""" Implementations of standard library functions, because it's not possible to understand them with Jedi. To add a new implementation, create a function and add it to the ``_implemented`` dict at the bottom of this module. Note that this module exists only to implement very specific functionality in the standard library. The usual way to understand the standard library is the compiled module that returns the types for C-builtins. """ import collections import re from jedi import debug from jedi.evaluate.arguments import ValuesArguments from jedi.evaluate import analysis from jedi.evaluate import compiled from jedi.evaluate.context.instance import InstanceFunctionExecution, \ AbstractInstanceContext, CompiledInstance, BoundMethod, \ AnonymousInstanceFunctionExecution from jedi.evaluate.base_context import ContextualizedNode, \ NO_CONTEXTS, ContextSet from jedi.evaluate.context import ClassContext, ModuleContext from jedi.evaluate.context import iterable from jedi.evaluate.lazy_context import LazyTreeContext from jedi.evaluate.syntax_tree import is_string # Now this is all part of fake tuples in Jedi. However super doesn't work on # __init__ and __new__ doesn't work at all. So adding this to nametuples is # just the easiest way. _NAMEDTUPLE_INIT = """ def __init__(_cls, {arg_list}): 'A helper function for namedtuple.' self.__iterable = ({arg_list}) def __iter__(self): for i in self.__iterable: yield i def __getitem__(self, y): return self.__iterable[y] """ class NotInStdLib(LookupError): pass def execute(evaluator, obj, arguments): if isinstance(obj, BoundMethod): raise NotInStdLib() try: obj_name = obj.name.string_name except AttributeError: pass else: if obj.parent_context == evaluator.BUILTINS: module_name = 'builtins' elif isinstance(obj.parent_context, ModuleContext): module_name = obj.parent_context.name.string_name else: module_name = '' # for now we just support builtin functions. try: func = _implemented[module_name][obj_name] except KeyError: pass else: return func(evaluator, obj, arguments) raise NotInStdLib() def _follow_param(evaluator, arguments, index): try: key, lazy_context = list(arguments.unpack())[index] except IndexError: return NO_CONTEXTS else: return lazy_context.infer() def argument_clinic(string, want_obj=False, want_context=False, want_arguments=False): """ Works like Argument Clinic (PEP 436), to validate function params. """ clinic_args = [] allow_kwargs = False optional = False while string: # Optional arguments have to begin with a bracket. And should always be # at the end of the arguments. This is therefore not a proper argument # clinic implementation. `range()` for exmple allows an optional start # value at the beginning. match = re.match('(?:(?:(\[),? ?|, ?|)(\w+)|, ?/)\]*', string) string = string[len(match.group(0)):] if not match.group(2): # A slash -> allow named arguments allow_kwargs = True continue optional = optional or bool(match.group(1)) word = match.group(2) clinic_args.append((word, optional, allow_kwargs)) def f(func): def wrapper(evaluator, obj, arguments): debug.dbg('builtin start %s' % obj, color='MAGENTA') try: lst = list(arguments.eval_argument_clinic(clinic_args)) except ValueError: return NO_CONTEXTS else: kwargs = {} if want_context: kwargs['context'] = arguments.context if want_obj: kwargs['obj'] = obj if want_arguments: kwargs['arguments'] = arguments return func(evaluator, *lst, **kwargs) finally: debug.dbg('builtin end', color='MAGENTA') return wrapper return f @argument_clinic('iterator[, default], /') def builtins_next(evaluator, iterators, defaults): """ TODO this function is currently not used. It's a stab at implementing next in a different way than fake objects. This would be a bit more flexible. """ if evaluator.python_version[0] == 2: name = 'next' else: name = '__next__' context_set = NO_CONTEXTS for iterator in iterators: if isinstance(iterator, AbstractInstanceContext): context_set = ContextSet.from_sets( n.infer() for filter in iterator.get_filters(include_self_names=True) for n in filter.get(name) ).execute_evaluated() if context_set: return context_set return defaults @argument_clinic('object, name[, default], /') def builtins_getattr(evaluator, objects, names, defaults=None): # follow the first param for obj in objects: for name in names: if is_string(name): return obj.py__getattribute__(name.get_safe_value()) else: debug.warning('getattr called without str') continue return NO_CONTEXTS @argument_clinic('object[, bases, dict], /') def builtins_type(evaluator, objects, bases, dicts): if bases or dicts: # It's a type creation... maybe someday... return NO_CONTEXTS else: return objects.py__class__() class SuperInstance(AbstractInstanceContext): """To be used like the object ``super`` returns.""" def __init__(self, evaluator, cls): su = cls.py_mro()[1] super().