1
0
forked from VimPlug/jedi
Files
jedi-fork/jedi/common/value.py
Peter Law 3c7621049c Extract annotation inference onto annotation classes
This removes the _infer_type_vars util in favour of a polymorphic
implementation, removing the conditional checks on the type of
the annotation instance.

While for the moment this creates some circular imports, further
refactoring to follow should be able to remove those.
2020-03-22 15:29:11 +00:00

114 lines
3.7 KiB
Python

class BaseValue(object):
def __init__(self, inference_state, parent_context=None):
self.inference_state = inference_state
self.parent_context = parent_context
def get_root_context(self):
value = self
while True:
if value.parent_context is None:
return value
value = value.parent_context
def infer_type_vars(self, value_set, is_class_value=False):
"""
When the current instance represents a type annotation, this method
tries to find information about undefined type vars and returns a dict
from type var name to value set.
This is for example important to understand what `iter([1])` returns.
According to typeshed, `iter` returns an `Iterator[_T]`:
def iter(iterable: Iterable[_T]) -> Iterator[_T]: ...
This functions would generate `int` for `_T` in this case, because it
unpacks the `Iterable`.
Parameters
----------
`self`: represents the annotation of the current parameter to infer the
value for. In the above example, this would initially be the
`Iterable[_T]` of the `iterable` parameter and then, when recursing,
just the `_T` generic parameter.
`value_set`: represents the actual argument passed to the parameter
we're inferrined for, or (for recursive calls) their types. In the
above example this would first be the representation of the list
`[1]` and then, when recursing, just of `1`.
`is_class_value`: tells us whether or not to treat the `value_set` as
representing the instances or types being passed, which is neccesary
to correctly cope with `Type[T]` annotations. When it is True, this
means that we are being called with a nested portion of an
annotation and that the `value_set` represents the types of the
arguments, rather than their actual instances. Note: not all
recursive calls will neccesarily set this to True.
"""
return {}
class BaseValueSet(object):
def __init__(self, iterable):
self._set = frozenset(iterable)
for value in iterable:
assert not isinstance(value, BaseValueSet)
@classmethod
def _from_frozen_set(cls, frozenset_):
self = cls.__new__(cls)
self._set = frozenset_
return self
@classmethod
def from_sets(cls, sets):
"""
Used to work with an iterable of set.
"""
aggregated = set()
for set_ in sets:
if isinstance(set_, BaseValueSet):
aggregated |= set_._set
else:
aggregated |= frozenset(set_)
return cls._from_frozen_set(frozenset(aggregated))
def __or__(self, other):
return self._from_frozen_set(self._set | other._set)
def __and__(self, other):
return self._from_frozen_set(self._set & other._set)
def __iter__(self):
for element in self._set:
yield element
def __bool__(self):
return bool(self._set)
def __len__(self):
return len(self._set)
def __repr__(self):
return 'S{%s}' % (', '.join(str(s) for s in self._set))
def filter(self, filter_func):
return self.__class__(filter(filter_func, self._set))
def __getattr__(self, name):
def mapper(*args, **kwargs):
return self.from_sets(
getattr(value, name)(*args, **kwargs)
for value in self._set
)
return mapper
def __eq__(self, other):
return self._set == other._set
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self._set)