Files
jedi/parsing.py

1245 lines
43 KiB
Python

"""
Maintainer: David Halter <davidhalter88@gmail.com>
Version: 0.1
py_fuzzyparser parses python code, with the goal of a good representation of
the code within a tree structure. Variables, Classes and Functions are defined
within this tree structure, containing their exact locations in the code.
It is also a primary goal to work with code which contains syntax errors.
This behaviour may be used to refactor, modify, search and complete code.
To understand this code it is extremely important to understand the behaviour
of the python module 'tokenize'.
This original codebase of this parser, which has been refactored and heavily
changed, was programmed by Aaron Griffin <aaronmgriffin@gmail.com>.
**The structure of the following script:**
A Scope has
- imports (Import)
- subscopes (Scope, Class, Function, Flow)
- statements (Statement)
All those classes are being generated by PyFuzzyParser, which takes python text
as input.
Ignored statements:
- print (no use for it, just slows down)
- exec (dangerous - not controllable)
TODO take special care for future imports
TODO check meta classes
TODO evaluate options to either replace tokenize or change its behavior for
multiline parentheses (if they don't close, there must be a break somewhere)
"""
import tokenize
import cStringIO
import re
import debug
class ParserError(Exception):
pass
def indent_block(text, indention=" "):
""" This function indents a text block with a default of four spaces """
temp = ''
while text and text[-1] == '\n':
temp += text[-1]
text = text[:-1]
lines = text.split('\n')
return '\n'.join(map(lambda s: indention + s, lines)) + temp
class Simple(object):
"""
The super class for Scope, Import, Name and Statement. Every object in
the parser tree inherits from this class.
"""
def __init__(self, indent, line_nr, line_end=None):
self.indent = indent
self.line_nr = line_nr
self.line_end = line_end
self.parent = None
def get_parent_until(self, *classes):
""" Takes always the parent, until one class """
scope = self
while not (scope.parent is None or scope.__class__ in classes):
scope = scope.parent
return scope
def __repr__(self):
code = self.get_code().replace('\n', ' ')
return "<%s: %s@%s>" % \
(self.__class__.__name__, code, self.line_nr)
class Scope(Simple):
"""
Super class for the parser tree, which represents the state of a python
text file.
A Scope manages and owns its subscopes, which are classes and functions, as
well as variables and imports. It is used to access the structure of python
files.
:param indent: The indent level of the flow statement.
:type indent: int
:param line_nr: Line number of the flow statement.
:type line_nr: int
:param docstr: The docstring for the current Scope.
:type docstr: str
"""
def __init__(self, indent, line_nr, docstr=''):
super(Scope, self).__init__(indent, line_nr)
self.subscopes = []
self.imports = []
self.statements = []
self.global_vars = []
self.docstr = docstr
def add_scope(self, sub, decorators):
# print 'push scope: [%s@%s]' % (sub.line_nr, sub.indent)
sub.parent = self
sub.decorators = decorators
self.subscopes.append(sub)
return sub
def add_statement(self, stmt):
"""
Used to add a Statement or a Scope.
A statement would be a normal command (Statement) or a Scope (Flow).
"""
stmt.parent = self
self.statements.append(stmt)
return stmt
def add_docstr(self, string):
""" Clean up a docstring """
# TODO use prefixes, to format the doc strings
# scan for string prefixes like r, u, etc.
index1 = string.find("'")
index2 = string.find('"')
index = index1 if index1 < index2 and index1 > -1 else index2
prefix = string[:index]
d = string[index:]
debug.dbg('add_docstr', d, prefix)
# now clean docstr
d = d.replace('\n', ' ')
d = d.replace('\t', ' ')
while d.find(' ') > -1:
d = d.replace(' ', ' ')
while d[0] in '"\'\t ':
d = d[1:]
while d[-1] in '"\'\t ':
d = d[:-1]
debug.dbg("Scope(%s)::docstr = %s" % (self, d))
self.docstr = d
def add_import(self, imp):
self.imports.append(imp)
imp.parent = self
def add_global(self, name):
"""
Global means in these context a function (subscope) which has a global
statement.
