mirror of
https://github.com/davidhalter/jedi.git
synced 2025-12-06 14:04:26 +08:00
Create separate classes for FakeSequence
This commit is contained in:
@@ -84,7 +84,7 @@ def _iterate_argument_clinic(inference_state, arguments, parameters):
|
||||
break
|
||||
|
||||
lazy_values.append(argument)
|
||||
yield ValueSet([iterable.FakeSequence(inference_state, u'tuple', lazy_values)])
|
||||
yield ValueSet([iterable.FakeTuple(inference_state, lazy_values)])
|
||||
lazy_values
|
||||
continue
|
||||
elif stars == 2:
|
||||
|
||||
@@ -253,8 +253,8 @@ def _execute_array_values(inference_state, array):
|
||||
Tuples indicate that there's not just one return value, but the listed
|
||||
ones. `(str, int)` means that it returns a tuple with both types.
|
||||
"""
|
||||
from jedi.inference.value.iterable import SequenceLiteralValue, FakeSequence
|
||||
if isinstance(array, SequenceLiteralValue):
|
||||
from jedi.inference.value.iterable import SequenceLiteralValue, FakeTuple, FakeList
|
||||
if isinstance(array, SequenceLiteralValue) and array.array_type in ('tuple', 'list'):
|
||||
values = []
|
||||
for lazy_value in array.py__iter__():
|
||||
objects = ValueSet.from_sets(
|
||||
@@ -262,7 +262,8 @@ def _execute_array_values(inference_state, array):
|
||||
for typ in lazy_value.infer()
|
||||
)
|
||||
values.append(LazyKnownValues(objects))
|
||||
return {FakeSequence(inference_state, array.array_type, values)}
|
||||
cls = FakeTuple if array.array_type == 'tuple' else FakeList
|
||||
return {cls(inference_state, values)}
|
||||
else:
|
||||
return array.execute_annotation()
|
||||
|
||||
|
||||
@@ -134,7 +134,7 @@ def get_executed_param_names_and_issues(execution_context, arguments):
|
||||
var_arg_iterator.push_back((key, argument))
|
||||
break
|
||||
lazy_value_list.append(argument)
|
||||
seq = iterable.FakeSequence(execution_context.inference_state, u'tuple', lazy_value_list)
|
||||
seq = iterable.FakeTuple(execution_context.inference_state, lazy_value_list)
|
||||
result_arg = LazyKnownValue(seq)
|
||||
elif param.star_count == 2:
|
||||
if argument is not None:
|
||||
@@ -224,7 +224,7 @@ def _error_argument_count(funcdef, actual_count):
|
||||
def _create_default_param(execution_context, param):
|
||||
if param.star_count == 1:
|
||||
result_arg = LazyKnownValue(
|
||||
iterable.FakeSequence(execution_context.inference_state, u'tuple', [])
|
||||
iterable.FakeTuple(execution_context.inference_state, [])
|
||||
)
|
||||
elif param.star_count == 2:
|
||||
result_arg = LazyKnownValue(
|
||||
|
||||
@@ -298,15 +298,14 @@ class DictComprehension(ComprehensionMixin, Sequence):
|
||||
@publish_method('values')
|
||||
def _imitate_values(self):
|
||||
lazy_value = LazyKnownValues(self._dict_values())
|
||||
return ValueSet([FakeSequence(self.inference_state, u'list', [lazy_value])])
|
||||
return ValueSet([FakeList(self.inference_state, [lazy_value])])
|
||||
|
||||
@publish_method('items')
|
||||
def _imitate_items(self):
|
||||
lazy_values = [
|
||||
LazyKnownValue(
|
||||
FakeSequence(
|
||||
FakeTuple(
|
||||
self.inference_state,
|
||||
u'tuple',
|
||||
[LazyKnownValues(key),
|
||||
LazyKnownValues(value)]
|
||||
)
|
||||
@@ -314,7 +313,7 @@ class DictComprehension(ComprehensionMixin, Sequence):
|
||||
for key, value in self._iterate()
