1
0
forked from VimPlug/jedi
Files
jedi-fork/jedi/cache.py
2013-03-19 20:33:15 +01:00

291 lines
8.9 KiB
Python

"""
This caching is very important for speed and memory optimizations. There's
nothing really spectacular, just some decorators. The following cache types are
available:
- module caching (`load_module` and `save_module`), which uses pickle and is
really important to assure low load times of modules like ``numpy``.
- the popular ``memoize_default`` works like a typical memoize and returns the
default otherwise.
- ``CachedMetaClass`` uses ``memoize_default`` to do the same with classes.
- ``time_cache`` can be used to cache something for just a limited time span,
which can be useful if there's user interaction and the user cannot react
faster than a certain time.
This module is one of the reasons why |jedi| is not thread-safe. As you can see
there are global variables, which are holding the cache information. Some of
these variables are being cleaned after every API usage.
"""
from __future__ import with_statement
import time
import os
import sys
try:
import cPickle as pickle
except:
import pickle
from _compatibility import json
import settings
import debug
# memoize caches will be deleted after every action
memoize_caches = []
time_caches = []
star_import_cache = {}
# for fast_parser, should not be deleted
parser_cache = {}
class ParserCacheItem(object):
def __init__(self, parser, change_time=None):
self.parser = parser
if change_time is None:
change_time = time.time()
self.change_time = change_time
def clear_caches(delete_all=False):
""" Jedi caches many things, that should be completed after each completion
finishes.
:param delete_all: Deletes also the cache that is normally not deleted,
like parser cache, which is important for faster parsing.
"""
global memoize_caches, time_caches
# memorize_caches must never be deleted, because the dicts will get lost in
# the wrappers.
for m in memoize_caches:
m.clear()
if delete_all:
time_caches = []
star_import_cache.clear()
parser_cache.clear()
else:
# normally just kill the expired entries, not all
for tc in time_caches:
# check time_cache for expired entries
for key, (t, value) in list(tc.items()):
if t < time.time():
# delete expired entries
del tc[key]
def memoize_default(default=None, cache=memoize_caches):
""" This is a typical memoization decorator, BUT there is one difference:
To prevent recursion it sets defaults.
Preventing recursion is in this case the much bigger use than speed. I
don't think, that there is a big speed difference, but there are many cases
where recursion could happen (think about a = b; b = a).
"""
def func(function):
memo = {}
cache.append(memo)
def wrapper(*args, **kwargs):
key = (args, frozenset(kwargs.items()))
if key in memo:
return memo[key]
else:
memo[key] = default
rv = function(*args, **kwargs)
memo[key] = rv
return rv
return wrapper
return func
class CachedMetaClass(type):
""" This is basically almost the same than the decorator above, it just
caches class initializations. I haven't found any other way, so I do it
with meta classes.
"""
@memoize_default()
def __call__(self, *args, **kwargs):
return super(CachedMetaClass, self).__call__(*args, **kwargs)
def time_cache(time_add_setting):
""" This decorator works as follows: Call it with a setting and after that
use the function with a callable that returns the key.
But: This function is only called if the key is not available. After a
certain amount of time (`time_add_setting`) the cache is invalid.
"""
def _temp(key_func):
dct = {}
time_caches.append(dct)
def wrapper(optional_callable, *args, **kwargs):
key = key_func(*args, **kwargs)
value = None
if key in dct:
expiry, value = dct[key]
if expiry > time.time():
return value
value = optional_callable()
time_add = getattr(settings, time_add_setting)
if key is not None:
dct[key] = time.time() + time_add, value
return value
return wrapper
return _temp
@time_cache("function_definition_validity")
def cache_function_definition(stmt):
module_path = stmt.get_parent_until().path
return None if module_path is None else (module_path, stmt.start_pos)
def cache_star_import(func):
def wrapper(scope, *args, **kwargs):
try:
mods = star_import_cache[scope]
if mods[0] + settings.star_import_cache_validity > time.time():
return mods[1]
except KeyError:
pass
# cache is too old and therefore invalid or not available
invalidate_star_import_cache(scope)
mods = func(scope, *args, **kwargs)
star_import_cache[scope] = time.time(), mods
return mods
return wrapper
def invalidate_star_import_cache(module, only_main=False):
""" Important if some new modules are being reparsed """
try:
t, mods = star_import_cache[module]
del star_import_cache[module]
for m in mods:
invalidate_star_import_cache(m, only_main=True)
except KeyError:
pass
if not only_main:
# We need a list here because otherwise the list is being changed
# during the iteration in py3k: iteritems -> items.
for key, (t, mods) in list(star_import_cache.items()):
if module in mods:
invalidate_star_import_cache(key)
def load_module(path, name):
"""
Returns the module or None, if it fails.
"""
if path is None and name is None:
return None
tim = os.path.getmtime(path) if path else None
n = name if path is None else path
try:
parser_cache_item = parser_cache[n]
if not path or tim <= parser_cache_item.change_time:
return parser_cache_item.parser
else:
# In case there is already a module cached and this module
# has to be reparsed, we also need to invalidate the import
# caches.
invalidate_star_import_cache(parser_cache_item.parser.module)
except KeyError:
if settings.use_filesystem_cache:
return ModulePickling.load_module(n, tim)
def save_module(path, name, parser, pickling=True):
try:
p_time = None if not path else os.path.getmtime(path)
except OSError:
p_time = None
pickling = False
n = name if path is None else path
item = ParserCacheItem(parser, p_time)
parser_cache[n] = item
if settings.use_filesystem_cache and pickling:
ModulePickling.save_module(n, item)
class _ModulePickling(object):
def __init__(self):
self.__index = None
self.py_version = '%s.%s' % sys.version_info[:2]
def load_module(self, path, original_changed_time):
try:
pickle_changed_time = self._index[self.py_version][path]
except KeyError:
return None
if original_changed_time is not None \
and pickle_changed_time < original_changed_time:
# the pickle file is outdated
return None
with open(self._get_hashed_path(path), 'rb') as f:
parser_cache_item = pickle.load(f)
debug.dbg('pickle loaded', path)
parser_cache[path] = parser_cache_item
return parser_cache_item.parser
def save_module(self, path, parser_cache_item):
self.__index = None
try:
files = self._index[self.py_version]
except KeyError:
files = {}
self._index[self.py_version] = files
with open(self._get_hashed_path(path), 'wb') as f:
pickle.dump(parser_cache_item, f, pickle.HIGHEST_PROTOCOL)
files[path] = parser_cache_item.change_time
self._flush_index()
@property
def _index(self):
if self.__index is None:
try:
with open(self._get_path('index.json')) as f:
self.__index = json.load(f)
except IOError:
self.__index = {}
return self.__index
def _remove_old_modules(self):
# TODO use
change = False
if change:
self._flush_index(self)
self._index # reload index
def _flush_index(self):
with open(self._get_path('index.json'), 'w') as f:
json.dump(self._index, f)
self.__index = None
def _get_hashed_path(self, path):
return self._get_path('%s_%s.pkl' % (self.py_version, hash(path)))
def _get_path(self, file):
dir = settings.cache_directory
if not os.path.exists(dir):
os.makedirs(dir)
return dir + os.path.sep + file
# is a singleton
ModulePickling = _ModulePickling()