""" Maintainer: David Halter Version: 0.1 py_fuzzyparser parses python code, with the goal of a good representation of the code within a tree structure. Variables, Classes and Functions are defined within this tree structure, containing their exact locations in the code. It is also a primary goal to work with code which contains syntax errors. This behaviour may be used to refactor, modify, search and complete code. To understand this code it is extremely important to understand the behaviour of the python module 'tokenize'. This original codebase of this parser, which has been refactored and heavily changed, was programmed by Aaron Griffin . **The structure of the following script:** A Scope has - imports (Import) - subscopes (Scope, Class, Function, Flow) - statements (Statement) All those classes are being generated by PyFuzzyParser, which takes python text as input. Ignored statements: - print (no use for it, just slows down) - exec (dangerous - not controllable) TODO take special care for future imports TODO check meta classes TODO evaluate options to either replace tokenize or change its behavior for multiline parentheses (if they don't close, there must be a break somewhere) """ import tokenize import cStringIO import re import debug class ParserError(Exception): pass def indent_block(text, indention=" "): """ This function indents a text block with a default of four spaces """ temp = '' while text and text[-1] == '\n': temp += text[-1] text = text[:-1] lines = text.split('\n') return '\n'.join(map(lambda s: indention + s, lines)) + temp class Simple(object): """ The super class for Scope, Import, Name and Statement. Every object in the parser tree inherits from this class. """ def __init__(self, indent, line_nr, line_end=None): self.indent = indent self.line_nr = line_nr self.line_end = line_end self.parent = None def get_parent_until(self, *classes): """ Takes always the parent, until one class """ scope = self while not (scope.parent is None or scope.__class__ in classes): scope = scope.parent return scope def __repr__(self): code = self.get_code().replace('\n', ' ') return "<%s: %s@%s>" % \ (self.__class__.__name__, code, self.line_nr) class Scope(Simple): """ Super class for the parser tree, which represents the state of a python text file. A Scope manages and owns its subscopes, which are classes and functions, as well as variables and imports. It is used to access the structure of python files. :param indent: The indent level of the flow statement. :type indent: int :param line_nr: Line number of the flow statement. :type line_nr: int :param docstr: The docstring for the current Scope. :type docstr: str """ def __init__(self, indent, line_nr, docstr=''): super(Scope, self).__init__(indent, line_nr) self.subscopes = [] self.imports = [] self.statements = [] self.global_vars = [] self.docstr = docstr def add_scope(self, sub, decorators): # print 'push scope: [%s@%s]' % (sub.line_nr, sub.indent) sub.parent = self sub.decorators = decorators self.subscopes.append(sub) return sub def add_statement(self, stmt): """ Used to add a Statement or a Scope. A statement would be a normal command (Statement) or a Scope (Flow). """ stmt.parent = self self.statements.append(stmt) return stmt def add_docstr(self, string): """ Clean up a docstring """ # TODO use prefixes, to format the doc strings # scan for string prefixes like r, u, etc. index1 = string.find("'") index2 = string.find('"') index = index1 if index1 < index2 and index1 > -1 else index2 prefix = string[:index] d = string[index:] debug.dbg('add_docstr', d, prefix) # now clean docstr d = d.replace('\n', ' ') d = d.replace('\t', ' ') while d.find(' ') > -1: d = d.replace(' ', ' ') while d[0] in '"\'\t ': d = d[1:] while d[-1] in '"\'\t ': d = d[:-1] debug.dbg("Scope(%s)::docstr = %s" % (self, d)) self.docstr = d def add_import(self, imp): self.imports.append(imp) imp.parent = self def get_imports(self): """ Gets also the imports within flow statements """ i = self.imports for s in self.statements: if isinstance(s, Scope): i += s.get_imports() print 'geti', i return i def add_global(self, name): """ Global means in these context a function (subscope) which has a global statement. This is only relevant for the top scope. :param name: The name of the global. :type name: Name """ self.global_vars.append(name) # set no parent here, because globals are not defined in this scope. def get_code(self, first_indent=False, indention=" "): """ :return: Returns the code of the current scope. :rtype: str """ string = "" if len(self.docstr) > 0: string += '"""' + self.docstr + '"""\n' for i in self.imports: string += i.get_code() for sub in self.subscopes: #string += str(sub.line_nr) string += sub.get_code(first_indent=True, indention=indention) for stmt in self.statements: string += stmt.get_code() if first_indent: string = indent_block(string, indention=indention) return string def get_set_vars(self): """ Get all the names, that are active and accessible in the current scope. :return: list of Name :rtype: list """ n = [] for stmt in self.statements: try: n += stmt.get_set_vars(True) except TypeError: n += stmt.get_set_vars() # function and class names n += [s.name for s in self.subscopes] n += self.global_vars for i in self.imports: if not i.star: n += i.get_names() return n def get_defined_names(self): return [n for n in self.get_set_vars() if isinstance(n, Import) or len(n) == 1] def is_empty(self): """ :return: True if there are no subscopes, imports and statements. :rtype: bool """ return not (self.imports or self.subscopes or self.statements) def get_simple_for_line(self, line): """ Get the Simple objects, which are on the line. """ simple = [] for s in self.statements + self.imports: if s.line_nr <= line <= s.line_end: simple.append(s) return simple def __repr__(self): try: name = self.name except: try: name = self.command except: name = 'global' return "<%s: %s@%s-%s>" % \ (self.__class__.__name__, name, self.line_nr, self.line_end) class Class(Scope): """ Used to store the parsed contents of a python class. :param name: The Class name. :type name: string :param name: The super classes of a Class. :type name: list :param indent: The indent level of the flow statement. :type indent: int :param line_nr: Line number of the flow statement. :type line_nr: int :param docstr: The docstring for the current Scope. :type docstr: str """ def __init__(self, name, supers, indent, line_nr, docstr=''): super(Class, self).__init__(indent, line_nr, docstr) self.name = name name.parent = self self.supers = supers for s in self.supers: s.parent = self self.decorators = [] def get_code(self, first_indent=False, indention=" "): str = "\n".join('@' + stmt.get_code() for stmt in self.decorators) str += 'class %s' % (self.name) if len(self.supers) > 0: sup = ','.join(stmt.code for stmt in self.supers) str += '(%s)' % sup str += ':\n' str += super(Class, self).get_code(True, indention) if self.is_empty(): str += "pass\n" return str class Function(Scope): """ Used to store the parsed contents of a python function. :param name: The Function name. :type name: string :param params: The parameters (Statement) of a Function. :type name: list :param indent: The indent level of the flow statement. :type indent: int :param line_nr: Line number of the flow statement. :type line_nr: int :param docstr: The docstring for the current Scope. :type docstr: str """ def __init__(self, name, params, indent, line_nr, docstr=''): Scope.__init__(self, indent, line_nr, docstr) self.name = name name.parent = self self.params = params for p in params: p.parent = self self.decorators = [] self.returns = [] is_generator = False def get_code(self, first_indent=False, indention=" "): str = "\n".join('@' + stmt.get_code() for stmt in self.decorators) params = ','.join([stmt.code for stmt in self.params]) str += "def %s(%s):\n" % (self.name, params) str += super(Function, self).get_code(True, indention) if self.is_empty(): str += "pass\n" return str def get_set_vars(self): n = [] for i, p in enumerate(self.params): n += p.set_vars or p.used_vars n += super(Function, self).get_set_vars() return n class Flow(Scope): """ Used to describe programming structure - flow statements, which indent code, but are not classes or functions: - for - while - if - try - with Therefore statements like else, except and finally are also here, they are now saved in the root flow elements, but in the next variable. :param command: The flow command, if, while, else, etc. :type command: str :param statement: The statement after the flow comand -> while 'statement'. :type statement: Statement :param indent: The indent level of the flow statement. :type indent: int :param line_nr: Line number of the flow statement. :type line_nr: int :param set_vars: Local variables used in the for loop (only there). :type set_vars: list """ def __init__(self, command, statement, indent, line_nr, set_vars=None): super(Flow, self).