1
0
forked from VimPlug/jedi
Files
jedi-fork/jedi/parser/tree.py
2017-01-29 00:42:09 +01:00

1668 lines
50 KiB
Python

"""
If you know what an abstract syntax tree (AST) is, you'll see that this module
is pretty much that. The classes represent syntax elements like functions and
imports.
This is the "business logic" part of the parser. There's a lot of logic here
that makes it easier for Jedi (and other libraries to deal with a Python syntax
tree.
By using `get_code` on a module, you can get back the 1-to-1 representation of
the input given to the parser. This is important if you are using refactoring.
The easiest way to play with this module is to use :class:`parsing.Parser`.
:attr:`parsing.Parser.module` holds an instance of :class:`Module`:
>>> from jedi._compatibility import u
>>> from jedi.parser import ParserWithRecovery, load_grammar
>>> parser = ParserWithRecovery(load_grammar(), u('import os'), 'example.py')
>>> submodule = parser.module
>>> submodule
<Module: example.py@1-1>
Any subclasses of :class:`Scope`, including :class:`Module` has an attribute
:attr:`imports <Scope.imports>`:
>>> submodule.imports
[<ImportName: import os@1,0>]
See also :attr:`Scope.subscopes` and :attr:`Scope.statements`.
For static analysis purposes there exists a method called
``nodes_to_execute`` on all nodes and leaves. It's documented in the static
anaylsis documentation.
"""
import os
import re
from inspect import cleandoc
from itertools import chain
import textwrap
import abc
from jedi._compatibility import (Python3Method, encoding, is_py3, utf8_repr,
literal_eval, unicode)
def _safe_literal_eval(value):
first_two = value[:2].lower()
if first_two[0] == 'f' or first_two in ('fr', 'rf'):
# literal_eval is not able to resovle f literals. We have to do that
# manually in a later stage
return ''
try:
return literal_eval(value)
except SyntaxError:
# It's possible to create syntax errors with literals like rb'' in
# Python 2. This should not be possible and in that case just return an
# empty string.
# Before Python 3.3 there was a more strict definition in which order
# you could define literals.
return ''
def search_ancestor(node, node_type_or_types):
if not isinstance(node_type_or_types, (list, tuple)):
node_type_or_types = (node_type_or_types,)
while True:
node = node.parent
if node is None or node.type in node_type_or_types:
return node
class DocstringMixin(object):
__slots__ = ()
@property
def raw_doc(self):
""" Returns a cleaned version of the docstring token. """
if isinstance(self, Module):
node = self.children[0]
elif isinstance(self, ClassOrFunc):
node = self.children[self.children.index(':') + 1]
if node.type == 'suite': # Normally a suite
node = node.children[1] # -> NEWLINE stmt
else: # ExprStmt
simple_stmt = self.parent
c = simple_stmt.parent.children
index = c.index(simple_stmt)
if not index:
return ''
node = c[index - 1]
if node.type == 'simple_stmt':
node = node.children[0]
if node.type == 'string':
# TODO We have to check next leaves until there are no new
# leaves anymore that might be part of the docstring. A
# docstring can also look like this: ``'foo' 'bar'
# Returns a literal cleaned version of the ``Token``.
cleaned = cleandoc(_safe_literal_eval(node.value))
# Since we want the docstr output to be always unicode, just
# force it.
if is_py3 or isinstance(cleaned, unicode):
return cleaned
else:
return unicode(cleaned, 'UTF-8', 'replace')
return ''
class Base(object):
"""
This is just here to have an isinstance check, which is also used on
evaluate classes. But since they have sometimes a special type of
delegation, it is important for those classes to override this method.
I know that there is a chance to do such things with __instancecheck__, but
since Python 2.5 doesn't support it, I decided to do it this way.
"""
__slots__ = ()
def isinstance(self, *cls):
return isinstance(self, cls)
def get_root_node(self):
scope = self
while scope.parent is not None:
scope = scope.parent
return scope
@Python3Method
def get_parent_until(self, classes=(), reverse=False,
include_current=True):
"""
Searches the parent "chain" until the object is an instance of
classes. If classes is empty return the last parent in the chain
(is without a parent).
"""
if type(classes) not in (tuple, list):
classes = (classes,)
scope = self if include_current else self.parent
while scope.parent is not None:
# TODO why if classes?
if classes and reverse != scope.isinstance(*classes):
break
scope = scope.parent
return scope
def get_parent_scope(self, include_flows=False):
"""
Returns the underlying scope.
"""
scope = self.parent
while scope is not None:
if include_flows and isinstance(scope, Flow):
return scope
if scope.is_scope():
break
scope = scope.parent
return scope
def get_definition(self):
if self.type in ('newline', 'endmarker'):
raise ValueError('Cannot get the indentation of whitespace or indentation.')
scope = self
while scope.parent is not None:
parent = scope.parent
if scope.isinstance(Node, Leaf) and parent.type != 'simple_stmt':
if scope.type == 'testlist_comp':
try:
if isinstance(scope.children[1], CompFor):
return scope.children[1]
except IndexError:
pass
scope = parent
else:
break
return scope
def assignment_indexes(self):
"""
Returns an array of tuple(int, node) of the indexes that are used in
tuple assignments.