This is only relevant for the top scope.
:param name: The name of the global.
:type name: Name
"""
self.global_vars.append(name)
# set no parent here, because globals are not defined in this scope.
def get_code(self, first_indent=False, indention=" "):
"""
:return: Returns the code of the current scope.
:rtype: str
"""
string = ""
if len(self.docstr) > 0:
string += '"""' + self.docstr + '"""\n'
for i in self.imports:
string += i.get_code()
for sub in self.subscopes:
#string += str(sub.line_nr)
string += sub.get_code(first_indent=True, indention=indention)
for stmt in self.statements:
string += stmt.get_code()
if first_indent:
string = indent_block(string, indention=indention)
return string
def get_set_vars(self):
"""
Get all the names, that are active and accessible in the current
scope.
:return: list of Name
:rtype: list
"""
n = []
for stmt in self.statements:
try:
n += stmt.get_set_vars(True)
except TypeError:
n += stmt.get_set_vars()
# function and class names
n += [s.name for s in self.subscopes]
n += self.global_vars
for i in self.imports:
n += i.get_names()
return n
def get_defined_names(self):
return [n for n in self.get_set_vars() if len(n) == 1]
def is_empty(self):
"""
:return: True if there are no subscopes, imports and statements.
:rtype: bool
"""
return not (self.imports or self.subscopes or self.statements)
def get_simple_for_line(self, line):
""" Get the Simple objects, which are on the line. """
simple = []
for s in self.statements + self.imports:
if s.line_nr <= line <= s.line_end:
simple.append(s)
return simple
def __repr__(self):
try:
name = self.name
except:
try:
name = self.command
except:
name = 'global'
return "<%s: %s@%s-%s>" % \
(self.__class__.__name__, name, self.line_nr, self.line_end)
class Class(Scope):
"""
Used to store the parsed contents of a python class.
:param name: The Class name.
:type name: string
:param name: The super classes of a Class.
:type name: list
:param indent: The indent level of the flow statement.
:type indent: int
:param line_nr: Line number of the flow statement.
:type line_nr: int
:param docstr: The docstring for the current Scope.
:type docstr: str
"""
def __init__(self, name, supers, indent, line_nr, docstr=''):
super(Class, self).__init__(indent, line_nr, docstr)
self.name = name
name.parent = self
self.supers = supers
for s in self.supers:
s.parent = self
self.decorators = []
def get_code(self, first_indent=False, indention=" "):
str = "\n".join('@' + stmt.get_code() for stmt in self.decorators)
str += 'class %s' % (self.name)
if len(self.supers) > 0:
sup = ','.join(stmt.code for stmt in self.supers)
str += '(%s)' % sup
str += ':\n'
str += super(Class, self).get_code(True, indention)
if self.is_empty():
str += "pass\n"
return str
class Function(Scope):
"""
Used to store the parsed contents of a python function.
:param name: The Function name.
:type name: string
:param params: The parameters (Statement) of a Function.
:type name: list
:param indent: The indent level of the flow statement.
:type indent: int
:param line_nr: Line number of the flow statement.
:type line_nr: int
:param docstr: The docstring for the current Scope.
:type docstr: str
"""
def __init__(self, name, params, indent, line_nr, docstr=''):
Scope.__init__(self, indent, line_nr, docstr)
self.name = name
name.parent = self
self.params = params
for p in params:
p.parent = self
self.decorators = []
self.returns = []
is_generator = False
def get_code(self, first_indent=False, indention=" "):
str = "\n".join('@' + stmt.get_code() for stmt in self.decorators)
params = ','.join([stmt.code for stmt in self.params])
str += "def %s(%s):\n" % (self.name, params)
str += super(Function, self).get_code(True, indention)
if self.is_empty():
str += "pass\n"
return str
def get_set_vars(self):
n = []
for i, p in enumerate(self.params):
n += p.set_vars or p.used_vars
n += super(Function, self).get_set_vars()
return n
class Flow(Scope):
"""
Used to describe programming structure - flow statements,
which indent code, but are not classes or functions:
- for
- while
- if
- try
- with
Therefore statements like else, except and finally are also here,
they are now saved in the root flow elements, but in the next variable.
