1
0
forked from VimPlug/jedi
Files
jedi-fork/jedi/evaluate/param.py

392 lines
16 KiB
Python

import copy
from collections import defaultdict
from itertools import chain
from jedi._compatibility import unicode, zip_longest
from jedi import debug
from jedi import common
from jedi.parser import tree as pr
from jedi.evaluate import iterable
from jedi.evaluate import analysis
from jedi.evaluate import precedence
class Arguments(pr.Base):
def __init__(self, evaluator, argument_node, trailer=None):
"""
The argument_node is either a parser node or a list of evaluated
objects. Those evaluated objects may be lists of evaluated objects
themselves (one list for the first argument, one for the second, etc).
:param argument_node: May be an argument_node or a list of nodes.
"""
self.argument_node = argument_node
self._evaluator = evaluator
self.trailer = trailer # Can be None, e.g. in a class definition.
def _split(self):
if isinstance(self.argument_node, (tuple, list)):
for el in self.argument_node:
yield 0, el
else:
if not pr.is_node(self.argument_node, 'arglist'):
yield 0, self.argument_node
return
iterator = iter(self.argument_node.children)
for child in iterator:
if child == ',':
continue
elif child in ('*', '**'):
yield len(child.value), next(iterator)
else:
yield 0, child
def get_parent_until(self, *args, **kwargs):
return self.trailer.get_parent_until(*args, **kwargs)
def as_tuple(self):
for stars, argument in self._split():
if pr.is_node(argument, 'argument'):
argument, default = argument.children[::2]
else:
default = None
yield argument, default, stars
def unpack(self, func=None):
named_args = []
for stars, el in self._split():
if stars == 1:
arrays = self._evaluator.eval_element(el)
iterators = [_iterate_star_args(self._evaluator, a, el, func)
for a in arrays]
iterators = list(iterators)
for values in list(zip_longest(*iterators)):
yield None, [v for v in values if v is not None]
elif stars == 2:
arrays = self._evaluator.eval_element(el)
dicts = [_star_star_dict(self._evaluator, a, el, func)
for a in arrays]
for dct in dicts:
for key, values in dct.items():
yield key, values
else:
if pr.is_node(el, 'argument'):
named_args.append((el.children[0].value, (el.children[2],)))
elif isinstance(el, (list, tuple)):
yield None, el
else:
yield None, (el,)
# Reordering var_args is necessary, because star args sometimes appear
# after named argument, but in the actual order it's prepended.
for key_arg in named_args:
yield key_arg
def _reorder_var_args(var_args):
named_index = None
new_args = []
for i, stmt in enumerate(var_args):
if isinstance(stmt, pr.ExprStmt):
if named_index is None and stmt.assignment_details:
named_index = i
if named_index is not None:
expression_list = stmt.expression_list()
if expression_list and expression_list[0] == '*':
new_args.insert(named_index, stmt)
named_index += 1
continue
new_args.append(stmt)
return new_args
def eval_argument_clinic(self, arguments):
"""Uses a list with argument clinic information (see PEP 436)."""
iterator = self.unpack()
for i, (name, optional, allow_kwargs) in enumerate(arguments):
key, va_values = next(iterator, (None, []))
if key is not None:
raise NotImplementedError
if not va_values and not optional:
debug.warning('TypeError: %s expected at least %s arguments, got %s',
name, len(arguments), i)
raise ValueError
values = list(chain.from_iterable(self._evaluator.eval_element(el)
for el in va_values))
if not values and not optional:
# For the stdlib we always want values. If we don't get them,
# that's ok, maybe something is too hard to resolve, however,
# we will not proceed with the evaluation of that function.
debug.warning('argument_clinic "%s" not resolvable.', name)
raise ValueError
yield values
def scope(self):
# Returns the scope in which the arguments are used.
return (self.trailer or self.argument_node).get_parent_until(pr.IsScope)
def eval_args(self):
# TODO this method doesn't work with named args and a lot of other
# things. Use unpack.
return [self._evaluator.eval_element(el) for stars, el in self._split()]
def __repr__(self):
return '<%s: %s>' % (type(self).__name__, self.argument_node)
def get_calling_var_args(self):
if pr.is_node(self.argument_node, 'arglist', 'argument') \
or self.argument_node == () and self.trailer is not None:
return _get_calling_var_args(self._evaluator, self)
else:
return None
class ExecutedParam(pr.Param):
"""Fake a param and give it values."""