For example if the name is ``y`` in the following code::
x, (y, z) = 2, ''
would result in ``[(1, xyz_node), (0, yz_node)]``.
"""
indexes = []
node = self.parent
compare = self
while node is not None:
if node.type in ('testlist_comp', 'testlist_star_expr', 'exprlist'):
for i, child in enumerate(node.children):
if child == compare:
indexes.insert(0, (int(i / 2), node))
break
else:
raise LookupError("Couldn't find the assignment.")
elif isinstance(node, (ExprStmt, CompFor)):
break
compare = node
node = node.parent
return indexes
def is_scope(self):
# Default is not being a scope. Just inherit from Scope.
return False
@abc.abstractmethod
def nodes_to_execute(self, last_added=False):
raise NotImplementedError()
def get_next_sibling(self):
"""
The node immediately following the invocant in their parent's children
list. If the invocant does not have a next sibling, it is None
"""
# Can't use index(); we need to test by identity
for i, child in enumerate(self.parent.children):
if child is self:
try:
return self.parent.children[i + 1]
except IndexError:
return None
def get_previous_sibling(self):
"""
The node/leaf immediately preceding the invocant in their parent's
children list. If the invocant does not have a previous sibling, it is
None.
"""
# Can't use index(); we need to test by identity
for i, child in enumerate(self.parent.children):
if child is self:
if i == 0:
return None
return self.parent.children[i - 1]
def get_previous_leaf(self):
"""
Returns the previous leaf in the parser tree.
Raises an IndexError if it's the first element.
"""
node = self
while True:
c = node.parent.children
i = c.index(node)
if i == 0:
node = node.parent
if node.parent is None:
raise IndexError('Cannot access the previous element of the first one.')
else:
node = c[i - 1]
break
while True:
try:
node = node.children[-1]
except AttributeError: # A Leaf doesn't have children.
return node
def get_next_leaf(self):
"""
Returns the previous leaf in the parser tree.
Raises an IndexError if it's the last element.
"""
node = self
while True:
c = node.parent.children
i = c.index(node)
if i == len(c) - 1:
node = node.parent
if node.parent is None:
raise IndexError('Cannot access the next element of the last one.')
else:
node = c[i + 1]
break
while True:
try:
node = node.children[0]
except AttributeError: # A Leaf doesn't have children.
return node
class Leaf(Base):
__slots__ = ('value', 'parent', 'line', 'indent', 'prefix')
def __init__(self, value, start_pos, prefix=''):
self.value = value
self.start_pos = start_pos
self.prefix = prefix
self.parent = None
@property
def start_pos(self):
return self.line, self.indent
@start_pos.setter
def start_pos(self, value):
self.line = value[0]
self.indent = value[1]
def get_start_pos_of_prefix(self):
try:
return self.get_previous_leaf().end_pos
except IndexError:
return self.line - self.prefix.count('\n'), 0 # It's the first leaf.
@property
def end_pos(self):
return self.line, self.indent + len(self.value)
def move(self, line_offset):
self.line += line_offset
def first_leaf(self):
return self
def last_leaf(self):
return self
def get_code(self, normalized=False, include_prefix=True):
if normalized:
return self.value
if include_prefix:
return self.prefix + self.value
else:
return self.value
def nodes_to_execute(self, last_added=False):
return []
@utf8_repr
def __repr__(self):
return "<%s: %s>" % (type(self).__name__, self.value)
class LeafWithNewLines(Leaf):
__slots__ = ()
@property
def end_pos(self):
"""
Literals and whitespace end_pos are more complicated than normal
end_pos, because the containing newlines may change the indexes.
"""
lines = self.value.split('\n')
end_pos_line = self.line + len(lines) - 1
# Check for multiline token
if self.line == end_pos_line:
end_pos_indent = self.indent + len(lines[-1])
else:
end_pos_indent = len(lines[-1])
return end_pos_line, end_pos_indent
@utf8_repr
def __repr__(self):
return "<%s: %r>" % (type(self).__name__, self.value)
class EndMarker(Leaf):
__slots__ = ()
type = 'endmarker'
class Newline(LeafWithNewLines):
"""Contains NEWLINE and ENDMARKER tokens."""
__slots__ = ()
type = 'newline'
@utf8_repr
def __repr__(self):
return "<%s: %s>" % (type(self).__name__, repr(self.value))
class Name(Leaf):
"""
A string. Sometimes it is important to know if the string belongs to a name
or not.