:param command: The flow command, if, while, else, etc.
:type command: str
:param statement: The statement after the flow comand -> while 'statement'.
:type statement: Statement
:param indent: The indent level of the flow statement.
:type indent: int
:param line_nr: Line number of the flow statement.
:type line_nr: int
:param set_vars: Local variables used in the for loop (only there).
:type set_vars: list
"""
def __init__(self, command, statement, indent, line_nr, set_vars=None):
super(Flow, self).__init__(indent, line_nr, '')
self.command = command
self.statement = statement
if statement:
statement.parent = self
if set_vars == None:
self.set_vars = []
else:
self.set_vars = set_vars
for s in self.set_vars:
s.parent = self
self.next = None
def get_code(self, first_indent=False, indention=" "):
if self.set_vars:
vars = ",".join(map(lambda x: x.get_code(), self.set_vars))
vars += ' in '
else:
vars = ''
if self.statement:
stmt = self.statement.get_code(new_line=False)
else:
stmt = ''
str = "%s %s%s:\n" % (self.command, vars, stmt)
str += super(Flow, self).get_code(True, indention)
if self.next:
str += self.next.get_code()
return str
def get_set_vars(self, is_internal_call=False):
"""
Get the names for the flow. This includes also a call to the super
class.
:param is_internal_call: defines an option for internal files to crawl\
through this class. Normally it will just call its superiors, to\
generate the output.
"""
if is_internal_call:
n = []
n += self.set_vars
if self.statement:
n += self.statement.set_vars
if self.next:
n += self.next.get_set_vars(is_internal_call)
n += super(Flow, self).get_set_vars()
return n
else:
return self.get_parent_until(Class, Function).get_set_vars()
def set_next(self, next):
""" Set the next element in the flow, those are else, except, etc. """
if self.next:
return self.next.set_next(next)
else:
self.next = next
next.parent = self.parent
return next
class Import(Simple):
"""
Stores the imports of any Scopes.
>>> 1+1
2
:param line_nr: Line number.
:type line_nr: int
:param namespace: The import, can be empty if a star is given
:type namespace: Name
:param alias: The alias of a namespace(valid in the current namespace).
:type alias: Name
:param from_ns: Like the namespace, can be equally used.
:type from_ns: Name
:param star: If a star is used -> from time import *.
:type star: bool
"""
def __init__(self, indent, line_nr, line_end, namespace, alias='', \
from_ns='', star=False):
super(Import, self).__init__(indent, line_nr, line_end)
self.namespace = namespace
if namespace:
namespace.parent = self
self.alias = alias
if alias:
alias.parent = self
self.from_ns = from_ns
if from_ns:
from_ns.parent = self
self.star = star
def get_code(self):
if self.alias:
ns_str = "%s as %s" % (self.namespace, self.alias)
else:
ns_str = str(self.namespace)
if self.from_ns:
if self.star:
ns_str = '*'
return "from %s import %s" % (self.from_ns, ns_str) + '\n'
else:
return "import " + ns_str + '\n'
def get_names(self):
if self.star:
return [self]
return [self.alias] if self.alias else [self.namespace]
class Statement(Simple):
"""
This is the class for all the possible statements. Which means, this class
stores pretty much all the Python code, except functions, classes, imports,
and flow functions like if, for, etc.
:param code: The full code of a statement. This is import, if one wants \
to execute the code at some level.
:param code: str
:param set_vars: The variables which are defined by the statement.
:param set_vars: str
:param used_funcs: The functions which are used by the statement.
:param used_funcs: str
:param used_vars: The variables which are used by the statement.
:param used_vars: str
:param token_list: Token list which is also peppered with Name.
:param token_list: list
:param indent: The indent level of the flow statement.
:type indent: int
:param line_nr: Line number of the flow statement.