def __init__(self, original_param, var_args, values):
self._original_param = original_param
self.var_args = var_args
self._values = values
def eval(self, evaluator):
types = []
for v in self._values:
types += evaluator.eval_element(v)
return types
@property
def position_nr(self):
# Need to use the original logic here, because it uses the parent.
return self._original_param.position_nr
def __getattr__(self, name):
return getattr(self._original_param, name)
def _get_calling_var_args(evaluator, var_args):
old_var_args = None
while var_args != old_var_args:
old_var_args = var_args
for name, default, stars in reversed(list(var_args.as_tuple())):
if not stars or not isinstance(name, pr.Name):
continue
names = evaluator.goto(name)
if len(names) != 1:
break
param = names[0].get_definition()
if not isinstance(param, ExecutedParam):
if isinstance(param, pr.Param):
# There is no calling var_args in this case - there's just
# a param without any input.
return None
break
# We never want var_args to be a tuple. This should be enough for
# now, we can change it later, if we need to.
if isinstance(param.var_args, Arguments):
var_args = param.var_args
return var_args.argument_node or var_args.trailer
def get_params(evaluator, func, var_args):
result = []
param_dict = {}
for param in func.params:
param_dict[str(param.get_name())] = param
unpacked_va = list(var_args.unpack(func))
from jedi.evaluate.representation import InstanceElement
if isinstance(func, InstanceElement):
# Include self at this place.
unpacked_va.insert(0, (None, [iterable.AlreadyEvaluated([func.instance])]))
var_arg_iterator = common.PushBackIterator(iter(unpacked_va))
non_matching_keys = defaultdict(lambda: [])
keys_used = {}
keys_only = False
had_multiple_value_error = False
for param in func.params:
# The value and key can both be null. There, the defaults apply.
# args / kwargs will just be empty arrays / dicts, respectively.
# Wrong value count is just ignored. If you try to test cases that are
# not allowed in Python, Jedi will maybe not show any completions.
default = [] if param.default is None else [param.default]
key, va_values = next(var_arg_iterator, (None, default))
while key is not None:
keys_only = True
k = unicode(key)
try:
key_param = param_dict[unicode(key)]
except KeyError:
non_matching_keys[key] += va_values
else:
result.append(_gen_param_name_copy(evaluator, key_param, var_args,
va_values))
if k in keys_used:
had_multiple_value_error = True
m = ("TypeError: %s() got multiple values for keyword argument '%s'."
% (func.name, k))
calling_va = _get_calling_var_args(evaluator, var_args)
if calling_va is not None:
analysis.add(evaluator, 'type-error-multiple-values',
calling_va, message=m)
else:
try:
keys_used[k] = result[-1]
except IndexError:
# TODO this is wrong stupid and whatever.
pass
key, va_values = next(var_arg_iterator, (None, ()))
values = []
if param.stars == 1:
# *args param
lst_values = [iterable.MergedNodes(va_values)] if va_values else []
for key, va_values in var_arg_iterator:
# Iterate until a key argument is found.
if key:
var_arg_iterator.push_back((key, va_values))
break
if va_values:
lst_values.append(iterable.MergedNodes(va_values))
seq = iterable.FakeSequence(evaluator, lst_values, 'tuple')
values = [iterable.AlreadyEvaluated([seq])]
elif param.stars == 2:
# **kwargs param
dct = iterable.FakeDict(evaluator, dict(non_matching_keys))
values = [iterable.AlreadyEvaluated([dct])]
non_matching_keys = {}
else:
# normal param
if va_values:
values = va_values
else:
# No value: Return an empty container
values = []
if not keys_only:
calling_va = var_args.get_calling_var_args()
if calling_va is not None:
m = _error_argument_count(func, len(unpacked_va))
analysis.add(evaluator, 'type-error-too-few-arguments',
calling_va, message=m)