"""
type = 'name'
__slots__ = ()
def __str__(self):
return self.value
def __unicode__(self):
return self.value
def __repr__(self):
return "<%s: %s@%s,%s>" % (type(self).__name__, self.value,
self.line, self.indent)
def is_definition(self):
if self.parent.type in ('power', 'atom_expr'):
# In `self.x = 3` self is not a definition, but x is.
return False
stmt = self.get_definition()
if stmt.type in ('funcdef', 'classdef', 'file_input', 'param'):
return self == stmt.name
elif stmt.type == 'for_stmt':
return self.start_pos < stmt.children[2].start_pos
elif stmt.type == 'try_stmt':
return self.get_previous_sibling() == 'as'
else:
return stmt.type in ('expr_stmt', 'import_name', 'import_from',
'comp_for', 'with_stmt') \
and self in stmt.get_defined_names()
def nodes_to_execute(self, last_added=False):
if last_added is False:
yield self
class Literal(LeafWithNewLines):
__slots__ = ()
def eval(self):
return _safe_literal_eval(self.value)
class Number(Literal):
type = 'number'
__slots__ = ()
class String(Literal):
type = 'string'
__slots__ = ()
class Operator(Leaf):
type = 'operator'
__slots__ = ()
def __str__(self):
return self.value
def __eq__(self, other):
"""
Make comparisons with strings easy.
Improves the readability of the parser.
"""
if isinstance(other, Operator):
return self is other
else:
return self.value == other
def __ne__(self, other):
"""Python 2 compatibility."""
return self.value != other
def __hash__(self):
return hash(self.value)
class Keyword(Leaf):
type = 'keyword'
__slots__ = ()
def __eq__(self, other):
"""
Make comparisons with strings easy.
Improves the readability of the parser.
"""
if isinstance(other, Keyword):
return self is other
return self.value == other
def __ne__(self, other):
"""Python 2 compatibility."""
return not self.__eq__(other)
def __hash__(self):
return hash(self.value)
class BaseNode(Base):
"""
The super class for Scope, Import, Name and Statement. Every object in
the parser tree inherits from this class.
"""
__slots__ = ('children', 'parent')
type = None
def __init__(self, children):
"""
Initialize :class:`BaseNode`.
:param children: The module in which this Python object locates.
"""
for c in children:
c.parent = self
self.children = children
self.parent = None
def move(self, line_offset):
"""
Move the Node's start_pos.
"""
for c in self.children:
c.move(line_offset)
@property
def start_pos(self):
return self.children[0].start_pos
def get_start_pos_of_prefix(self):
return self.children[0].get_start_pos_of_prefix()
@property
def end_pos(self):
return self.children[-1].end_pos
def _get_code_for_children(self, children, normalized, include_prefix):
# TODO implement normalized (depending on context).
if include_prefix:
return "".join(c.get_code(normalized) for c in children)
else:
first = children[0].get_code(include_prefix=False)
return first + "".join(c.get_code(normalized) for c in children[1:])
def get_code(self, normalized=False, include_prefix=True):
return self._get_code_for_children(self.children, normalized, include_prefix)
@Python3Method
def name_for_position(self, position):
for c in self.children:
if isinstance(c, Leaf):
if isinstance(c, Name) and c.start_pos <= position <= c.end_pos:
return c
else:
result = c.name_for_position(position)
if result is not None:
return result
return None
def get_leaf_for_position(self, position, include_prefixes=False):
def binary_search(lower, upper):
if lower == upper:
element = self.children[lower]
if not include_prefixes and position < element.start_pos:
# We're on a prefix.
return None
# In case we have prefixes, a leaf always matches
try:
return element.get_leaf_for_position(position, include_prefixes)
except AttributeError:
return element
index = int((lower + upper) / 2)
element = self.children[index]
if position <= element.end_pos:
return binary_search(lower, index)
else:
return binary_search(index + 1, upper)
if not ((1, 0) <= position <= self.children[-1].end_pos):
raise ValueError('Please provide a position that exists within this node.')
return binary_search(0, len(self.children) - 1)
@Python3Method
def get_statement_for_position(self, pos):
for c in self.children:
if c.start_pos <= pos <= c.end_pos:
if c.type not in ('decorated', 'simple_stmt', 'suite') \
and not isinstance(c, (Flow, ClassOrFunc)):
return c
else:
try:
return c.get_statement_for_position(pos)
except AttributeError:
pass # Must be a non-scope
return None
def first_leaf(self):
try:
return self.children[0].first_leaf()
except AttributeError:
return self.children[0]
def get_next_leaf(self):
"""
Raises an IndexError if it's the last node. (Would be the module)
"""
c = self.parent.children
index = c.index(self)
if index == len(c) - 1:
# TODO WTF? recursion?
return self.get_next_leaf()
else:
return c[index + 1]
def last_leaf(self):
return self.children[-1].last_leaf()
def get_following_comment_same_line(self):
"""
returns (as string) any comment that appears on the same line,
after the node, including the #
"""
try:
if self.isinstance(ForStmt):
whitespace = self.children[5].first_leaf().prefix
elif self.isinstance(WithStmt):
whitespace = self.children[3].first_leaf().prefix
else:
whitespace = self.last_leaf().get_next_leaf().prefix
except AttributeError:
return None
except ValueError:
# TODO in some particular cases, the tree doesn't seem to be linked
# correctly
return None
if "#" not in whitespace:
return None
comment = whitespace[whitespace.index("#"):]
if "\r" in comment:
comment = comment[:comment.index("\r")]
if "\n" in comment:
comment = comment[:comment.index("\n")]
return comment
@utf8_repr
def __repr__(self):
code = self.get_code().replace('\n', ' ').strip()
if not is_py3:
code = code.encode(encoding, 'replace')
return "<%s: %s@%s,%s>" % \
(type(self).__name__, code, self.start_pos[0], self.start_pos[1])
class Node(BaseNode):
"""Concrete implementation for interior nodes."""
__slots__ = ('type',)
_IGNORE_EXECUTE_NODES = set([
'suite', 'subscriptlist', 'subscript', 'simple_stmt', 'sliceop',
'testlist_comp', 'dictorsetmaker', 'trailer', 'decorators',
'decorated', 'arglist', 'argument', 'exprlist', 'testlist',
'testlist_safe', 'testlist1'
])
def __init__(self, type, children):
"""
Initializer.
Takes a type constant (a symbol number >= 256), a sequence of
child nodes, and an optional context keyword argument.
As a side effect, the parent pointers of the children are updated.
"""
super(Node, self).__init__(children)
self.type = type
def nodes_to_execute(self, last_added=False):
"""
For static analysis.
"""
result = []
if self.type not in Node._IGNORE_EXECUTE_NODES and not last_added:
result.append(self)
last_added = True
for child in self.children:
result += child.nodes_to_execute(last_added)
return result
def __repr__(self):
return "%s(%s, %r)" % (self.__class__.__name__, self.type, self.children)
class ErrorNode(BaseNode):
"""
TODO doc
"""
__slots__ = ()
type = 'error_node'
def nodes_to_execute(self, last_added=False):
return []
class ErrorLeaf(LeafWithNewLines):
"""
TODO doc
"""
__slots__ = ('original_type')
type = 'error_leaf'
def __init__(self, original_type, value, start_pos, prefix=''):
super(ErrorLeaf, self).__init__(value, start_pos, prefix)
self.original_type = original_type
def __repr__(self):
return "<%s: %s:%s, %s)>" % \
(type(self).__name__, self.original_type, repr(self.value), self.start_pos)
class Scope(BaseNode, DocstringMixin):
"""
Super class for the parser tree, which represents the state of a python
text file.
A Scope manages and owns its subscopes, which are classes and functions, as
well as variables and imports. It is used to access the structure of python
files.
:param start_pos: The position (line and column) of the scope.
:type start_pos: tuple(int, int)
"""
__slots__ = ()
def __init__(self, children):
super(Scope, self).__init__(children)
@property
def returns(self):
# Needed here for fast_parser, because the fast_parser splits and
# returns will be in "normal" modules.
return self._search_in_scope(ReturnStmt)
@property
def subscopes(self):
return self._search_in_scope(Scope)
@property
def flows(self):
return self._search_in_scope(Flow)
@property
def imports(self):
return self._search_in_scope(Import)
@Python3Method
def _search_in_scope(self, typ):
def scan(children):
elements = []
for element in children:
if isinstance(element, typ):
elements.append(element)
if element.type in ('suite', 'simple_stmt', 'decorated') \
or isinstance(element, Flow):
elements += scan(element.children)
return elements
return scan(self.children)
@property
def statements(self):
return self._search_in_scope((ExprStmt, KeywordStatement))
def is_scope(self):
return True
def __repr__(self):
try:
name = self.path
except AttributeError:
try:
name = self.name
except AttributeError:
name = self.command
return "<%s: %s@%s-%s>" % (type(self).__name__, name,
self.start_pos[0], self.end_pos[0])
def walk(self):
yield self
for s in self.subscopes:
for scope in s.walk():
yield scope
for r in self.statements:
while isinstance(r, Flow):
for scope in r.walk():
yield scope
r = r.next
class Module(Scope):
"""
The top scope, which is always a module.
Depending on the underlying parser this may be a full module or just a part
of a module.
"""
__slots__ = ('path', 'used_names', '_name')
type = 'file_input'
def __init__(self, children):
"""
Initialize :class:`Module`.
:type path: str
:arg path: File path to this module.
.. todo:: Document `top_module`.
"""
super(Module, self).__init__(children)
self.path = None # Set later.
@property
def name(self):
""" This is used for the goto functions. """
if self.path is None:
string = '' # no path -> empty name
else:
sep = (re.escape(os.path.sep),) * 2
r = re.search(r'([^%s]*?)(%s__init__)?(\.py|\.so)?$' % sep, self.path)
# Remove PEP 3149 names
string = re.sub('\.[a-z]+-\d{2}[mud]{0,3}$', '', r.group(1))
# Positions are not real, but a module starts at (1, 0)
p = (1, 0)
name = Name(string, p)
name.parent = self
return name
@property
def has_explicit_absolute_import(self):
"""
Checks if imports in this module are explicitly absolute, i.e. there
is a ``__future__`` import.
