diff --git a/jedi/inference/gradual/typing.py b/jedi/inference/gradual/typing.py index 7ccb1a9c..fd2d5a1e 100644 --- a/jedi/inference/gradual/typing.py +++ b/jedi/inference/gradual/typing.py @@ -183,7 +183,6 @@ class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex): def infer_type_vars(self, value_set, is_class_value=False): # Circular from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts - from jedi.inference.gradual.base import GenericClass type_var_dict = {} annotation_generics = self.get_generics() @@ -216,30 +215,7 @@ class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex): elif annotation_name == 'Tuple': tuple_annotation, = self.execute_annotation() - # TODO: is can we avoid using this private method? - if tuple_annotation._is_homogenous(): - # The parameter annotation is of the form `Tuple[T, ...]`, - # so we treat the incoming tuple like a iterable sequence - # rather than a positional container of elements. - return annotation_generics[0].infer_type_vars( - value_set.merge_types_of_iterate(), - ) - - else: - # The parameter annotation has only explicit type parameters - # (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we - # treat the incoming values as needing to match the annotation - # exactly, just as we would for non-tuple annotations. - - for element in value_set: - py_class = element.get_annotated_class_object() - if not isinstance(py_class, GenericClass): - py_class = element - - merge_type_var_dicts( - type_var_dict, - merge_pairwise_generics(self, py_class), - ) + return tuple_annotation.infer_type_vars(value_set, is_class_value) return type_var_dict @@ -338,6 +314,38 @@ class Tuple(BaseTypingValueWithGenerics): .py__getattribute__('tuple').execute_annotation() return tuple_ + def infer_type_vars(self, value_set, is_class_value=False): + # Circular + from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts + from jedi.inference.gradual.base import GenericClass + + if self._is_homogenous(): + # The parameter annotation is of the form `Tuple[T, ...]`, + # so we treat the incoming tuple like a iterable sequence + # rather than a positional container of elements. + return self.get_generics()[0].infer_type_vars( + value_set.merge_types_of_iterate(), + ) + + else: + # The parameter annotation has only explicit type parameters + # (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we + # treat the incoming values as needing to match the annotation + # exactly, just as we would for non-tuple annotations. + + type_var_dict = {} + for element in value_set: + py_class = element.get_annotated_class_object() + if not isinstance(py_class, GenericClass): + py_class = element + + merge_type_var_dicts( + type_var_dict, + merge_pairwise_generics(self, py_class), + ) + + return type_var_dict + class Generic(BaseTypingValueWithGenerics): pass