:type line_nr: int
"""
def __init__(self, code, set_vars, used_funcs, used_vars, token_list,
indent, line_nr, line_end):
super(Statement, self).__init__(indent, line_nr, line_end)
self.code = code
self.set_vars = set_vars
self.used_funcs = used_funcs
self.used_vars = used_vars
self.token_list = token_list
for s in set_vars + used_funcs + used_vars:
s.parent = self
# cache
self.assignment_calls = None
def get_code(self, new_line=True):
if new_line:
return self.code + '\n'
else:
return self.code
def get_set_vars(self):
""" Get the names for the statement. """
return self.set_vars
def get_assignment_calls(self):
"""
This is not done in the main parser, because it might be slow and
most of the statements won't need this data anyway. This is something
'like' a lazy execution.
"""
if self.assignment_calls:
return self.assignment_calls
result = Array(Array.EMPTY)
top = result
level = 0
is_chain = False
close_brackets = False
debug.dbg('tok_list', self.token_list)
for i, tok_temp in enumerate(self.token_list):
#print 'tok', tok_temp, result
try:
token_type, tok, indent = tok_temp
if tok in ['return', 'yield'] or level == 0 and \
'=' in tok and not tok in ['>=', '<=', '==', '!=']:
# This means, there is an assignment here.
# TODO there may be multiple assignments: a = b = 1
# initialize the first item
result = Array(Array.EMPTY)
top = result
continue
except TypeError:
# the token is a Name, which has already been parsed
tok = tok_temp
brackets = {'(': Array.EMPTY, '[': Array.LIST, '{': Array.SET}
is_call = lambda: result.__class__ == Call
is_call_or_close = lambda: is_call() or close_brackets
if isinstance(tok, Name): # names
if is_chain:
call = Call(tok, result)
result = result.set_next_chain_call(call)
is_chain = False
close_brackets = False
else:
if close_brackets:
result = result.parent
close_brackets = False
call = Call(tok, result)
result.add_to_current_field(call)
result = call
elif tok in brackets.keys(): # brackets
level += 1
if is_call_or_close():
result = Array(brackets[tok], result)
result = result.parent.add_execution(result)
close_brackets = False
else:
result = Array(brackets[tok], result)
result.parent.add_to_current_field(result)
elif tok == ':':
if is_call_or_close():
result = result.parent
close_brackets = False
result.add_dictionary_key()
elif tok == '.':
if close_brackets:
result = result.parent
close_brackets = False
is_chain = True
elif tok == ',':
if is_call_or_close():
result = result.parent
close_brackets = False
result.add_field()
# important - it cannot be empty anymore
if result.arr_type == Array.EMPTY:
result.arr_type = Array.TUPLE
elif tok in [')', '}', ']']:
while is_call_or_close():
result = result.parent
close_brackets = False
if tok == '}' and not len(result):
# this is a really special case - empty brackets {} are
# always dictionaries and not sets.
result.arr_type = Array.DICT
level -= 1
#result = result.parent
close_brackets = True
elif tok in [tokenize.STRING, tokenize.NUMBER]:
# TODO catch numbers and strings -> token_type and make
# calls out of them
if is_call_or_close():
result = result.parent
close_brackets = False
call = Call(tok, result)
result.add_to_current_field(call)
result = call
result.add_to_current_field(tok)
pass
else:
if is_call_or_close():
result = result.parent
close_brackets = False
result.add_to_current_field(tok)
#print 'tok_end', tok_temp, result, close_brackets
if level != 0:
raise ParserError("Brackets don't match: %s. This is not normal "
"behaviour. Please submit a bug" % level)
self.assignment_calls = top
return top
class Call(object):
""" The statement object of functions, to """
def __init__(self, name, parent=None):
self.name = name
# parent is not the oposite of next. The parent of c: a = [b.c] would
# be an array.
self.parent = parent
self.next = None
self.execution = None
def set_next_chain_call(self, call):
""" Adds another part of the statement"""
self.next = call
#print '\n\npar', call.parent, self.parent, type(call), type(self)
call.parent = self.parent
return call
def add_execution(self, call):
"""
An execution is nothing else than brackets, with params in them, which
shows access on the internals of this name.