"""
# TODO this is a strange scan and not fully correct. I think Python's
# parser does it in a different way and scans for the first
# statement/import with a tokenizer (to check for syntax changes like
# the future print statement).
for imp in self.imports:
if imp.type == 'import_from' and imp.level == 0:
for path in imp.paths():
if [str(name) for name in path] == ['__future__', 'absolute_import']:
return True
return False
def nodes_to_execute(self, last_added=False):
# Yield itself, class needs to be executed for decorator checks.
result = []
for child in self.children:
result += child.nodes_to_execute()
return result
class Decorator(BaseNode):
type = 'decorator'
__slots__ = ()
def nodes_to_execute(self, last_added=False):
if self.children[-2] == ')':
node = self.children[-3]
if node != '(':
return node.nodes_to_execute()
return []
class ClassOrFunc(Scope):
__slots__ = ()
@property
def name(self):
return self.children[1]
def get_decorators(self):
decorated = self.parent
if decorated.type == 'decorated':
if decorated.children[0].type == 'decorators':
return decorated.children[0].children
else:
return decorated.children[:1]
else:
return []
class Class(ClassOrFunc):
"""
Used to store the parsed contents of a python class.
:param name: The Class name.
:type name: str
:param supers: The super classes of a Class.
:type supers: list
:param start_pos: The start position (line, column) of the class.
:type start_pos: tuple(int, int)
"""
type = 'classdef'
__slots__ = ()
def __init__(self, children):
super(Class, self).__init__(children)
def get_super_arglist(self):
if self.children[2] != '(': # Has no parentheses
return None
else:
if self.children[3] == ')': # Empty parentheses
return None
else:
return self.children[3]
@property
def doc(self):
"""
Return a document string including call signature of __init__.
"""
docstr = self.raw_doc
for sub in self.subscopes:
if str(sub.name) == '__init__':
return '%s\n\n%s' % (
sub.get_call_signature(func_name=self.name), docstr)
return docstr
def nodes_to_execute(self, last_added=False):
# Yield itself, class needs to be executed for decorator checks.
yield self
# Super arguments.
arglist = self.get_super_arglist()
try:
children = arglist.children
except AttributeError:
if arglist is not None:
for node_to_execute in arglist.nodes_to_execute():
yield node_to_execute
else:
for argument in children:
if argument.type == 'argument':
# metaclass= or list comprehension or */**
raise NotImplementedError('Metaclasses not implemented')
else:
for node_to_execute in argument.nodes_to_execute():
yield node_to_execute
# care for the class suite:
for node in self.children[self.children.index(':'):]:
# This could be easier without the fast parser. But we need to find
# the position of the colon, because everything after it can be a
# part of the class, not just its suite.
for node_to_execute in node.nodes_to_execute():
yield node_to_execute
def _create_params(parent, argslist_list):
"""
`argslist_list` is a list that can contain an argslist as a first item, but
most not. It's basically the items between the parameter brackets (which is
at most one item).
This function modifies the parser structure. It generates `Param` objects
from the normal ast. Those param objects do not exist in a normal ast, but
make the evaluation of the ast tree so much easier.
You could also say that this function replaces the argslist node with a
list of Param objects.
"""
def check_python2_nested_param(node):
"""
Python 2 allows params to look like ``def x(a, (b, c))``, which is
basically a way of unpacking tuples in params. Python 3 has ditched
this behavior. Jedi currently just ignores those constructs.
"""
return node.type == 'tfpdef' and node.children[0] == '('
try:
first = argslist_list[0]
except IndexError:
return []
if first.type in ('name', 'tfpdef'):
if check_python2_nested_param(first):
return [first]
else:
return [Param([first], parent)]
elif first == '*':
return [first]
else: # argslist is a `typedargslist` or a `varargslist`.
children = first.children
new_children = []
start = 0
# Start with offset 1, because the end is higher.
for end, child in enumerate(children + [None], 1):
if child is None or child == ',':
param_children = children[start:end]
if param_children: # Could as well be comma and then end.
if check_python2_nested_param(param_children[0]):
new_children += param_children
elif param_children[0] == '*' and param_children[1] == ',':
new_children += param_children
else:
new_children.append(Param(param_children, parent))
start = end
return new_children
class Function(ClassOrFunc):
"""
Used to store the parsed contents of a python function.
Children:
0) <Keyword: def>
1) <Name>
2) parameter list (including open-paren and close-paren <Operator>s)
3) <Operator: :>
4) Node() representing function body
5) ??
