""" Like described in the :mod:`parsing_representation` module, there's a need for an ast like module to represent the states of parsed modules. But now there are also structures in Python that need a little bit more than that. An ``Instance`` for example is only a ``Class`` before it is instantiated. This class represents these cases. So, why is there also a ``Class`` class here? Well, there are decorators and they change classes in Python 3. """ import sys import copy import itertools from _compatibility import property, use_metaclass, next, hasattr import parsing_representation as pr import imports import docstrings import cache import builtin import dynamic import helpers import recursion import debug import evaluate import common class DecoratorNotFound(LookupError): """ Decorators are sometimes not found, if that happens, that error is raised. """ pass class Executable(pr.Base): """ An instance is also an executable - because __init__ is called """ def __init__(self, base, var_args=None): self.base = base # The param input array. if var_args is None: var_args = pr.Array(None, None) self.var_args = var_args def get_parent_until(self, *args, **kwargs): return self.base.get_parent_until(*args, **kwargs) @property def parent(self): return self.base.parent class Instance(use_metaclass(cache.CachedMetaClass, Executable)): """ This class is used to evaluate instances. """ def __init__(self, base, var_args=None): super(Instance, self).__init__(base, var_args) if str(base.name) in ['list', 'set'] \ and builtin.Builtin.scope == base.get_parent_until(): # compare the module path with the builtin name. self.var_args = dynamic.check_array_instances(self) else: # need to execute the __init__ function, because the dynamic param # searching needs it. try: self.execute_subscope_by_name('__init__', self.var_args) except KeyError: pass # Generated instances are classes that are just generated by self # (No var_args) used. self.is_generated = False @cache.memoize_default() def get_init_execution(self, func): func = InstanceElement(self, func, True) return Execution(func, self.var_args) def get_func_self_name(self, func): """ Returns the name of the first param in a class method (which is normally self """ try: return func.params[0].used_vars[0].names[0] except IndexError: return None def get_self_properties(self): def add_self_dot_name(name): n = copy.copy(name) n.names = n.names[1:] names.append(InstanceElement(self, n)) names = [] # This loop adds the names of the self object, copies them and removes # the self. for sub in self.base.subscopes: if isinstance(sub, pr.Class): continue # Get the self name, if there's one. self_name = self.get_func_self_name(sub) if self_name: # Check the __init__ function. if sub.name.get_code() == '__init__': sub = self.get_init_execution(sub) for n in sub.get_set_vars(): # Only names with the selfname are being added. # It is also important, that they have a len() of 2, # because otherwise, they are just something else if n.names[0] == self_name and len(n.names) == 2: add_self_dot_name(n) for s in self.base.get_super_classes(): if s == self.base: # I don't know how this could happen... But saw it once. continue names += Instance(s).get_self_properties() return names def get_subscope_by_name(self, name): sub = self.base.get_subscope_by_name(name) return InstanceElement(self, sub, True) def execute_subscope_by_name(self, name, args=None): if args is None: args = helpers.generate_param_array([]) method = self.get_subscope_by_name(name) if args.parent_stmt is None: args.parent_stmt = method return Execution(method, args).get_return_types() def get_descriptor_return(self, obj): """ Throws a KeyError if there's no method. """ # Arguments in __get__ descriptors are obj, class. # `method` is the new parent of the array, don't know if that's good. v = [obj, obj.base] if isinstance(obj, Instance) else [None, obj] args = helpers.generate_param_array(v) return self.execute_subscope_by_name('__get__', args) @cache.memoize_default([]) def get_defined_names(self): """ Get the instance vars of a class. This includes the vars of all classes """ names = self.get_self_properties() class_names = self.base.get_defined_names() for var in class_names: names.append(InstanceElement(self, var, True)) return names def scope_generator(self): """ An Instance has two scopes: The scope with self names and the class scope. Instance variables have priority over the class scope. """ yield self, self.get_self_properties() names = [] class_names = self.base.get_defined_names() for var in class_names: names.append(InstanceElement(self, var, True)) yield self, names def get_index_types(self, index=None): args = helpers.generate_param_array([] if index is None else [index]) try: return self.execute_subscope_by_name('__getitem__', args) except KeyError: debug.warning('No __getitem__, cannot access the array.') return [] def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'name', 'get_imports', 'docstr', 'asserts']: raise AttributeError("Instance %s: Don't touch this (%s)!" % (self, name)) return getattr(self.base, name) def __repr__(self): return "" % \ (type(self).