__init__(indent, line_nr, '') self.command = command self.statement = statement if statement: statement.parent = self if set_vars == None: self.set_vars = [] else: self.set_vars = set_vars for s in self.set_vars: s.parent = self self.next = None def get_code(self, first_indent=False, indention=" "): if self.set_vars: vars = ",".join(map(lambda x: x.get_code(), self.set_vars)) vars += ' in ' else: vars = '' if self.statement: stmt = self.statement.get_code(new_line=False) else: stmt = '' str = "%s %s%s:\n" % (self.command, vars, stmt) str += super(Flow, self).get_code(True, indention) if self.next: str += self.next.get_code() return str def get_set_vars(self, is_internal_call=False): """ Get the names for the flow. This includes also a call to the super class. :param is_internal_call: defines an option for internal files to crawl\ through this class. Normally it will just call its superiors, to\ generate the output. """ if is_internal_call: n = [] n += self.set_vars if self.statement: n += self.statement.set_vars if self.next: n += self.next.get_set_vars(is_internal_call) n += super(Flow, self).get_set_vars() return n else: return self.get_parent_until(Class, Function).get_set_vars() def set_next(self, next): """ Set the next element in the flow, those are else, except, etc. """ if self.next: return self.next.set_next(next) else: self.next = next next.parent = self.parent return next class Import(Simple): """ Stores the imports of any Scopes. >>> 1+1 2 :param line_nr: Line number. :type line_nr: int :param namespace: The import, can be empty if a star is given :type namespace: Name :param alias: The alias of a namespace(valid in the current namespace). :type alias: Name :param from_ns: Like the namespace, can be equally used. :type from_ns: Name :param star: If a star is used -> from time import *. :type star: bool """ def __init__(self, indent, line_nr, line_end, namespace, alias='', \ from_ns='', star=False): super(Import, self).__init__(indent, line_nr, line_end) self.namespace = namespace if namespace: namespace.parent = self self.alias = alias if alias: alias.parent = self self.from_ns = from_ns if from_ns: from_ns.parent = self self.star = star def get_code(self): if self.alias: ns_str = "%s as %s" % (self.namespace, self.alias) else: ns_str = str(self.namespace) if self.from_ns: if self.star: ns_str = '*' return "from %s import %s" % (self.from_ns, ns_str) + '\n' else: return "import " + ns_str + '\n' def get_names(self): if self.star: return [self] return [self.alias] if self.alias else [self.namespace] class Statement(Simple): """ This is the class for all the possible statements. Which means, this class stores pretty much all the Python code, except functions, classes, imports, and flow functions like if, for, etc. :param code: The full code of a statement. This is import, if one wants \ to execute the code at some level. :param code: str :param set_vars: The variables which are defined by the statement. :param set_vars: str :param used_funcs: The functions which are used by the statement. :param used_funcs: str :param used_vars: The variables which are used by the statement. :param used_vars: str :param token_list: Token list which is also peppered with Name. :param token_list: list :param indent: The indent level of the flow statement. :type indent: int :param line_nr: Line number of the flow statement. :type line_nr: int """ def __init__(self, code, set_vars, used_funcs, used_vars, token_list, indent, line_nr, line_end): super(Statement, self).__init__(indent, line_nr, line_end) self.code = code self.set_vars = set_vars self.used_funcs = used_funcs self.used_vars = used_vars self.token_list = token_list for s in set_vars + used_funcs + used_vars: s.parent = self # cache self.assignment_calls = None def get_code(self, new_line=True): if new_line: return self.code + '\n' else: return self.code def get_set_vars(self): """ Get the names for the statement. """ return self.set_vars def get_assignment_calls(self): """ This is not done in the main parser, because it might be slow and most of the statements won't need this data anyway. This is something 'like' a lazy execution. """ if self.assignment_calls: return self.assignment_calls result = Array(Array.EMPTY) top = result level = 0 is_chain = False close_brackets = False debug.dbg('tok_list', self.token_list) for i, tok_temp in enumerate(self.token_list): #print 'tok', tok_temp, result try: token_type, tok, indent = tok_temp if tok in ['return', 'yield'] or level == 0 and \ '=' in tok and not tok in ['>=', '<=', '==', '!=']: # This means, there is an assignment here. # TODO there may be multiple assignments: a = b = 1 # initialize the first item result = Array(Array.EMPTY) top = result continue except TypeError: # the token is a Name, which has already been parsed tok = tok_temp brackets = {'(': Array.EMPTY, '[': Array.LIST, '{': Array.SET} is_call = lambda: result.