6) annotation (if present)
"""
type = 'funcdef'
def __init__(self, children):
super(Function, self).__init__(children)
parameters = self.children[2] # After `def foo`
parameters.children[1:-1] = _create_params(parameters, parameters.children[1:-1])
@property
def params(self):
return [p for p in self.children[2].children if p.type == 'param']
@property
def name(self):
return self.children[1] # First token after `def`
@property
def yields(self):
# TODO This is incorrect, yields are also possible in a statement.
return self._search_in_scope(YieldExpr)
def is_generator(self):
return bool(self.yields)
def annotation(self):
try:
if self.children[3] == "->":
return self.children[4]
assert self.children[3] == ":"
return None
except IndexError:
return None
def get_call_signature(self, width=72, func_name=None):
"""
Generate call signature of this function.
:param width: Fold lines if a line is longer than this value.
:type width: int
:arg func_name: Override function name when given.
:type func_name: str
:rtype: str
"""
func_name = func_name or self.name
code = unicode(func_name) + self._get_paramlist_code()
return '\n'.join(textwrap.wrap(code, width))
def _get_paramlist_code(self):
return self.children[2].get_code()
@property
def doc(self):
""" Return a document string including call signature. """
docstr = self.raw_doc
return '%s\n\n%s' % (self.get_call_signature(), docstr)
def nodes_to_execute(self, last_added=False):
# Yield itself, functions needs to be executed for decorator checks.
yield self
for param in self.params:
if param.default is not None:
yield param.default
# care for the function suite:
for node in self.children[4:]:
# This could be easier without the fast parser. The fast parser
# allows that the 4th position is empty or that there's even a
# fifth element (another function/class). So just scan everything
# after colon.
for node_to_execute in node.nodes_to_execute():
yield node_to_execute
class Lambda(Function):
"""
Lambdas are basically trimmed functions, so give it the same interface.
Children:
0) <Keyword: lambda>
*) <Param x> for each argument x
-2) <Operator: :>
-1) Node() representing body
"""
type = 'lambda'
__slots__ = ()
def __init__(self, children):
# We don't want to call the Function constructor, call its parent.
super(Function, self).__init__(children)
lst = self.children[1:-2] # Everything between `lambda` and the `:` operator is a parameter.
self.children[1:-2] = _create_params(self, lst)
@property
def name(self):
# Borrow the position of the <Keyword: lambda> AST node.
return Name('<lambda>', self.children[0].start_pos)
def _get_paramlist_code(self):
return '(' + ''.join(param.get_code() for param in self.params).strip() + ')'
@property
def params(self):
return self.children[1:-2]
def is_generator(self):
return False
def annotation(self):
# lambda functions do not support annotations
return None
@property
def yields(self):
return []
def nodes_to_execute(self, last_added=False):
for param in self.params:
if param.default is not None:
yield param.default
# Care for the lambda test (last child):
for node_to_execute in self.children[-1].nodes_to_execute():
yield node_to_execute
def __repr__(self):
return "<%s@%s>" % (self.__class__.__name__, self.start_pos)
class Flow(BaseNode):
__slots__ = ()
FLOW_KEYWORDS = (
'try', 'except', 'finally', 'else', 'if', 'elif', 'with', 'for', 'while'
)
def nodes_to_execute(self, last_added=False):
for child in self.children:
for node_to_execute in child.nodes_to_execute():
yield node_to_execute
def get_branch_keyword(self, node):
start_pos = node.start_pos
if not (self.start_pos < start_pos <= self.end_pos):
raise ValueError('The node is not part of the flow.')
keyword = None
for i, child in enumerate(self.children):
if start_pos < child.start_pos:
return keyword
first_leaf = child.first_leaf()
if first_leaf in self.FLOW_KEYWORDS:
keyword = first_leaf
return 0
class IfStmt(Flow):
type = 'if_stmt'
__slots__ = ()
def check_nodes(self):
"""
Returns all the `test` nodes that are defined as x, here:
if x:
pass
elif x:
pass
"""
for i, c in enumerate(self.children):
if c in ('elif', 'if'):
yield self.children[i + 1]
def node_in_which_check_node(self, node):
"""
Returns the check node (see function above) that a node is contained
in. However if it the node is in the check node itself and not in the
suite return None.
"""
start_pos = node.start_pos
for check_node in reversed(list(self.check_nodes())):
if check_node.start_pos < start_pos:
if start_pos < check_node.end_pos:
return None
# In this case the node is within the check_node itself,
# not in the suite
else:
return check_node
def node_after_else(self, node):
"""
Checks if a node is defined after `else`.
"""
for c in self.children:
if c == 'else':
if node.start_pos > c.start_pos:
return True
else:
return False
class WhileStmt(Flow):
type = 'while_stmt'
__slots__ = ()
class ForStmt(Flow):
type = 'for_stmt'
__slots__ = ()
def get_input_node(self):
"""
Returns the input node ``y`` from: ``for x in y:``.
"""
return self.children[3]
def defines_one_name(self):
"""
Returns True if only one name is returned: ``for x in y``.
Returns False if the for loop is more complicated: ``for x, z in y``.