__name__, self.base, len(self.var_args or [])) class InstanceElement(use_metaclass(cache.CachedMetaClass)): """ InstanceElement is a wrapper for any object, that is used as an instance variable (e.g. self.variable or class methods). """ def __init__(self, instance, var, is_class_var=False): if isinstance(var, pr.Function): var = Function(var) elif isinstance(var, pr.Class): var = Class(var) self.instance = instance self.var = var self.is_class_var = is_class_var @property @cache.memoize_default() def parent(self): par = self.var.parent if isinstance(par, Class) and par == self.instance.base \ or isinstance(par, pr.Class) \ and par == self.instance.base.base: par = self.instance elif not isinstance(par, pr.Module): par = InstanceElement(self.instance, par, self.is_class_var) return par def get_parent_until(self, *args, **kwargs): return pr.Simple.get_parent_until(self, *args, **kwargs) def get_decorated_func(self): """ Needed because the InstanceElement should not be stripped """ func = self.var.get_decorated_func() if func == self.var: return self return func def get_assignment_calls(self): # Copy and modify the array. origin = self.var.get_assignment_calls() # Delete parent, because it isn't used anymore. new = helpers.fast_parent_copy(origin) par = InstanceElement(self.instance, origin.parent_stmt, self.is_class_var) new.parent_stmt = par return new def __getattr__(self, name): return getattr(self.var, name) def isinstance(self, *cls): return isinstance(self.var, cls) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.var) class Class(use_metaclass(cache.CachedMetaClass, pr.Base)): """ This class is not only important to extend `pr.Class`, it is also a important for descriptors (if the descriptor methods are evaluated or not). """ def __init__(self, base): self.base = base @cache.memoize_default(default=[]) def get_super_classes(self): supers = [] # TODO care for mro stuff (multiple super classes). for s in self.base.supers: # Super classes are statements. for cls in evaluate.follow_statement(s): if not isinstance(cls, Class): debug.warning('Received non class, as a super class') continue # Just ignore other stuff (user input error). supers.append(cls) if not supers and self.base.parent != builtin.Builtin.scope: # add `object` to classes supers += evaluate.find_name(builtin.Builtin.scope, 'object') return supers @cache.memoize_default(default=[]) def get_defined_names(self): def in_iterable(name, iterable): """ checks if the name is in the variable 'iterable'. """ for i in iterable: # Only the last name is important, because these names have a # maximal length of 2, with the first one being `self`. if i.names[-1] == name.names[-1]: return True return False result = self.base.get_defined_names() super_result = [] # TODO mro! for cls in self.get_super_classes(): # Get the inherited names. for i in cls.get_defined_names(): if not in_iterable(i, result): super_result.append(i) result += super_result return result def get_subscope_by_name(self, name): for sub in reversed(self.subscopes): if sub.name.get_code() == name: return sub raise KeyError("Couldn't find subscope.") @property def name(self): return self.base.name def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'parent', 'subscopes', 'get_imports', 'get_parent_until', 'docstr', 'asserts']: raise AttributeError("Don't touch this (%s)!" % name) return getattr(self.base, name) def __repr__(self): return "" % (type(self).__name__, self.base) class Function(use_metaclass(cache.CachedMetaClass, pr.Base)): """ Needed because of decorators. Decorators are evaluated here. """ def __init__(self, func, is_decorated=False): """ This should not be called directly """ self.base_func = func self.is_decorated = is_decorated @property @cache.memoize_default() def _decorated_func(self): """ Returns the function, that is to be executed in the end. This is also the places where the decorators are processed. """ f = self.base_func # Only enter it, if has not already been processed. if not self.is_decorated: for dec in reversed(self.base_func.decorators): debug.dbg('decorator:', dec, f) dec_results = evaluate.follow_statement(dec) if not len(dec_results): debug.warning('decorator func not found: %s in stmt %s' % (self.base_func, dec)) return None if len(dec_results) > 1: debug.warning('multiple decorators found', self.base_func, dec_results) decorator = dec_results.pop() # Create param array. old_func = Function(f, is_decorated=True) params = helpers.generate_param_array([old_func], old_func) wrappers = Execution(decorator, params).get_return_types() if not len(wrappers): debug.warning('no wrappers found', self.base_func) return