|
||||
]
|
||||
|
||||
return ValueSet([FakeSequence(self.inference_state, u'list', lazy_values)])
|
||||
return ValueSet([FakeList(self.inference_state, lazy_values)])
|
||||
|
||||
def get_mapping_item_values(self):
|
||||
return self._dict_keys(), self._dict_values()
|
||||
@@ -469,19 +468,19 @@ class DictLiteralValue(_DictMixin, SequenceLiteralValue):
|
||||
@publish_method('values')
|
||||
def _imitate_values(self):
|
||||
lazy_value = LazyKnownValues(self._dict_values())
|
||||
return ValueSet([FakeSequence(self.inference_state, u'list', [lazy_value])])
|
||||
return ValueSet([FakeList(self.inference_state, [lazy_value])])
|
||||
|
||||
@publish_method('items')
|
||||
def _imitate_items(self):
|
||||
lazy_values = [
|
||||
LazyKnownValue(FakeSequence(
|
||||
self.inference_state, u'tuple',
|
||||
LazyKnownValue(FakeTuple(
|
||||
self.inference_state,
|
||||
(LazyTreeValue(self._defining_context, key_node),
|
||||
LazyTreeValue(self._defining_context, value_node))
|
||||
)) for key_node, value_node in self.get_tree_entries()
|
||||
]
|
||||
|
||||
return ValueSet([FakeSequence(self.inference_state, u'list', lazy_values)])
|
||||
return ValueSet([FakeList(self.inference_state, lazy_values)])
|
||||
|
||||
def _dict_keys(self):
|
||||
return ValueSet.from_sets(
|
||||
@@ -493,14 +492,13 @@ class DictLiteralValue(_DictMixin, SequenceLiteralValue):
|
||||
return self._dict_keys(), self._dict_values()
|
||||
|
||||
|
||||
class FakeSequence(Sequence):
|
||||
def __init__(self, inference_state, array_type, lazy_value_list):
|
||||
class _FakeSequence(Sequence):
|
||||
def __init__(self, inference_state, lazy_value_list):
|
||||
"""
|
||||
type should be one of "tuple", "list"
|
||||
"""
|
||||
super(FakeSequence, self).__init__(inference_state)
|
||||
super(_FakeSequence, self).__init__(inference_state)
|
||||
self._lazy_value_list = lazy_value_list
|
||||
self.array_type = array_type
|
||||
|
||||
def py__simple_getitem__(self, index):
|
||||
if isinstance(index, slice):
|
||||
@@ -520,6 +518,14 @@ class FakeSequence(Sequence):
|
||||
return "<%s of %s>" % (type(self).__name__, self._lazy_value_list)
|
||||
|
||||
|
||||
class FakeTuple(_FakeSequence):
|
||||
array_type = u'tuple'
|
||||
|
||||
|
||||
class FakeList(_FakeSequence):
|
||||
array_type = u'tuple'
|
||||
|
||||
|
||||
class FakeDict(_DictMixin, Sequence):
|
||||
array_type = u'dict'
|
||||
|
||||
@@ -553,8 +559,8 @@ class FakeDict(_DictMixin, Sequence):
|
||||
|
||||
@publish_method('values')
|
||||
def _values(self):
|
||||
return ValueSet([FakeSequence(
|
||||
self.inference_state, u'tuple',
|
||||
return ValueSet([FakeTuple(
|
||||
self.inference_state,
|
||||
[LazyKnownValues(self._dict_values())]
|
||||
)])
|
||||
|
||||
|
||||
@@ -643,9 +643,8 @@ class ItemGetterCallable(ValueWrapper):
|
||||
# TODO we need to add the contextualized value.
|
||||
value_set |= item_value_set.get_item(lazy_values[0].infer(), None)
|
||||
else:
|
||||
value_set |= ValueSet([iterable.FakeSequence(
|
||||
value_set |= ValueSet([iterable.FakeList(
|
||||
self._wrapped_value.inference_state,
|
||||
'list',
|
||||
[
|
||||
LazyKnownValues(item_value_set.get_item(lazy_value.infer(), None))
|
||||
for lazy_value in lazy_values
|
||||
|
||||
Reference in New Issue
Block a user