"""
self.execution = call
# there might be multiple executions, like a()[0], in that case, they
# have the same parent. Otherwise it's not possible to parse proper.
if self.parent.execution == self:
call.parent = self.parent
else:
call.parent = self
return call
def generate_call_list(self):
try:
for name_part in self.name.names:
yield name_part
except AttributeError:
yield self
if self.execution is not None:
for y in self.execution.generate_call_list():
yield y
if self.next is not None:
for y in self.next.generate_call_list():
yield y
def __repr__(self):
return "<%s: %s of %s>" % \
(self.__class__.__name__, self.name, self.parent)
class Array(Call):
"""
Describes the different python types for an array, but also empty
statements. In the Python syntax definitions this type is named 'atom'.
http://docs.python.org/release/3.0.1/reference/grammar.html
Array saves sub-arrays as well as normal operators and calls to methods.
:param array_type: The type of an array, which can be one of the constants\
below.
:type array_type: int
"""
EMPTY = object()
TUPLE = object()
LIST = object()
DICT = object()
SET = object()
def __init__(self, arr_type, parent=None):
super(Array, self).__init__(None, parent)
self.arr_type = arr_type
self.values = []
self.keys = []
def add_field(self):
"""
Just add a new field to the values.
Each value has a sub-array, because there may be different tokens in
one array.
"""
self.values.append([])
self.keys.append(None)
def add_to_current_field(self, tok):
""" Adds a token to the latest field (in content). """
if not self.values:
# add the first field, this is done here, because if nothing
# gets added, the list is empty, which is also needed sometimes.
self.values.append([])
self.values[-1].append(tok)
def add_dictionary_key(self):
"""
Only used for dictionaries, automatically adds the tokens added by now
from the values to keys.
"""
self.arr_type = Array.DICT
c = self._counter
self.keys[c] = self.values[c]
self.values[c] = []
def __len__(self):
return len(self.values)
def __getitem__(self, key):
return self.values[key]
def __iter__(self):
if self.arr_type == self.DICT:
return self.values.items().__iter__()
else:
return self.values.__iter__()
def __repr__(self):
if self.arr_type == self.EMPTY:
temp = 'empty'
elif self.arr_type == self.TUPLE:
temp = 'tuple'
elif self.arr_type == self.LIST:
temp = 'list'
elif self.arr_type == self.DICT:
temp = 'dict'
elif self.arr_type == self.SET:
temp = 'set'
return "<%s: %s of %s>" % \
(self.__class__.__name__, temp, self.parent)
class NamePart(str):
pass
class Name(Simple):
"""
Used to define names in python.
Which means the whole namespace/class/function stuff.
So a name like "module.class.function"
would result in an array of [module, class, function]
"""
def __init__(self, names, indent, line_nr, line_end):
super(Name, self).__init__(indent, line_nr, line_end)
self.names = tuple(NamePart(n) for n in names)
def get_code(self):
""" Returns the names in a full string format """
return ".".join(self.names)
def __str__(self):
return self.get_code()
def __eq__(self, other):
return self.names == other.names \
and self.indent == other.indent \
and self.line_nr == self.line_nr
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.names) + hash(self.indent) + hash(self.line_nr)
def __len__(self):
return len(self.names)
class PyFuzzyParser(object):
"""
This class is used to parse a Python file, it then divides them into a
class structure of different scopes.
:param code: The codebase for the parser.
:type code: str
:param user_line: The line, the user is currently on.
:type user_line: int
"""
def __init__(self, code, user_line=None):
self.user_line = user_line
self.code = code + '\n' # end with \n, because the parser needs it
# initialize global Scope
self.top = Scope(0, 0)
self.scope = self.top
self.current = (None, None, None)
self.parse()
def _parsedotname(self, pre_used_token=None):
"""
The dot name parser parses a name, variable or function and returns
their names.
:return: list of the names, token_type, nexttoken, start_indent, \
start_line.
