent += 1 if value in ('import', 'from', 'class', 'def', 'try', 'while', 'return'): # Those can always be new statements. add_token_callback(typ, value, prefix, start_pos) elif typ == token.DEDENT and symbol == 'suite': # Close the current suite, with DEDENT. # Note that this may cause some suites to not contain any # statements at all. This is contrary to valid Python syntax. We # keep incomplete suites in Jedi to be able to complete param names # or `with ... as foo` names. If we want to use this parser for # syntax checks, we have to check in a separate turn if suites # contain statements or not. However, a second check is necessary # anyway (compile.c does that for Python), because Python's grammar # doesn't stop you from defining `continue` in a module, etc. add_token_callback(typ, value, prefix, start_pos) def _stack_removal(self, grammar, stack, start_index, value, start_pos): def clear_names(children): for c in children: try: clear_names(c.children) except AttributeError: if isinstance(c, pt.Name): try: self.scope_names_stack[-1][c.value].remove(c) self.used_names[c.value].remove(c) except ValueError: pass # This may happen with CompFor. for dfa, state, node in stack[start_index:]: clear_names(children=node[1]) failed_stack = [] found = False for dfa, state, (typ, nodes) in stack[start_index:]: if nodes: found = True if found: symbol = grammar.number2symbol[typ] failed_stack.append((symbol, nodes)) if nodes and nodes[0] in ('def', 'class', 'lambda'): self.scope_names_stack.pop() if failed_stack: err = ErrorStatement(failed_stack, value, start_pos) self.error_statement_stacks.append(err) self._last_failed_start_pos = start_pos stack[start_index:] = [] def _tokenize(self, tokenizer): for typ, value, start_pos, prefix in tokenizer: # print(token.tok_name[typ], repr(value), start_pos, repr(prefix)) if self._omit_dedent and typ == token.DEDENT: self._omit_dedent -= 1 continue if typ == token.OP: typ = token.opmap[value] yield typ, value, prefix, start_pos def __repr__(self): return "<%s: %s>" % (type(self).__name__, self.module) def remove_last_newline(self): """ In all of this we need to work with _start_pos, because if we worked with start_pos, we would need to check the position_modifier as well (which is accounted for in the start_pos property). """ endmarker = self.module.children[-1] # The newline is either in the endmarker as a prefix or the previous # leaf as a newline token. if endmarker.prefix.endswith('\n'): endmarker.prefix = endmarker.prefix[:-1] last_line = re.sub('.*\n', '', endmarker.prefix) endmarker._start_pos = endmarker._start_pos[0] - 1, len(last_line) else: try: newline = endmarker.get_previous() except IndexError: return # This means that the parser is empty. while True: if newline.value == '': # Must be a DEDENT, just continue. newline = newline.get_previous() else: assert newline.value == '\n' newline.value = '' if self._last_failed_start_pos > newline._start_pos: # It may be the case that there was a syntax error in a # function. In that case error correction removes the # right newline. So we use the previously assigned # _last_failed_start_pos variable to account for that. endmarker._start_pos = self._last_failed_start_pos else: endmarker._start_pos = newline._start_pos break