mirror of
https://github.com/davidhalter/jedi.git
synced 2025-12-06 14:04:26 +08:00
Make it possible to use *args in argument clinic
This commit is contained in:
@@ -45,23 +45,27 @@ def repack_with_argument_clinic(string, keep_arguments_param=False):
|
||||
clinic_args = list(_parse_argument_clinic(string))
|
||||
|
||||
def decorator(func):
|
||||
def wrapper(*args, **kwargs):
|
||||
def wrapper(context, *args, **kwargs):
|
||||
if keep_arguments_param:
|
||||
arguments = kwargs['arguments']
|
||||
else:
|
||||
arguments = kwargs.pop('arguments')
|
||||
try:
|
||||
args += tuple(_iterate_argument_clinic(arguments, clinic_args))
|
||||
args += tuple(_iterate_argument_clinic(
|
||||
context.evaluator,
|
||||
arguments,
|
||||
clinic_args
|
||||
))
|
||||
except ValueError:
|
||||
return NO_CONTEXTS
|
||||
else:
|
||||
return func(*args, **kwargs)
|
||||
return func(context, *args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
return decorator
|
||||
|
||||
|
||||
def _iterate_argument_clinic(arguments, parameters):
|
||||
def _iterate_argument_clinic(evaluator, arguments, parameters):
|
||||
"""Uses a list with argument clinic information (see PEP 436)."""
|
||||
iterator = PushBackIterator(arguments.unpack())
|
||||
for i, (name, optional, allow_kwargs, stars) in enumerate(parameters):
|
||||
|
||||
@@ -66,7 +66,6 @@ class StdlibPlugin(BasePlugin):
|
||||
if module_name == 'builtins' and context.py__name__() == '__get__':
|
||||
if context.class_context.py__name__() == 'property':
|
||||
return builtins_property(
|
||||
self._evaluator,
|
||||
context,
|
||||
arguments=arguments
|
||||
)
|
||||
@@ -78,7 +77,7 @@ class StdlibPlugin(BasePlugin):
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
return func(self._evaluator, context, arguments=arguments)
|
||||
return func(context, arguments=arguments)
|
||||
return callback(context, arguments=arguments)
|
||||
|
||||
return wrapper
|
||||
@@ -93,14 +92,15 @@ def _follow_param(evaluator, arguments, index):
|
||||
return lazy_context.infer()
|
||||
|
||||
|
||||
def argument_clinic(string, want_obj=False, want_context=False, want_arguments=False):
|
||||
def argument_clinic(string, want_obj=False, want_context=False,
|
||||
want_arguments=False, want_evaluator=False):
|
||||
"""
|
||||
Works like Argument Clinic (PEP 436), to validate function params.
|
||||
"""
|
||||
|
||||
def f(func):
|
||||
@repack_with_argument_clinic(string, keep_arguments_param=True)
|
||||
def wrapper(evaluator, obj, *args, **kwargs):
|
||||
def wrapper(obj, *args, **kwargs):
|
||||
arguments = kwargs.pop('arguments')
|
||||
assert not kwargs # Python 2...
|
||||
debug.dbg('builtin start %s' % obj, color='MAGENTA')
|
||||
@@ -109,9 +109,11 @@ def argument_clinic(string, want_obj=False, want_context=False, want_arguments=F
|
||||
kwargs['context'] = arguments.context
|
||||
if want_obj:
|
||||
kwargs['obj'] = obj
|
||||
if want_evaluator:
|
||||
kwargs['evaluator'] = obj.evaluator
|
||||
if want_arguments:
|
||||
kwargs['arguments'] = arguments
|
||||
result = func(evaluator, *args, **kwargs)
|
||||
result = func(*args, **kwargs)
|
||||
debug.dbg('builtin end: %s', result, color='MAGENTA')
|
||||
return result
|
||||
|
||||
@@ -120,7 +122,7 @@ def argument_clinic(string, want_obj=False, want_context=False, want_arguments=F
|
||||
|
||||
|
||||
@argument_clinic('obj, type, /', want_obj=True, want_arguments=True)
|
||||
def builtins_property(evaluator, objects, types, obj, arguments):
|
||||
def builtins_property(objects, types, obj, arguments):
|
||||
print(obj)
|
||||
print(obj.instance.var_args)
|
||||
property_args = obj.instance.var_args.unpack()
|
||||
@@ -134,8 +136,8 @@ def builtins_property(evaluator, objects, types, obj, arguments):
|
||||
return NO_CONTEXTS
|
||||
|
||||
|
||||
@argument_clinic('iterator[, default], /')
|
||||
def builtins_next(evaluator, iterators, defaults):
|
||||
@argument_clinic('iterator[, default], /', want_evaluator=True)
|
||||
def builtins_next(iterators, defaults, evaluator):
|
||||
"""
|
||||
TODO this function is currently not used. It's a stab at implementing next
|
||||
in a different way than fake objects. This would be a bit more flexible.