:rtype: (Name, int, str, int, int)
"""
names = []
if pre_used_token is None:
token_type, tok, indent = self.next()
start_line = self.line_nr
if token_type != tokenize.NAME and tok != '*':
return ([], tok)
else:
token_type, tok, indent = pre_used_token
start_line = self.line_nr
names.append(tok)
start_indent = indent
while True:
token_type, tok, indent = self.next()
if tok != '.':
break
token_type, tok, indent = self.next()
if token_type != tokenize.NAME:
break
names.append(tok)
return (names, token_type, tok, start_indent, start_line)
def _parse_value_list(self, pre_used_token=None):
"""
A value list is a comma separated list. This is used for:
>>> for a,b,self.c in enumerate(test)
TODO there may be multiple "sub" value lists e.g. (a,(b,c)).
"""
value_list = []
if pre_used_token:
token_type, tok, indent = pre_used_token
n, token_type, tok, start_indent, start_line = \
self._parsedotname(tok)
if n:
temp = Name(n, start_indent, start_line, self.line_nr)
value_list.append()
token_type, tok, indent = self.next()
while tok != 'in' and token_type != tokenize.NEWLINE:
n, token_type, tok, start_indent, start_line = \
self._parsedotname(self.current)
if n:
temp = Name(n, start_indent, start_line, self.line_nr)
value_list.append(temp)
if tok == 'in':
break
token_type, tok, indent = self.next()
return (value_list, tok)
def _parseimportlist(self):
"""
The parser for the imports. Unlike the class and function parse
function, this returns no Import class, but rather an import list,
which is then added later on.
The reason, why this is not done in the same class lies in the nature
of imports. There are two ways to write them:
- from ... import ...
- import ...
To distinguish, this has to be processed after the parser.
:return: List of imports.
:rtype: list
"""
imports = []
while True:
name, token_type, tok, start_indent, start_line = \
self._parsedotname()
if not name:
break
name2 = None
if tok == 'as':
name2, token_type, tok, start_indent2, start_line = \
self._parsedotname()
name2 = Name(name2, start_indent2, start_line, self.line_nr)
i = Name(name, start_indent, start_line, self.line_nr)
imports.append((i, name2))
while tok != "," and "\n" not in tok:
token_type, tok, indent = self.next()
if tok != ",":
break
return imports
def _parseparen(self):
"""
Functions and Classes have params (which means for classes
super-classes). They are parsed here and returned as Statements.
:return: List of Statements
:rtype: list
"""
names = []
tok = None
while tok not in [')', '\n', ':']:
stmt, tok = self._parse_statement(added_breaks=',')
if stmt:
names.append(stmt)
return names
def _parsefunction(self, indent):
"""
The parser for a text functions. Process the tokens, which follow a
function definition.
:return: Return a Scope representation of the tokens.
:rtype: Function
"""
start_line = self.line_nr
token_type, fname, ind = self.next()
if token_type != tokenize.NAME:
return None
fname = Name([fname], ind, self.line_nr, self.line_nr)
token_type, open, ind = self.next()
if open != '(':
return None
params = self._parseparen()
token_type, colon, ind = self.next()
if colon != ':':
return None
return Function(fname, params, indent, start_line)
def _parseclass(self, indent):
"""
The parser for a text class. Process the tokens, which follow a
class definition.
:return: Return a Scope representation of the tokens.
:rtype: Class
"""
start_line = self.line_nr
token_type, cname, ind = self.next()
if token_type != tokenize.NAME:
debug.dbg("class: syntax error - token is not a name@%s (%s: %s)" \
% (self.line_nr, tokenize.tok_name[token_type], cname))
return None
cname = Name([cname], ind, self.line_nr, self.line_nr)
super = []
token_type, next, ind = self.next()
if next == '(':
super = self._parseparen()
elif next != ':':
print "class: syntax error - %s@%s" % (cname, self.line_nr)
return None
return Class(cname, super, indent, start_line)
def _parse_statement(self, pre_used_token=None, added_breaks=None):
"""
Parses statements like:
>>> a = test(b)
>>> a += 3 - 2 or b
and so on. One row at a time.
:param pre_used_token: The pre parsed token.
:type pre_used_token: set
:return: Statement + last parsed token.