__class__ == Call is_call_or_close = lambda: is_call() or close_brackets if isinstance(tok, Name): # names if is_chain: call = Call(tok, result) result = result.set_next_chain_call(call) is_chain = False close_brackets = False else: if close_brackets: result = result.parent close_brackets = False call = Call(tok, result) result.add_to_current_field(call) result = call elif tok in brackets.keys(): # brackets level += 1 if is_call_or_close(): result = Array(brackets[tok], result) result = result.parent.add_execution(result) close_brackets = False else: result = Array(brackets[tok], result) result.parent.add_to_current_field(result) elif tok == ':': if is_call_or_close(): result = result.parent close_brackets = False result.add_dictionary_key() elif tok == '.': if close_brackets: result = result.parent close_brackets = False is_chain = True elif tok == ',': if is_call_or_close(): result = result.parent close_brackets = False result.add_field() # important - it cannot be empty anymore if result.arr_type == Array.EMPTY: result.arr_type = Array.TUPLE elif tok in [')', '}', ']']: while is_call_or_close(): result = result.parent close_brackets = False if tok == '}' and not len(result): # this is a really special case - empty brackets {} are # always dictionaries and not sets. result.arr_type = Array.DICT level -= 1 #result = result.parent close_brackets = True elif tok in [tokenize.STRING, tokenize.NUMBER]: # TODO catch numbers and strings -> token_type and make # calls out of them if is_call_or_close(): result = result.parent close_brackets = False call = Call(tok, result) result.add_to_current_field(call) result = call result.add_to_current_field(tok) pass else: if is_call_or_close(): result = result.parent close_brackets = False result.add_to_current_field(tok) #print 'tok_end', tok_temp, result, close_brackets if level != 0: raise ParserError("Brackets don't match: %s. This is not normal " "behaviour. Please submit a bug" % level) self.assignment_calls = top return top class Call(object): """ The statement object of functions, to """ def __init__(self, name, parent=None): self.name = name # parent is not the oposite of next. The parent of c: a = [b.c] would # be an array. self.parent = parent self.next = None self.execution = None def set_next_chain_call(self, call): """ Adds another part of the statement""" self.next = call #print '\n\npar', call.parent, self.parent, type(call), type(self) call.parent = self.parent return call def add_execution(self, call): """ An execution is nothing else than brackets, with params in them, which shows access on the internals of this name. """ self.execution = call # there might be multiple executions, like a()[0], in that case, they # have the same parent. Otherwise it's not possible to parse proper. if self.parent.execution == self: call.parent = self.parent else: call.parent = self return call def generate_call_list(self): try: for name_part in self.name.names: yield name_part except AttributeError: yield self if self.execution is not None: for y in self.execution.generate_call_list(): yield y if self.next is not None: for y in self.next.generate_call_list(): yield y def __repr__(self): return "<%s: %s of %s>" % \ (self.__class__.__name__, self.name, self.parent) class Array(Call): """ Describes the different python types for an array, but also empty statements. In the Python syntax definitions this type is named 'atom'. http://docs.python.org/release/3.0.1/reference/grammar.html Array saves sub-arrays as well as normal operators and calls to methods. :param array_type: The type of an array, which can be one of the constants\ below. :type array_type: int """ EMPTY = object() TUPLE = object() LIST = object() DICT = object() SET = object() def __init__(self, arr_type, parent=None): super(Array, self).__init__(None, parent) self.arr_type = arr_type self.values = [] self.keys = [] def add_field(self): """ Just add a new field to the values. Each value has a sub-array, because there may be different tokens in one array. """ self.values.append([]) self.keys.append(None) def add_to_current_field(self, tok): """ Adds a token to the latest field (in content). """ if not self.values: # add the first field, this is done here, because if nothing # gets added, the list is empty, which is also needed sometimes. self.values.append([]) self.values[-1].append(tok) def add_dictionary_key(self): """ Only used for dictionaries, automatically adds the tokens added by now from the values to keys. """ self.arr_type = Array.DICT c = self._counter self.keys[c] = self.values[c] self.values[c] = [] def __len__(self): return len(self.values) def __getitem__(self, key): return self.values[key] def __iter__(self): if self.arr_type == self.DICT: return self.values.items().