|
||||
@@ -159,7 +161,7 @@ def builtins_next(evaluator, iterators, defaults):
|
||||
|
||||
|
||||
@argument_clinic('object, name[, default], /')
|
||||
def builtins_getattr(evaluator, objects, names, defaults=None):
|
||||
def builtins_getattr(objects, names, defaults=None):
|
||||
# follow the first param
|
||||
for obj in objects:
|
||||
for name in names:
|
||||
@@ -172,7 +174,7 @@ def builtins_getattr(evaluator, objects, names, defaults=None):
|
||||
|
||||
|
||||
@argument_clinic('object[, bases, dict], /')
|
||||
def builtins_type(evaluator, objects, bases, dicts):
|
||||
def builtins_type(objects, bases, dicts):
|
||||
if bases or dicts:
|
||||
# It's a type creation... maybe someday...
|
||||
return NO_CONTEXTS
|
||||
@@ -188,7 +190,7 @@ class SuperInstance(AbstractInstanceContext):
|
||||
|
||||
|
||||
@argument_clinic('[type[, obj]], /', want_context=True)
|
||||
def builtins_super(evaluator, types, objects, context):
|
||||
def builtins_super(types, objects, context):
|
||||
# TODO make this able to detect multiple inheritance super
|
||||
if isinstance(context, FunctionExecutionContext):
|
||||
if isinstance(context.var_args, InstanceArguments):
|
||||
@@ -199,7 +201,7 @@ def builtins_super(evaluator, types, objects, context):
|
||||
|
||||
|
||||
@argument_clinic('sequence, /', want_obj=True, want_arguments=True)
|
||||
def builtins_reversed(evaluator, sequences, obj, arguments):
|
||||
def builtins_reversed(sequences, obj, arguments):
|
||||
# While we could do without this variable (just by using sequences), we
|
||||
# want static analysis to work well. Therefore we need to generated the
|
||||
# values again.
|
||||
@@ -215,13 +217,18 @@ def builtins_reversed(evaluator, sequences, obj, arguments):
|
||||
# necessary, because `reversed` is a function and autocompletion
|
||||
# would fail in certain cases like `reversed(x).__iter__` if we
|
||||
# just returned the result directly.
|
||||
seq = iterable.FakeSequence(evaluator, u'list', rev)
|
||||
seq = iterable.FakeSequence(obj.evaluator, u'list', rev)
|
||||
arguments = ValuesArguments([ContextSet(seq)])
|
||||
return ContextSet(CompiledInstance(evaluator, evaluator.builtins_module, obj, arguments))
|
||||
return ContextSet(CompiledInstance(
|
||||
obj.evaluator,
|
||||
obj.evaluator.builtins_module,
|
||||
obj,
|
||||
arguments
|
||||
))
|
||||
|
||||
|
||||
@argument_clinic('obj, type, /', want_arguments=True)
|
||||
def builtins_isinstance(evaluator, objects, types, arguments):
|
||||
@argument_clinic('obj, type, /', want_arguments=True, want_evaluator=True)
|
||||
def builtins_isinstance(objects, types, arguments, evaluator):
|
||||
bool_results = set()
|
||||
for o in objects:
|
||||
cls = o.py__class__()
|
||||
@@ -262,7 +269,7 @@ def builtins_isinstance(evaluator, objects, types, arguments):
|
||||
)
|
||||
|
||||
|
||||
def collections_namedtuple(evaluator, obj, arguments):
|
||||
def collections_namedtuple(obj, arguments):
|
||||
"""
|
||||
Implementation of the namedtuple function.
|
||||
|
||||
@@ -270,6 +277,7 @@ def collections_namedtuple(evaluator, obj, arguments):
|
||||
evaluating the result.
|
||||
|
||||
"""
|
||||
evaluator = obj.evaluator
|
||||
collections_context = obj.parent_context
|
||||
_class_template_set = collections_context.py__getattribute__(u'_class_template')
|
||||
if not _class_template_set:
|
||||
@@ -358,7 +366,7 @@ class MergedPartialArguments(AbstractArguments):
|
||||
yield key_lazy_context
|
||||
|
||||
|
||||
def functools_partial(evaluator, obj, arguments):
|
||||
def functools_partial(obj, arguments):
|
||||
return ContextSet.from_iterable(
|
||||
PartialObject(instance, arguments)
|
||||
for instance in obj.py__call__(arguments)
|
||||
@@ -366,12 +374,12 @@ def functools_partial(evaluator, obj, arguments):
|
||||
|
||||
|
||||
@argument_clinic('first, /')
|
||||
def _return_first_param(evaluator, firsts):
|
||||
def _return_first_param(firsts):
|
||||
return firsts
|
||||
|
||||
|
||||
@argument_clinic('seq')
|
||||
def _random_choice(evaluator, sequences):
|
||||
def _random_choice(sequences):
|
||||
return ContextSet.from_sets(
|
||||
lazy_context.infer()
|
||||
for sequence in sequences
|
||||
@@ -390,7 +398,7 @@ class ItemGetterCallable(object):
|
||||
|
||||
|
||||
@argument_clinic('*args, /', want_obj=True, want_arguments=True)
|
||||
def _operator_itemgetter(evaluator, args_context_set, obj, arguments):
|
||||
def _operator_itemgetter(args_context_set, obj, arguments):
|
||||
final = obj.py__call__(arguments)
|
||||
print(final)
|
||||
return final
|
||||
@@ -410,8 +418,8 @@ _implemented = {
|
||||
'deepcopy': _return_first_param,
|
||||
},
|
||||
'json': {
|
||||
'load': lambda evaluator, obj, arguments: NO_CONTEXTS,
|
||||
'loads': lambda evaluator, obj, arguments: NO_CONTEXTS,
|
||||
'load': lambda obj, arguments: NO_CONTEXTS,
|
||||
'loads': lambda obj, arguments: NO_CONTEXTS,
|
||||
},
|
||||
'collections': {
|
||||
'namedtuple': collections_namedtuple,
|
||||
|
||||
Reference in New Issue
Block a user