:rtype: (Statement, str)
"""
string = ''
set_vars = []
used_funcs = []
used_vars = []
level = 0 # The level of parentheses
is_return = None
if pre_used_token:
token_type, tok, indent = pre_used_token
else:
token_type, tok, indent = self.next()
line_start = self.line_nr
# the difference between "break" and "always break" is that the latter
# will even break in parentheses. This is true for typical flow
# commands like def and class and the imports, which will never be used
# in a statement.
breaks = ['\n', ':', ')']
always_break = [';', 'import', 'from', 'class', 'def', 'try', 'except',
'finally']
if added_breaks:
breaks += added_breaks
tok_list = []
while not (tok in always_break or tok in breaks and level <= 0):
set_string = None
#print 'parse_stmt', tok, tokenize.tok_name[token_type]
tok_list.append(self.current)
if tok == 'as':
string += " %s " % tok
token_type, tok, indent_dummy = self.next()
if token_type == tokenize.NAME:
path, token_type, tok, start_indent, start_line = \
self._parsedotname(self.current)
n = Name(path, start_indent, start_line, self.line_nr)
set_vars.append(n)
tok_list.append(n)
string += ".".join(path)
continue
elif token_type == tokenize.NAME:
#print 'is_name', tok
if tok in ['return', 'yield', 'del', 'raise', 'assert']:
set_string = tok + ' '
if tok in ['return', 'yield']:
is_return = tok
elif tok in ['print', 'exec']:
# delete those statements, just let the rest stand there
set_string = ''
else:
path, token_type, tok, start_indent, start_line = \
self._parsedotname(self.current)
n = Name(path, start_indent, start_line, self.line_nr)
tok_list.pop() # remove last entry, because we add Name
tok_list.append(n)
if tok == '(':
# it must be a function
used_funcs.append(n)
else:
used_vars.append(n)
if string and re.match(r'[\w\d\'"]', string[-1]):
string += ' '
string += ".".join(path)
#print 'parse_stmt', tok, tokenize.tok_name[token_type]
continue
elif '=' in tok and not tok in ['>=', '<=', '==', '!=']:
# there has been an assignement -> change vars
set_vars = used_vars
used_vars = []
elif tok in ['{', '(', '[']:
level += 1
elif tok in ['}', ')', ']']:
level -= 1
if set_string is not None:
string = set_string
else:
string += tok
# caution: don't use indent anywhere,
# it's not working with the name parsing
token_type, tok, indent_dummy = self.next()
if not string:
return None, tok
#print 'new_stat', string, set_vars, used_funcs, used_vars
stmt = Statement(string, set_vars, used_funcs, used_vars,\
tok_list, indent, line_start, self.line_nr)
if is_return:
# add returns to the scope
func = self.scope.get_parent_until(Function)
func.returns.append(stmt)
if is_return == 'yield':
func.is_generator = True
return stmt, tok
def next(self):
""" Generate the next tokenize pattern. """
type, tok, position, dummy, self.parserline = self.gen.next()
(self.line_nr, indent) = position
if self.line_nr == self.user_line:
debug.dbg('user scope found [%s] =%s' % \
(self.parserline.replace('\n', ''), repr(self.scope)))
self.user_scope = self.scope
self.last_token = self.current
self.current = (type, tok, indent)
return self.current
def parse(self):
"""
The main part of the program. It analyzes the given code-text and
returns a tree-like scope. For a more detailed description, see the
class description.
:param text: The code which should be parsed.
:param type: str
:raises: IndentationError
"""
buf = cStringIO.StringIO(self.code)
self.gen = tokenize.generate_tokens(buf.readline)
self.currentscope = self.scope
extended_flow = ['else', 'except', 'finally']
statement_toks = ['{', '[', '(', '`']
decorators = []
freshscope = True
while True:
try:
token_type, tok, indent = self.next()
debug.dbg('main: tok=[%s] type=[%s] indent=[%s]'\
% (tok, token_type, indent))
while token_type == tokenize.DEDENT and self.scope != self.top:
debug.dbg('dedent', self.scope)
token_type, tok, indent = self.next()
if indent <= self.scope.indent:
