""" Used only for REPL Completion. """ import inspect import os from jedi import settings from jedi.evaluate import compiled from jedi.cache import underscore_memoization from jedi.evaluate import imports from jedi.evaluate.base_context import Context, ContextSet from jedi.evaluate.context import ModuleContext from jedi.evaluate.cache import evaluator_function_cache from jedi.evaluate.compiled.getattr_static import getattr_static class MixedObject(object): """ A ``MixedObject`` is used in two ways: 1. It uses the default logic of ``parser.python.tree`` objects, 2. except for getattr calls. The names dicts are generated in a fashion like ``CompiledObject``. This combined logic makes it possible to provide more powerful REPL completion. It allows side effects that are not noticable with the default parser structure to still be completeable. The biggest difference from CompiledObject to MixedObject is that we are generally dealing with Python code and not with C code. This will generate fewer special cases, because we in Python you don't have the same freedoms to modify the runtime. """ def __init__(self, evaluator, parent_context, compiled_object, tree_context): self.evaluator = evaluator self.parent_context = parent_context self.compiled_object = compiled_object self._context = tree_context self.access = compiled_object.access # We have to overwrite everything that has to do with trailers, name # lookups and filters to make it possible to route name lookups towards # compiled objects and the rest towards tree node contexts. def py__getattribute__(*args, **kwargs): return Context.py__getattribute__(*args, **kwargs) def get_filters(self, *args, **kwargs): yield MixedObjectFilter(self.evaluator, self) def __repr__(self): return '<%s: %s>' % (type(self).__name__, repr(self.access)) def __getattr__(self, name): return getattr(self._context, name) class MixedName(compiled.CompiledName): """ The ``CompiledName._compiled_object`` is our MixedObject. """ @property def start_pos(self): contexts = list(self.infer()) if not contexts: # This means a start_pos that doesn't exist (compiled objects). return (0, 0) return contexts[0].name.start_pos @start_pos.setter def start_pos(self, value): # Ignore the __init__'s start_pos setter call. pass @underscore_memoization def infer(self): access = self.parent_context.access # TODO use logic from compiled.CompiledObjectFilter access = access.getattr(self.string_name, default=None) return ContextSet( _create(self._evaluator, access, parent_context=self.parent_context) ) @property def api_type(self): return next(iter(self.infer())).api_type class MixedObjectFilter(compiled.CompiledObjectFilter): name_class = MixedName def __init__(self, evaluator, mixed_object, is_instance=False): super(MixedObjectFilter, self).__init__( evaluator, mixed_object, is_instance) self._mixed_object = mixed_object #def _create(self, name): #return MixedName(self._evaluator, self._compiled_object, name) @evaluator_function_cache() def _load_module(evaluator, path, python_object): module = evaluator.grammar.parse( path=path, cache=True, diff_cache=True, cache_path=settings.cache_directory ).get_root_node() python_module = inspect.getmodule(python_object) evaluator.modules[python_module.__name__] = module return module def _get_object_to_check(python_object): """Check if inspect.getfile has a chance to find the source.""" if (inspect.ismodule(python_object) or inspect.isclass(python_object) or inspect.ismethod(python_object) or inspect.isfunction(python_object) or inspect.istraceback(python_object) or inspect.isframe(python_object) or inspect.iscode(python_object)): return python_object try: return python_object.__class__ except AttributeError: raise TypeError # Prevents computation of `repr` within inspect. def _find_syntax_node_name(evaluator, access): # TODO accessing this is bad, but it probably doesn't matter that much, # because we're working with interpreteters only here. python_object = access._obj try: python_object = _get_object_to_check(python_object) path = inspect.getsourcefile(python_object) except TypeError: # The type might not be known (e.g. class_with_dict.__weakref__) return None, None if path is None or not os.path.exists(path): # The path might not exist or be e.g. . return None, None module = _load_module(evaluator, path, python_object) if inspect.ismodule(python_object): # We don't need to check names for modules, because there's not really # a way to write a module in a module in Python (and also __name__ can # be something like ``email.utils``). return module, path try: name_str = python_object.__name__ except AttributeError: # Stuff like python_function.__code__. return None, None if name_str == '': return None, None # It's too hard to find lambdas. # Doesn't always work (e.g. os.stat_result) try: names = module.get_used_names()[name_str] except KeyError: return None, None names = [n for n in names if n.is_definition()] try: code = python_object.__code__ # By using the line number of a code object we make the lookup in a # file pretty easy. There's still a possibility of people defining # stuff like ``a = 3; foo(a); a = 4`` on the same line, but if people # do so we just don't care. line_nr = code.co_firstlineno except AttributeError: pass else: line_names = [name for name in names if name.start_pos[0] == line_nr] # There's a chance that the object is not available anymore, because # the code has changed in the background. if line_names: return line_names[-1].parent, path # It's really hard to actually get the right definition, here as a last # resort we just return the last one. This chance might lead to odd # completions at some points but will lead to mostly correct type # inference, because people tend to define a public name in a module only # once. return names[-1].parent, path @compiled.compiled_objects_cache('mixed_cache') def _create(evaluator, access, parent_context=None, *args): tree_node, path = _find_syntax_node_name(evaluator, access) compiled_object = compiled.create( evaluator, access, parent_context=parent_context.compiled_object) if tree_node is None: return compiled_object module_node = tree_node.get_root_node() if parent_context.tree_node.get_root_node() == module_node: module_context = parent_context.get_root_context() else: module_context = ModuleContext(evaluator, module_node, path=path) # TODO this __name__ is probably wrong. name = compiled_object.get_root_context().py__name__() imports.add_module(evaluator, name, module_context) tree_context = module_context.create_context( tree_node, node_is_context=True, node_is_object=True ) if tree_node.type == 'classdef': if not access.is_class(): # Is an instance, not a class. tree_context, = tree_context.execute_evaluated() return MixedObject( evaluator, parent_context, compiled_object, tree_context=tree_context )