None if len(wrappers) > 1: debug.warning('multiple wrappers found', self.base_func, wrappers) # This is here, that the wrapper gets executed. f = wrappers[0] debug.dbg('decorator end', f) if f != self.base_func and isinstance(f, pr.Function): f = Function(f) return f def get_decorated_func(self): if self._decorated_func is None: raise DecoratorNotFound() if self._decorated_func == self.base_func: return self return self._decorated_func def get_magic_method_names(self): return builtin.Builtin.magic_function_scope.get_defined_names() def get_magic_method_scope(self): return builtin.Builtin.magic_function_scope def __getattr__(self, name): return getattr(self.base_func, name) def __repr__(self): dec = '' if self._decorated_func != self.base_func: dec = " is " + repr(self._decorated_func) return "" % (type(self).__name__, self.base_func, dec) class Execution(Executable): """ This class is used to evaluate functions and their returns. This is the most complicated class, because it contains the logic to transfer parameters. It is even more complicated, because there may be multiple calls to functions and recursion has to be avoided. But this is responsibility of the decorators. """ @cache.memoize_default(default=[]) @recursion.ExecutionRecursionDecorator def get_return_types(self, evaluate_generator=False): """ Get the return types of a function. """ stmts = [] if self.base.parent == builtin.Builtin.scope \ and not isinstance(self.base, (Generator, Array)): func_name = str(self.base.name) # some implementations of builtins: if func_name == 'getattr': # follow the first param try: objects = evaluate.follow_call_list([self.var_args[0]]) names = evaluate.follow_call_list([self.var_args[1]]) except IndexError: debug.warning('getattr() called with to few args.') return [] for obj in objects: if not isinstance(obj, (Instance, Class)): debug.warning('getattr called without instance') continue for name in names: key = name.var_args.get_only_subelement() stmts += evaluate.follow_path(iter([key]), obj, self.base) return stmts elif func_name == 'type': # otherwise it would be a metaclass if len(self.var_args) == 1: objects = evaluate.follow_call_list([self.var_args[0]]) return [o.base for o in objects if isinstance(o, Instance)] elif func_name == 'super': accept = (pr.Function,) func = self.var_args.parent_stmt.get_parent_until(accept) if func.isinstance(*accept): cls = func.get_parent_until(accept + (pr.Class,), include_current=False) if isinstance(cls, pr.Class): cls = Class(cls) su = cls.get_super_classes() if su: return [Instance(su[0])] return [] if self.base.isinstance(Class): # There maybe executions of executions. stmts = [Instance(self.base, self.var_args)] elif isinstance(self.base, Generator): return self.base.iter_content() else: # Don't do this with exceptions, as usual, because some deeper # exceptions could be catched - and I wouldn't know what happened. try: self.base.returns except (AttributeError, DecoratorNotFound): if hasattr(self.base, 'execute_subscope_by_name'): try: stmts = self.base.execute_subscope_by_name('__call__', self.var_args) except KeyError: debug.warning("no __call__ func available", self.base) else: debug.warning("no execution possible", self.base) else: stmts = self._get_function_returns(evaluate_generator) debug.dbg('exec result: %s in %s' % (stmts, self)) return imports.strip_imports(stmts) def _get_function_returns(self, evaluate_generator): """ A normal Function execution """ # Feed the listeners, with the params. for listener in self.base.listeners: listener.execute(self.get_params()) func = self.base.get_decorated_func() if func.is_generator and not evaluate_generator: return [Generator(func, self.var_args)] else: stmts = docstrings.find_return_types(func) for r in self.returns: if r is not None: stmts += evaluate.follow_statement(r) return stmts @cache.memoize_default(default=[]) def get_params(self): """ This returns the params for an Execution/Instance and is injected as a 'hack' into the pr.Function class. This needs to be here, because Instance can have __init__ functions, which act the same way as normal functions. """ def gen_param_name_copy(param, keys=[], values=[], array_type=None): """ Create a param with the original scope (of varargs) as parent. """ parent_stmt = self.var_args.parent_stmt pos = parent_stmt.start_pos if parent_stmt else None calls = pr.Array(pos, pr.Array.NOARRAY, parent_stmt) calls.values = values calls.keys = keys calls.type = array_type new_param = copy.copy(param) if parent_stmt is not None: new_param.parent = parent_stmt new_param._assignment_calls = calls new_param.is_generated = True name = copy.copy(param.get_name()) name.parent = new_param return name result = [] start_offset = 0 if isinstance(self.base, InstanceElement): # Care for self -> just exclude it and add the instance start_offset = 1 self_name = copy.copy(self.base.params[0].get_name()) self_name.parent = self.base.instance result.append(self_name) param_dict = {} for param in self.base.params: param_dict[str(param.get_name())] = param # There may be calls, which don't fit all the params, this just ignores # it. var_arg_iterator = self.get_var_args_iterator() non_matching_keys = [] keys_used = set() keys_only = False for param in self.base.params[start_offset:]: # The value and key can both be null. There, the defaults apply. # args / kwargs will just be empty arrays / dicts, respectively. # Wrong value count is just ignored. If you try to test cases that # are not allowed in Python, Jedi will maybe not show any # completions. key, value = next(var_arg_iterator, (None, None)) while key: keys_only = True try: key_param = param_dict[str(key)] except KeyError: non_matching_keys.append((key, value)) else: keys_used.add(str(key)) result.append(gen_param_name_copy(key_param, values=[value])) key, value = next(var_arg_iterator, (None, None)) assignments = param.get_assignment_calls().values assignment = assignments[0] keys = [] values = [] array_type = None if assignment[0] == '*': # *args param array_type = pr.Array.TUPLE if value: values.append(value) for key, value in var_arg_iterator: # Iterate until a key argument is found. if key: var_arg_iterator.push_back((key, value)) break values.append(value) elif assignment[0] == '**': # **kwargs param array_type = pr.Array.DICT if non_matching_keys: keys, values = zip(*non_matching_keys) else: # normal param if value: values = [value] else: if param.assignment_details: # No value: return the default values. values = assignments else: # If there is no assignment detail, that means there is # no assignment, just the result. Therefore nothing has # to be returned. values = [] # Just ignore all the params that are without a key, after one # keyword argument was set. if not keys_only or assignment[0] == '**': keys_used.add(str(key)) result.append(gen_param_name_copy(param, keys=keys, values=values, array_type=array_type)) if keys_only: # sometimes param arguments are not completely written (which would # create an Exception, but we have to handle that). for k in set(param_dict) - keys_used: result.append(gen_param_name_copy(param_dict[k])) return result def get_var_args_iterator(self): """ Yields a key/value pair, the key is None, if its not a named arg. """ def iterate(): # `var_args` is typically an Array, and not a list. for var_arg in self.var_args: # empty var_arg if len(var_arg) == 0: yield None, None # *args elif var_arg[0] == '*': arrays = evaluate.follow_call_list([var_arg[1:]]) for array in arrays: if hasattr(array, 'get_contents'): for field in array.get_contents(): yield None, field # **kwargs elif var_arg[0] == '**': arrays = evaluate.follow_call_list([var_arg[1:]]) for array in arrays: if hasattr(array, 'get_contents'): for key, field in array.get_contents(): # Take the first index. if isinstance(key, pr.Name): name = key else: # `pr`.[Call|Function|Class] lookup. name = key[0].name yield name, field # Normal arguments (including key arguments). else: if len(var_arg) > 1 and var_arg[1] == '=': # This is a named parameter (var_arg[0] is a Call). yield var_arg[0].name, var_arg[2:] else: yield None, var_arg return iter(common.PushBackIterator(iterate())) def get_set_vars(self): return self.get_defined_names() def get_defined_names(self): """ Call the default method with the own instance (self implements all the necessary functions). Add also the params. """ return self.get_params() + pr.Scope.get_set_vars(self) def copy_properties(self, prop): """ Literally copies a property of a Function. Copying is very expensive, because it is something like `copy.deepcopy`. However, these copied objects can be used for the executions, as if they were in the execution. """ try: # Copy all these lists into this local function. attr = getattr(self.base, prop) objects = [] for element in attr: if element is None: copied = element else: copied = helpers.fast_parent_copy(element) copied.parent = self._scope_copy(copied.parent) if isinstance(copied, pr.Function): copied = Function(copied) objects.append(copied) return objects except AttributeError: raise common.MultiLevelAttributeError(sys.exc_info()) def __getattr__(self, name): if name not in ['start_pos', 'end_pos', 'imports']: raise AttributeError('Tried to access %s: %s. Why?' % (name, self)) return getattr(self.base, name) @cache.memoize_default() def _scope_copy(self, scope): try: """ Copies a scope (e.g. if) in an execution """ # TODO method uses different scopes than the subscopes property. # just check the start_pos, sometimes it's difficult with closures # to compare the scopes directly. if scope.start_pos == self.start_pos: return self else: copied = helpers.fast_parent_copy(scope) copied.parent = self._scope_copy(copied.parent) return copied except AttributeError: raise common.MultiLevelAttributeError(sys.exc_info()) @property @cache.memoize_default() def returns(self): return self.copy_properties('returns') @property @cache.memoize_default() def asserts(self): return self.copy_properties('asserts') @property @cache.memoize_default() def statements(self): return self.copy_properties('statements') @property @cache.memoize_default() def subscopes(self): return self.copy_properties('subscopes') def get_statement_for_position(self, pos): return pr.Scope.get_statement_for_position(self, pos) def __repr__(self): return "<%s of %s>" % \ (type(self).