__iter__() else: return self.values.__iter__() def __repr__(self): if self.arr_type == self.EMPTY: temp = 'empty' elif self.arr_type == self.TUPLE: temp = 'tuple' elif self.arr_type == self.LIST: temp = 'list' elif self.arr_type == self.DICT: temp = 'dict' elif self.arr_type == self.SET: temp = 'set' return "<%s: %s of %s>" % \ (self.__class__.__name__, temp, self.parent) class NamePart(str): pass class Name(Simple): """ Used to define names in python. Which means the whole namespace/class/function stuff. So a name like "module.class.function" would result in an array of [module, class, function] """ def __init__(self, names, indent, line_nr, line_end): super(Name, self).__init__(indent, line_nr, line_end) self.names = tuple(NamePart(n) for n in names) def get_code(self): """ Returns the names in a full string format """ return ".".join(self.names) def __str__(self): return self.get_code() def __eq__(self, other): return self.names == other.names \ and self.indent == other.indent \ and self.line_nr == self.line_nr def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.names) + hash(self.indent) + hash(self.line_nr) def __len__(self): return len(self.names) class PyFuzzyParser(object): """ This class is used to parse a Python file, it then divides them into a class structure of different scopes. :param code: The codebase for the parser. :type code: str :param user_line: The line, the user is currently on. :type user_line: int """ def __init__(self, code, user_line=None): self.user_line = user_line self.code = code + '\n' # end with \n, because the parser needs it # initialize global Scope self.top = Scope(0, 0) self.scope = self.top self.current = (None, None, None) self.parse() def _parsedotname(self, pre_used_token=None): """ The dot name parser parses a name, variable or function and returns their names. :return: list of the names, token_type, nexttoken, start_indent, \ start_line. :rtype: (Name, int, str, int, int) """ names = [] if pre_used_token is None: token_type, tok, indent = self.next() start_line = self.line_nr if token_type != tokenize.NAME and tok != '*': return ([], token_type, tok, indent, start_line) else: token_type, tok, indent = pre_used_token start_line = self.line_nr names.append(tok) start_indent = indent while True: token_type, tok, indent = self.next() if tok != '.': break token_type, tok, indent = self.next() if token_type != tokenize.NAME: break names.append(tok) return (names, token_type, tok, start_indent, start_line) def _parse_value_list(self, pre_used_token=None): """ A value list is a comma separated list. This is used for: >>> for a,b,self.c in enumerate(test) TODO there may be multiple "sub" value lists e.g. (a,(b,c)). """ value_list = [] if pre_used_token: token_type, tok, indent = pre_used_token n, token_type, tok, start_indent, start_line = \ self._parsedotname(tok) if n: temp = Name(n, start_indent, start_line, self.line_nr) value_list.append() token_type, tok, indent = self.next() while tok != 'in' and token_type != tokenize.NEWLINE: n, token_type, tok, start_indent, start_line = \ self._parsedotname(self.current) if n: temp = Name(n, start_indent, start_line, self.line_nr) value_list.append(temp) if tok == 'in': break token_type, tok, indent = self.next() return (value_list, tok) def _parseimportlist(self): """ The parser for the imports. Unlike the class and function parse function, this returns no Import class, but rather an import list, which is then added later on. The reason, why this is not done in the same class lies in the nature of imports. There are two ways to write them: - from ... import ... - import ... To distinguish, this has to be processed after the parser. :return: List of imports. :rtype: list """ imports = [] while True: name, token_type, tok, start_indent, start_line = \ self._parsedotname() if not name: break name2 = None if tok == 'as': name2, token_type, tok, start_indent2, start_line = \ self._parsedotname() name2 = Name(name2, start_indent2, start_line, self.line_nr) i = Name(name, start_indent, start_line, self.line_nr) imports.append((i, name2)) while tok != "," and "\n" not in tok: token_type, tok, indent = self.next() if tok != ",": break return imports def _parseparen(self): """ Functions and Classes have params (which means for classes super-classes). They are parsed here and returned as Statements. :return: List of Statements :rtype: list """ names = [] tok = None while tok not in [')', ':']: stmt, tok = self._parse_statement(added_breaks=',') if stmt: names.append(stmt) return names def _parsefunction(self, indent): """ The parser for a text functions. Process the tokens, which follow a function definition. :return: Return a Scope representation of the tokens. :rtype: Function """ start_line = self.line_nr token_type, fname, ind = self.next() if token_type != tokenize.NAME: return None fname = Name([fname], ind, self.line_nr, self.line_nr) token_type, open, ind = self.next() if open != '(': return None params = self._parseparen() token_type, colon, ind = self.next() if colon != ':': return None return Function(fname, params, indent, start_line) def _parseclass(self, indent): """ The parser for a text class. Process the tokens, which follow a class definition. :return: Return a Scope representation of the tokens. :rtype: Class """ start_line = self.line_nr token_type, cname, ind = self.next() if token_type != tokenize.NAME: debug.dbg("class: syntax error - token is not a name@%s (%s: %s)" \ % (self.line_nr, tokenize.tok_name[token_type], cname)) return None cname = Name([cname], ind, self.line_nr, self.line_nr) super = [] token_type, next, ind = self.next() if next == '(': super = self._parseparen() elif next != ':': print "class: syntax error - %s@%s" % (cname, self.line_nr) return None return Class(cname, super, indent, start_line) def _parse_statement(self, pre_used_token=None, added_breaks=None): """ Parses statements like: >>> a = test(b) >>> a += 3 - 2 or b and so on. One row at a time. :param pre_used_token: The pre parsed token. :type pre_used_token: set :return: Statement + last parsed token. :rtype: (Statement, str) """ string = '' set_vars = [] used_funcs = [] used_vars = [] level = 0 # The level of parentheses is_return = None if pre_used_token: token_type, tok, indent = pre_used_token else: token_type, tok, indent = self.next() line_start = self.line_nr # the difference between "break" and "always break" is that the latter # will even break in parentheses. This is true for typical flow # commands like def and class and the imports, which will never be used # in a statement. breaks = ['\n', ':', ')'] always_break = [';', 'import', 'from', 'class', 'def', 'try', 'except', 'finally'] if added_breaks: breaks += added_breaks tok_list = [] while not (tok in always_break or tok in breaks and level <= 0): set_string = None #print 'parse_stmt', tok, tokenize.tok_name[token_type] tok_list.append(self.current) if tok == 'as': string += " %s " % tok token_type, tok, indent_dummy = self.next() if token_type == tokenize.NAME: path, token_type, tok, start_indent, start_line = \ self._parsedotname(self.current) n = Name(path, start_indent, start_line, self.line_nr) set_vars.append(n) tok_list.append(n) string += ".".join(path) continue elif token_type == tokenize.NAME: #print 'is_name', tok if tok in ['return', 'yield', 'del', 'raise', 'assert']: set_string = tok + ' ' if tok in ['return', 'yield']: is_return = tok elif tok in ['print', 'exec']: # delete those statements, just let the rest stand there set_string = '' else: path, token_type, tok, start_indent, start_line = \ self._parsedotname(self.current) n = Name(path, start_indent, start_line, self.line_nr) tok_list.pop() # remove last entry, because we add Name tok_list.append(n) if tok == '(': # it must be a function used_funcs.append(n) else: used_vars.append(n) if string and re.match(r'[\w\d\'"]', string[-1]): string += ' ' string += ".".join(path) #print 'parse_stmt', tok, tokenize.tok_name[token_type] continue elif '=' in tok and not tok in ['>=', '<=', '==', '!=']: # there has been an assignement -> change vars set_vars = used_vars used_vars = [] elif tok in ['{', '(', '[']: level += 1 elif tok in ['}', ')', ']']: level -= 1 if set_string is not None: string = set_string else: string += tok # caution: don't use indent anywhere, # it's not working with the name parsing token_type, tok, indent_dummy = self.next() if not string: return None, tok #print 'new_stat', string, set_vars, used_funcs, used_vars stmt = Statement(string, set_vars, used_funcs, used_vars,\ tok_list, indent, line_start, self.line_nr) if is_return: # add returns to the scope func = self.scope.get_parent_until(Function) func.returns.append(stmt) if is_return == 'yield': func.is_generator = True return stmt, tok def next(self): """ Generate the next tokenize pattern. """ type, tok, position, dummy, self.parserline = self.gen.next() (self.line_nr, indent) = position if self.line_nr == self.user_line: debug.dbg('user scope found [%s] =%s' % \ (self.parserline.replace('\n', ''), repr(self.scope))) self.user_scope = self.scope self.last_token = self.current self.current = (type, tok, indent) return self.current def parse(self): """ The main part of the