# Now add to result if it's not one of the previously covered cases.
if (not keys_only or param.stars == 2):
result.append(_gen_param_name_copy(evaluator, param, var_args,
values))
keys_used[unicode(param.get_name())] = result[-1]
if keys_only:
# All arguments should be handed over to the next function. It's not
# about the values inside, it's about the names. Jedi needs to now that
# there's nothing to find for certain names.
for k in set(param_dict) - set(keys_used):
param = param_dict[k]
values = [] if param.default is None else [param.default]
result.append(_gen_param_name_copy(evaluator, param, var_args, values))
if not (non_matching_keys or had_multiple_value_error
or param.stars or param.default):
# add a warning only if there's not another one.
calling_va = _get_calling_var_args(evaluator, var_args)
if calling_va is not None:
m = _error_argument_count(func, len(unpacked_va))
analysis.add(evaluator, 'type-error-too-few-arguments',
calling_va, message=m)
for key, va_values in non_matching_keys.items():
m = "TypeError: %s() got an unexpected keyword argument '%s'." \
% (func.name, key)
for value in va_values:
analysis.add(evaluator, 'type-error-keyword-argument', value.parent, message=m)
remaining_params = list(var_arg_iterator)
if remaining_params:
m = _error_argument_count(func, len(unpacked_va))
# Just report an error for the first param that is not needed (like
# cPython).
first_key, first_values = remaining_params[0]
for v in first_values:
if first_key is not None:
# Is a keyword argument, return the whole thing instead of just
# the value node.
v = v.parent
try:
non_kw_param = keys_used[first_key]
except KeyError:
pass
else:
origin_args = non_kw_param.parent.var_args.argument_node
# TODO calculate the var_args tree and check if it's in
# the tree (if not continue).
# print('\t\tnonkw', non_kw_param.parent.var_args.argument_node, )
if origin_args not in [f.parent.parent for f in first_values]:
continue
analysis.add(evaluator, 'type-error-too-many-arguments',
v, message=m)
return result
def _iterate_star_args(evaluator, array, input_node, func=None):
from jedi.evaluate.representation import Instance
if isinstance(array, iterable.Array):
for field_stmt in array: # yield from plz!
yield field_stmt
elif isinstance(array, iterable.Generator):
for field_stmt in array.iter_content():
yield iterable.AlreadyEvaluated([field_stmt])
elif isinstance(array, Instance) and array.name.get_code() == 'tuple':
debug.warning('Ignored a tuple *args input %s' % array)
else:
if func is not None:
m = "TypeError: %s() argument after * must be a sequence, not %s" \
% (func.name.value, array)
analysis.add(evaluator, 'type-error-star', input_node, message=m)
def _star_star_dict(evaluator, array, input_node, func):
dct = defaultdict(lambda: [])
from jedi.evaluate.representation import Instance
if isinstance(array, Instance) and array.name.get_code() == 'dict':
# For now ignore this case. In the future add proper iterators and just
# make one call without crazy isinstance checks.
return {}
if isinstance(array, iterable.FakeDict):
return array._dct
elif isinstance(array, iterable.Array) and array.type == 'dict':
# TODO bad call to non-public API
for key_node, values in array._items():
for key in evaluator.eval_element(key_node):
if precedence.is_string(key):
dct[key.obj] += values
else:
if func is not None:
m = "TypeError: %s argument after ** must be a mapping, not %s" \
% (func.name.value, array)
analysis.add(evaluator, 'type-error-star-star', input_node, message=m)
return dict(dct)
def _gen_param_name_copy(evaluator, param, var_args, values):
"""
Create a param with the original scope (of varargs) as parent.
"""
new_param = ExecutedParam(param, var_args, values)
name = copy.copy(param.get_name())
name.parent = new_param
return name
def _error_argument_count(func, actual_count):
default_arguments = sum(1 for p in func.params if p.default or p.stars)
if default_arguments == 0:
before = 'exactly '
else:
before = 'from %s to ' % (len(func.params) - default_arguments)
return ('TypeError: %s() takes %s%s arguments (%s given).'
% (func.name, before, len(func.params), actual_count))