self.scope.line_end = self.line_nr
self.scope = self.scope.parent
# check again for unindented stuff. this is true for syntax
# errors. only check for names, because thats relevant here. If
# some docstrings are not indented, I don't care.
while indent <= self.scope.indent \
and token_type in [tokenize.NAME] \
and self.scope != self.top:
debug.dbg('syntax_err, dedent @%s - %s<=%s', \
(self.line_nr, indent, self.scope.indent))
self.scope.line_end = self.line_nr
self.scope = self.scope.parent
start_line = self.line_nr
if tok == 'def':
func = self._parsefunction(indent)
if func is None:
print "function: syntax error@%s" % self.line_nr
continue
debug.dbg("new scope: function %s" % (func.name))
freshscope = True
self.scope = self.scope.add_scope(func, decorators)
decorators = []
elif tok == 'class':
cls = self._parseclass(indent)
if cls is None:
continue
freshscope = True
debug.dbg("new scope: class %s" % (cls.name))
self.scope = self.scope.add_scope(cls, decorators)
decorators = []
# import stuff
elif tok == 'import':
imports = self._parseimportlist()
for m, alias in imports:
i = Import(indent, start_line, self.line_nr, m, alias)
self.scope.add_import(i)
freshscope = False
elif tok == 'from':
mod, token_type, tok, start_indent, start_line2 = \
self._parsedotname()
if not mod or tok != "import":
print "from: syntax error..."
continue
mod = Name(mod, start_indent, start_line2, self.line_nr)
names = self._parseimportlist()
for name, alias in names:
star = name.names[0] == '*'
if star:
name = None
i = Import(indent, start_line, self.line_nr, name,
alias, mod, star)
self.scope.add_import(i)
freshscope = False
#loops
elif tok == 'for':
value_list, tok = self._parse_value_list()
if tok == 'in':
statement, tok = self._parse_statement()
if tok == ':':
f = Flow('for', statement, indent, self.line_nr, \
value_list)
debug.dbg("new scope: flow for@%s" % (f.line_nr))
self.scope = self.scope.add_statement(f)
elif tok in ['if', 'while', 'try', 'with'] + extended_flow:
added_breaks = []
command = tok
if command == 'except':
added_breaks += (',')
statement, tok = \
self._parse_statement(added_breaks=added_breaks)
if tok in added_breaks:
# the except statement defines a var
# this is only true for python 2
path, token_type, tok, start_indent, start_line2 = \
self._parsedotname()
n = Name(path, start_indent, start_line2, self.line_nr)
statement.set_vars.append(n)
statement.code += ',' + n.get_code()
if tok == ':':
f = Flow(command, statement, indent, self.line_nr)
debug.dbg("new scope: flow %s@%s"
% (command, self.line_nr))
if command in extended_flow:
# the last statement has to be another part of
# the flow statement
self.scope = self.scope.statements[-1].set_next(f)
else:
self.scope = self.scope.add_statement(f)
# globals
elif tok == 'global':
stmt, tok = self._parse_statement(self.current)
if stmt:
self.scope.add_statement(stmt)
debug.dbg('global_vars', stmt.used_vars)
for name in stmt.used_vars:
# add the global to the top, because there it is
# important.
self.top.add_global(name)
# decorator
elif tok == '@':
stmt, tok = self._parse_statement()
decorators.append(stmt)
elif tok == 'pass':
continue
# check for docstrings
elif token_type == tokenize.STRING:
if freshscope:
self.scope.add_docstr(tok)
# this is the main part - a name can be a function or a normal
# var, which can follow anything. but this is done by the
# statement parser.
elif token_type == tokenize.NAME or tok in statement_toks:
stmt, tok = self._parse_statement(self.current)
if stmt:
self.scope.add_statement(stmt)
freshscope = False
#else:
#print "_not_implemented_", tok, self.parserline
except StopIteration: # thrown on EOF
break
#except StopIteration:
# debug.dbg("parse error: %s, %s @ %s" %
# (sys.exc_info()[0], sys.exc_info()[1], self.parserline))
return self.top