__name__, self.base) class Generator(use_metaclass(cache.CachedMetaClass, pr.Base)): """ Cares for `yield` statements. """ def __init__(self, func, var_args): super(Generator, self).__init__() self.func = func self.var_args = var_args def get_defined_names(self): """ Returns a list of names that define a generator, which can return the content of a generator. """ names = [] none_pos = (0, 0) executes_generator = ('__next__', 'send') for n in ('close', 'throw') + executes_generator: name = pr.Name(builtin.Builtin.scope, [(n, none_pos)], none_pos, none_pos) if n in executes_generator: name.parent = self names.append(name) debug.dbg('generator names', names) return names def iter_content(self): """ returns the content of __iter__ """ return Execution(self.func, self.var_args).get_return_types(True) def get_index_types(self, index=None): debug.warning('Tried to get array access on a generator', self) return [] @property def parent(self): return self.func.parent def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.func) class Array(use_metaclass(cache.CachedMetaClass, pr.Base)): """ Used as a mirror to pr.Array, if needed. It defines some getter methods which are important in this module. """ def __init__(self, array): self._array = array def get_index_types(self, index_call_list=None): """ Get the types of a specific index or all, if not given """ # array slicing if index_call_list is not None: print index_call_list if index_call_list and [x for x in index_call_list if ':' in x.token_list]: return [self] index_possibilities = [evaluate.follow_statement(i) for i in index_call_list] if len(index_possibilities) == 1: # This is indexing only one element, with a fixed index number, # otherwise it just ignores the index (e.g. [1+1]). try: # Multiple elements in the array are not wanted. var_args # and get_only_subelement can raise AttributeErrors. i = index_possibilities[0].var_args.get_only_subelement() except AttributeError: pass else: try: return self.get_exact_index_types(i) except (IndexError, KeyError): pass result = list(self._follow_values(self._array.values)) result += dynamic.check_array_additions(self) return set(result) def get_exact_index_types(self, index): """ Here the index is an int. Raises IndexError/KeyError """ if self._array.type == pr.Array.DICT: old_index = index index = None for i, key_elements in enumerate(self._array.keys): # Because we only want the key to be a string. if len(key_elements) == 1: try: str_key = key_elements.get_code() except AttributeError: try: str_key = key_elements[0].name except AttributeError: str_key = None if old_index == str_key: index = i break if index is None: raise KeyError('No key found in dictionary') values = [self._array[index]] return self._follow_values(values) def _follow_values(self, values): """ helper function for the index getters """ return itertools.chain.from_iterable(evaluate.follow_statement(v) for v in values) def get_defined_names(self): """ This method generates all `ArrayMethod` for one pr.Array. It returns e.g. for a list: append, pop, ... """ # `array.type` is a string with the type, e.g. 'list'. scope = evaluate.find_name(builtin.Builtin.scope, self._array.type)[0] scope = Instance(scope) names = scope.get_defined_names() return [ArrayMethod(n) for n in names] def get_contents(self): return self._array @property def parent(self): """ Return the builtin scope as parent, because the arrays are builtins """ return builtin.Builtin.scope def get_parent_until(self, *args, **kwargs): return builtin.Builtin.scope def __getattr__(self, name): if name not in ['type', 'start_pos', 'get_only_subelement']: raise AttributeError('Strange access on %s: %s.' % (self, name)) return getattr(self._array, name) def __repr__(self): return "" % (type(self).__name__, self._array) class ArrayMethod(object): """ A name, e.g. `list.append`, it is used to access the original array methods. """ def __init__(self, name): super(ArrayMethod, self).__init__() self.name = name def __getattr__(self, name): # Set access privileges: if name not in ['parent', 'names', 'start_pos', 'end_pos', 'get_code']: raise AttributeError('Strange access: %s.' % name) return getattr(self.name, name) def get_parent_until(self): return builtin.Builtin.scope def __repr__(self): return "<%s of %s>" % (type(self).__name__, self.name)