__init__(evaluator, su and su[0] or self) @argument_clinic('[type[, obj]], /', want_context=True) def builtins_super(evaluator, types, objects, context): # TODO make this able to detect multiple inheritance super if isinstance(context, (InstanceFunctionExecution, AnonymousInstanceFunctionExecution)): su = context.instance.py__class__().py__bases__() return su[0].infer().execute_evaluated() return NO_CONTEXTS @argument_clinic('sequence, /', want_obj=True, want_arguments=True) def builtins_reversed(evaluator, sequences, obj, arguments): # While we could do without this variable (just by using sequences), we # want static analysis to work well. Therefore we need to generated the # values again. key, lazy_context = next(arguments.unpack()) cn = None if isinstance(lazy_context, LazyTreeContext): # TODO access private cn = ContextualizedNode(lazy_context._context, lazy_context.data) ordered = list(sequences.iterate(cn)) rev = list(reversed(ordered)) # Repack iterator values and then run it the normal way. This is # necessary, because `reversed` is a function and autocompletion # would fail in certain cases like `reversed(x).__iter__` if we # just returned the result directly. seq = iterable.FakeSequence(evaluator, 'list', rev) arguments = ValuesArguments([ContextSet(seq)]) return ContextSet(CompiledInstance(evaluator, evaluator.BUILTINS, obj, arguments)) @argument_clinic('obj, type, /', want_arguments=True) def builtins_isinstance(evaluator, objects, types, arguments): bool_results = set() for o in objects: cls = o.py__class__() try: mro_func = cls.py__mro__ except AttributeError: # This is temporary. Everything should have a class attribute in # Python?! Maybe we'll leave it here, because some numpy objects or # whatever might not. return ContextSet(compiled.create(evaluator, True), compiled.create(evaluator, False)) mro = mro_func() print(mro, types) for cls_or_tup in types: if cls_or_tup.is_class(): print(id(mro[0]), mro[0], id(cls_or_tup), cls_or_tup) bool_results.add(cls_or_tup in mro) elif cls_or_tup.name.string_name == 'tuple' \ and cls_or_tup.get_root_context() == evaluator.BUILTINS: # Check for tuples. classes = ContextSet.from_sets( lazy_context.infer() for lazy_context in cls_or_tup.iterate() ) bool_results.add(any(cls in mro for cls in classes)) else: _, lazy_context = list(arguments.unpack())[1] if isinstance(lazy_context, LazyTreeContext): node = lazy_context.data message = 'TypeError: isinstance() arg 2 must be a ' \ 'class, type, or tuple of classes and types, ' \ 'not %s.' % cls_or_tup analysis.add(lazy_context._context, 'type-error-isinstance', node, message) print(objects, types, bool_results) return ContextSet.from_iterable(compiled.create(evaluator, x) for x in bool_results) def collections_namedtuple(evaluator, obj, arguments): """ Implementation of the namedtuple function. This has to be done by processing the namedtuple class template and evaluating the result. .. note:: |jedi| only supports namedtuples on Python >2.6. """ # Namedtuples are not supported on Python 2.6 if not hasattr(collections, '_class_template'): return NO_CONTEXTS # Process arguments # TODO here we only use one of the types, we should use all. # TODO this is buggy, doesn't need to be a string name = list(_follow_param(evaluator, arguments, 0))[0].get_safe_value() _fields = list(_follow_param(evaluator, arguments, 1))[0] if isinstance(_fields, compiled.CompiledObject): fields = _fields.get_safe_value().replace(',', ' ').split() elif isinstance(_fields, iterable.AbstractIterable): fields = [ v.get_safe_value() for lazy_context in _fields.py__iter__() for v in lazy_context.infer() if is_string(v) ] else: return NO_CONTEXTS base = collections._class_template base += _NAMEDTUPLE_INIT # Build source source = base.format( typename=name, field_names=tuple(fields), num_fields=len(fields), arg_list = repr(tuple(fields)).replace("'", "")[1:-1], repr_fmt=', '.join(collections._repr_template.format(name=name) for name in fields), field_defs='\n'.join(collections._field_template.format(index=index, name=name) for index, name in enumerate(fields)) ) # Parse source module = evaluator.grammar.parse(source) generated_class = next(module.iter_classdefs()) parent_context = ModuleContext(evaluator, module, '') return ContextSet(ClassContext(evaluator, parent_context, generated_class)) @argument_clinic('first, /') def _return_first_param(evaluator, firsts): return firsts _implemented = { 'builtins': { 'getattr': builtins_getattr, 'type': builtins_type, 'super': builtins_super, 'reversed': builtins_reversed, 'isinstance': builtins_isinstance, }, 'copy': { 'copy': _return_first_param, 'deepcopy': _return_first_param, }, 'json': { 'load': lambda *args: NO_CONTEXTS, 'loads': lambda *args: NO_CONTEXTS, }, 'collections': { 'namedtuple': collections_namedtuple, }, }