:returns: bool
"""
return self.children[1].type == 'name'
class TryStmt(Flow):
type = 'try_stmt'
__slots__ = ()
def except_clauses(self):
"""
Returns the ``test`` nodes found in ``except_clause`` nodes.
Returns ``[None]`` for except clauses without an exception given.
"""
for node in self.children:
if node.type == 'except_clause':
yield node.children[1]
elif node == 'except':
yield None
def nodes_to_execute(self, last_added=False):
result = []
for child in self.children[2::3]:
result += child.nodes_to_execute()
for child in self.children[0::3]:
if child.type == 'except_clause':
# Add the test node and ignore the `as NAME` definition.
result += child.children[1].nodes_to_execute()
return result
class WithStmt(Flow):
type = 'with_stmt'
__slots__ = ()
def get_defined_names(self):
names = []
for with_item in self.children[1:-2:2]:
# Check with items for 'as' names.
if with_item.type == 'with_item':
names += _defined_names(with_item.children[2])
return names
def node_from_name(self, name):
node = name
while True:
node = node.parent
if node.type == 'with_item':
return node.children[0]
def nodes_to_execute(self, last_added=False):
result = []
for child in self.children[1::2]:
if child.type == 'with_item':
# Just ignore the `as EXPR` part - at least for now, because
# most times it's just a name.
child = child.children[0]
result += child.nodes_to_execute()
return result
class Import(BaseNode):
__slots__ = ()
def path_for_name(self, name):
try:
# The name may be an alias. If it is, just map it back to the name.
name = self.aliases()[name]
except KeyError:
pass
for path in self.paths():
if name in path:
return path[:path.index(name) + 1]
raise ValueError('Name should be defined in the import itself')
def is_nested(self):
return False # By default, sub classes may overwrite this behavior
def is_star_import(self):
return self.children[-1] == '*'
def nodes_to_execute(self, last_added=False):
"""
`nodes_to_execute` works a bit different for imports, because the names
itself cannot directly get resolved (except on itself).
"""
# TODO couldn't we return the names? Would be nicer.
return [self]
class ImportFrom(Import):
type = 'import_from'
__slots__ = ()
def get_defined_names(self):
return [alias or name for name, alias in self._as_name_tuples()]
def aliases(self):
"""Mapping from alias to its corresponding name."""
return dict((alias, name) for name, alias in self._as_name_tuples()
if alias is not None)
def get_from_names(self):
for n in self.children[1:]:
if n not in ('.', '...'):
break
if n.type == 'dotted_name': # from x.y import
return n.children[::2]
elif n == 'import': # from . import
return []
else: # from x import
return [n]
@property
def level(self):
"""The level parameter of ``__import__``."""
level = 0
for n in self.children[1:]:
if n in ('.', '...'):
level += len(n.value)
else:
break
return level
def _as_name_tuples(self):
last = self.children[-1]
if last == ')':
last = self.children[-2]
elif last == '*':
return # No names defined directly.
if last.type == 'import_as_names':
as_names = last.children[::2]
else:
as_names = [last]
for as_name in as_names:
if as_name.type == 'name':
yield as_name, None
else:
yield as_name.children[::2] # yields x, y -> ``x as y``
def star_import_name(self):
"""
The last name defined in a star import.
"""
return self.paths()[-1][-1]
def paths(self):
"""
The import paths defined in an import statement. Typically an array
like this: ``[<Name: datetime>, <Name: date>]``.
"""
dotted = self.get_from_names()
if self.children[-1] == '*':
return [dotted]
return [dotted + [name] for name, alias in self._as_name_tuples()]
class ImportName(Import):
"""For ``import_name`` nodes. Covers normal imports without ``from``."""
type = 'import_name'
__slots__ = ()
def get_defined_names(self):
return [alias or path[0] for path, alias in self._dotted_as_names()]
@property
def level(self):
"""The level parameter of ``__import__``."""
return 0 # Obviously 0 for imports without from.
def paths(self):
return [path for path, alias in self._dotted_as_names()]
def _dotted_as_names(self):
"""Generator of (list(path), alias) where alias may be None."""
dotted_as_names = self.children[1]
if dotted_as_names.type == 'dotted_as_names':
as_names = dotted_as_names.children[::2]
else:
as_names = [dotted_as_names]
for as_name in as_names:
if as_name.type == 'dotted_as_name':
alias = as_name.children[2]
as_name = as_name.children[0]
else:
alias = None
if as_name.type == 'name':
yield [as_name], alias
else:
# dotted_names
yield as_name.children[::2], alias
def is_nested(self):
"""
This checks for the special case of nested imports, without aliases and
from statement::
import foo.bar
"""
return [1 for path, alias in self._dotted_as_names()
if alias is None and len(path) > 1]
def aliases(self):
return dict((alias, path[-1]) for path, alias in self._dotted_as_names()
if alias is not None)
class KeywordStatement(BaseNode):
"""
For the following statements: `assert`, `del`, `global`, `nonlocal`,
`raise`, `return`, `yield`, `return`, `yield`.