program. It analyzes the given code-text and returns a tree-like scope. For a more detailed description, see the class description. :param text: The code which should be parsed. :param type: str :raises: IndentationError """ buf = cStringIO.StringIO(self.code) self.gen = tokenize.generate_tokens(buf.readline) self.currentscope = self.scope extended_flow = ['else', 'elif', 'except', 'finally'] statement_toks = ['{', '[', '(', '`'] decorators = [] freshscope = True while True: try: token_type, tok, indent = self.next() debug.dbg('main: tok=[%s] type=[%s] indent=[%s]'\ % (tok, token_type, indent)) while token_type == tokenize.DEDENT and self.scope != self.top: debug.dbg('dedent', self.scope) token_type, tok, indent = self.next() if indent <= self.scope.indent: self.scope.line_end = self.line_nr self.scope = self.scope.parent # check again for unindented stuff. this is true for syntax # errors. only check for names, because thats relevant here. If # some docstrings are not indented, I don't care. while indent <= self.scope.indent \ and token_type in [tokenize.NAME] \ and self.scope != self.top: debug.warning('syntax error: dedent @%s - %s<=%s', \ (self.line_nr, indent, self.scope.indent)) self.scope.line_end = self.line_nr self.scope = self.scope.parent start_line = self.line_nr if tok == 'def': func = self._parsefunction(indent) if func is None: debug.warning("function: syntax error@%s" % self.line_nr) continue debug.dbg("new scope: function %s" % (func.name)) freshscope = True self.scope = self.scope.add_scope(func, decorators) decorators = [] elif tok == 'class': cls = self._parseclass(indent) if cls is None: debug.warning("class: syntax error@%s" % self.line_nr) continue freshscope = True debug.dbg("new scope: class %s" % (cls.name)) self.scope = self.scope.add_scope(cls, decorators) decorators = [] # import stuff elif tok == 'import': imports = self._parseimportlist() for m, alias in imports: i = Import(indent, start_line, self.line_nr, m, alias) self.scope.add_import(i) freshscope = False elif tok == 'from': mod, token_type, tok, start_indent, start_line2 = \ self._parsedotname() if not mod or tok != "import": debug.warning("from: syntax error@%s" % self.line_nr) continue mod = Name(mod, start_indent, start_line2, self.line_nr) names = self._parseimportlist() for name, alias in names: star = name.names[0] == '*' if star: name = None i = Import(indent, start_line, self.line_nr, name, alias, mod, star) self.scope.add_import(i) freshscope = False #loops elif tok == 'for': value_list, tok = self._parse_value_list() if tok == 'in': statement, tok = self._parse_statement() if tok == ':': f = Flow('for', statement, indent, self.line_nr, \ value_list) debug.dbg("new scope: flow for@%s" % (f.line_nr)) self.scope = self.scope.add_statement(f) elif tok in ['if', 'while', 'try', 'with'] + extended_flow: added_breaks = [] command = tok if command == 'except': added_breaks += (',') statement, tok = \ self._parse_statement(added_breaks=added_breaks) if tok in added_breaks: # the except statement defines a var # this is only true for python 2 path, token_type, tok, start_indent, start_line2 = \ self._parsedotname() n = Name(path, start_indent, start_line2, self.line_nr) statement.set_vars.append(n) statement.code += ',' + n.get_code() if tok == ':': f = Flow(command, statement, indent, self.line_nr) debug.dbg("new scope: flow %s@%s" % (command, self.line_nr)) if command in extended_flow: # the last statement has to be another part of # the flow statement self.scope = self.scope.statements[-1].set_next(f) else: self.scope = self.scope.add_statement(f) # globals elif tok == 'global': stmt, tok = self._parse_statement(self.current) if stmt: self.scope.add_statement(stmt) debug.dbg('global_vars', stmt.used_vars) for name in stmt.used_vars: # add the global to the top, because there it is # important. self.top.add_global(name) # decorator elif tok == '@': stmt, tok = self._parse_statement() decorators.append(stmt) elif tok == 'pass': continue # check for docstrings elif token_type == tokenize.STRING: if freshscope: self.scope.add_docstr(tok) # this is the main part - a name can be a function or a normal # var, which can follow anything. but this is done by the # statement parser. elif token_type == tokenize.NAME or tok in statement_toks: stmt, tok = self._parse_statement(self.current) if stmt: self.scope.add_statement(stmt) freshscope = False #else: #print "_not_implemented_", tok, self.parserline except StopIteration: # thrown on EOF break #except StopIteration: # debug.dbg("parse error: %s, %s @ %s" % # (sys.exc_info()[0], sys.exc_info()[1], self.parserline)) return self.top