`pass`, `continue` and `break` are not in there, because they are just
simple keywords and the parser reduces it to a keyword.
"""
__slots__ = ()
@property
def type(self):
"""
Keyword statements start with the keyword and end with `_stmt`. You can
crosscheck this with the Python grammar.
"""
return '%s_stmt' % self.keyword
@property
def keyword(self):
return self.children[0].value
def nodes_to_execute(self, last_added=False):
result = []
for child in self.children:
result += child.nodes_to_execute()
return result
class AssertStmt(KeywordStatement):
__slots__ = ()
def assertion(self):
return self.children[1]
class GlobalStmt(KeywordStatement):
__slots__ = ()
def get_defined_names(self):
return []
def get_global_names(self):
return self.children[1::2]
def nodes_to_execute(self, last_added=False):
"""
The global keyword allows to define any name. Even if it doesn't
exist.
"""
return []
class ReturnStmt(KeywordStatement):
__slots__ = ()
class YieldExpr(BaseNode):
__slots__ = ()
@property
def type(self):
return 'yield_expr'
def nodes_to_execute(self, last_added=False):
if len(self.children) > 1:
return self.children[1].nodes_to_execute()
else:
return []
def _defined_names(current):
"""
A helper function to find the defined names in statements, for loops and
list comprehensions.
"""
names = []
if current.type in ('testlist_star_expr', 'testlist_comp', 'exprlist'):
for child in current.children[::2]:
names += _defined_names(child)
elif current.type in ('atom', 'star_expr'):
names += _defined_names(current.children[1])
elif current.type in ('power', 'atom_expr'):
if current.children[-2] != '**': # Just if there's no operation
trailer = current.children[-1]
if trailer.children[0] == '.':
names.append(trailer.children[1])
else:
names.append(current)
return names
class ExprStmt(BaseNode, DocstringMixin):
type = 'expr_stmt'
__slots__ = ()
def get_defined_names(self):
names = []
if self.children[1].type == 'annassign':
names = _defined_names(self.children[0])
return list(chain.from_iterable(
_defined_names(self.children[i])
for i in range(0, len(self.children) - 2, 2)
if '=' in self.children[i + 1].value)
) + names
def get_rhs(self):
"""Returns the right-hand-side of the equals."""
return self.children[-1]
def first_operation(self):
"""
Returns `+=`, `=`, etc or None if there is no operation.
"""
try:
return self.children[1]
except IndexError:
return None
def nodes_to_execute(self, last_added=False):
# I think evaluating the statement (and possibly returned arrays),
# should be enough for static analysis.
result = [self]
for child in self.children:
result += child.nodes_to_execute(last_added=True)
return result
class Param(BaseNode):
"""
It's a helper class that makes business logic with params much easier. The
Python grammar defines no ``param`` node. It defines it in a different way
that is not really suited to working with parameters.
"""
type = 'param'
def __init__(self, children, parent):
super(Param, self).__init__(children)
self.parent = parent
for child in children:
child.parent = self
@property
def stars(self):
first = self.children[0]
if first in ('*', '**'):
return len(first.value)
return 0
@property
def default(self):
try:
return self.children[int(self.children[0] in ('*', '**')) + 2]
except IndexError:
return None
def annotation(self):
tfpdef = self._tfpdef()
if tfpdef.type == 'tfpdef':
assert tfpdef.children[1] == ":"
assert len(tfpdef.children) == 3
annotation = tfpdef.children[2]
return annotation
else:
return None
def _tfpdef(self):
"""
tfpdef: see grammar.txt.
"""
offset = int(self.children[0] in ('*', '**'))
return self.children[offset]
@property
def name(self):
if self._tfpdef().type == 'tfpdef':
return self._tfpdef().children[0]
else:
return self._tfpdef()
@property
def position_nr(self):
return self.parent.children.index(self) - 1
def get_parent_function(self):
return search_ancestor(self, ('funcdef', 'lambda'))
def __repr__(self):
default = '' if self.default is None else '=%s' % self.default.get_code()
return '<%s: %s>' % (type(self).__name__, str(self._tfpdef()) + default)
def get_description(self):
children = self.children
if children[-1] == ',':
children = children[:-1]
return self._get_code_for_children(children, False, False)
class CompFor(BaseNode):
type = 'comp_for'
__slots__ = ()
def get_comp_fors(self):
yield self
last = self.children[-1]
while True:
if isinstance(last, CompFor):
yield last
elif not last.type == 'comp_if':
break
last = last.children[-1]
def is_scope(self):
return True
def get_defined_names(self):
return _defined_names(self.children[1])
def nodes_to_execute(self, last_added=False):
last = self.children[-1]
if last.type == 'comp_if':
for node in last.children[-1].nodes_to_execute():
yield node
last = self.children[-2]
elif last.type == 'comp_for':
for node in last.nodes_to_execute():
yield node
last = self.children[-2]
for node in last.nodes_to_execute():
yield node