Files
jedi/parsing.py
2012-07-28 18:28:38 +02:00

1493 lines
53 KiB
Python

"""
Maintainer: David Halter <davidhalter88@gmail.com>
Version: 0.1
py_fuzzyparser parses python code, with the goal of a good representation of
the code within a tree structure. Variables, Classes and Functions are defined
within this tree structure, containing their exact locations in the code.
It is also a primary goal to work with code which contains syntax errors.
This behaviour may be used to refactor, modify, search and complete code.
To understand this code it is extremely important to understand the behaviour
of the python module 'tokenize'.
This original codebase of this parser, which has been refactored and heavily
changed, was programmed by Aaron Griffin <aaronmgriffin@gmail.com>.
**The structure of the following script:**
A Scope has
- imports (Import)
- subscopes (Scope, Class, Function, Flow)
- statements (Statement)
All those classes are being generated by PyFuzzyParser, which takes python text
as input.
Ignored statements:
- print (no use for it, just slows down)
- exec (dangerous - not controllable)
"""
from _compatibility import (next, literal_eval, tokenize_func, BytesIO,
property, is_py3k)
import tokenize
import re
import keyword
import debug
class ParserError(Exception):
pass
def indent_block(text, indention=" "):
""" This function indents a text block with a default of four spaces """
temp = ''
while text and text[-1] == '\n':
temp += text[-1]
text = text[:-1]
lines = text.split('\n')
return '\n'.join(map(lambda s: indention + s, lines)) + temp
class Simple(object):
"""
The super class for Scope, Import, Name and Statement. Every object in
the parser tree inherits from this class.
"""
def __init__(self, start_pos, end_pos=(None, None)):
self.start_pos = start_pos
self.end_pos = end_pos
self.parent = None
def get_parent_until(self, *classes):
""" Takes always the parent, until one class (not a Class) """
scope = self
while not (scope.parent is None or scope.__class__ in classes):
scope = scope.parent
return scope
def __repr__(self):
code = self.get_code().replace('\n', ' ')
return "<%s: %s@%s>" % \
(self.__class__.__name__, code, self.start_pos[0])
class Scope(Simple):
"""
Super class for the parser tree, which represents the state of a python
text file.
A Scope manages and owns its subscopes, which are classes and functions, as
well as variables and imports. It is used to access the structure of python
files.
:param start_pos: The position (line and column) of the scope.
:type start_pos: tuple(int, int)
:param docstr: The docstring for the current Scope.
:type docstr: str
"""
def __init__(self, start_pos, docstr=''):
super(Scope, self).__init__(start_pos)
self.subscopes = []
self.imports = []
self.statements = []
self.docstr = docstr
def add_scope(self, sub, decorators):
# print 'push scope: [%s@%s]' % sub.start_pos
sub.parent = self
sub.decorators = decorators
for d in decorators:
# the parent is the same, because the decorator has not the scope
# of the function
d.parent = sub.parent
self.subscopes.append(sub)
return sub
def add_statement(self, stmt):
"""
Used to add a Statement or a Scope.
A statement would be a normal command (Statement) or a Scope (Flow).
"""
stmt.parent = self
self.statements.append(stmt)
return stmt
def add_docstr(self, string):
""" Clean up a docstring """
# TODO use prefixes, to format the doc strings -> inspect.cleandoc
# scan for string prefixes like r, u, etc.
index1 = string.find("'")
index2 = string.find('"')
index = index1 if index1 < index2 and index1 > -1 else index2
prefix = string[:index]
d = string[index:]
debug.dbg('add_docstr', d, prefix)
# now clean docstr
d = d.replace('\n', ' ')
d = d.replace('\t', ' ')
while d.find(' ') > -1:
d = d.replace(' ', ' ')
while d[0] in '"\'\t ':
d = d[1:]
while d[-1] in '"\'\t ':
d = d[:-1]
debug.dbg("Scope(%s)::docstr = %s" % (self, d))
self.docstr = d
def add_import(self, imp):
self.imports.append(imp)
imp.parent = self
def get_imports(self):
""" Gets also the imports within flow statements """
i = [] + self.imports
for s in self.statements:
if isinstance(s, Scope):
i += s.get_imports()
return i
def get_code(self, first_indent=False, indention=" "):
"""
:return: Returns the code of the current scope.
:rtype: str
"""
string = ""
if len(self.docstr) > 0:
string += '"""' + self.docstr + '"""\n'
for i in self.imports:
string += i.get_code()
for sub in self.subscopes:
string += sub.get_code(first_indent=True, indention=indention)
for stmt in self.statements:
string += stmt.get_code()
if first_indent:
string = indent_block(string, indention=indention)
return string
def get_set_vars(self):
"""
Get all the names, that are active and accessible in the current
scope.
:return: list of Name
:rtype: list
"""
return self._get_set_vars(self)
@staticmethod
def _get_set_vars(self):
"""
This is a hack, because Python 2 has another understanding of methods,
than Python 3. In Python 2 it is not possible to use a method without
the `self` being an instance of the class.
"""
n = []
for stmt in self.statements:
try:
n += stmt.get_set_vars(True)
except TypeError:
n += stmt.get_set_vars()
# function and class names
n += [s.name for s in self.subscopes]
for i in self.imports:
if not i.star:
n += i.get_defined_names()
return n
def get_defined_names(self):
return [n for n in self.get_set_vars() \
if isinstance(n, Import) or len(n) == 1]
def is_empty(self):
"""
:return: True if there are no subscopes, imports and statements.
:rtype: bool
"""
return not (self.imports or self.subscopes or self.statements)
def __repr__(self):
try:
name = self.name
except AttributeError:
try:
name = self.command
except AttributeError:
name = self.path
return "<%s: %s@%s-%s>" % (self.__class__.__name__, name,
self.start_pos[0], self.end_pos[0])
class Module(Scope):
"""
The top scope, which is always a module.
"""
def __init__(self, path, docstr=''):
super(Module, self).__init__((1, 0), docstr)
self.path = path
self.global_vars = []
def add_global(self, name):
"""
Global means in these context a function (subscope) which has a global
statement.
This is only relevant for the top scope.
:param name: The name of the global.
:type name: Name
"""
self.global_vars.append(name)
# set no parent here, because globals are not defined in this scope.
def get_set_vars(self):
n = super(Module, self).get_set_vars()
n += self.global_vars
return n
class Class(Scope):
"""
Used to store the parsed contents of a python class.
:param name: The Class name.
:type name: string
:param supers: The super classes of a Class.
:type supers: list
:param start_pos: The start position (line, column) of the class.
:type start_pos: tuple(int, int)
:param docstr: The docstring for the current Scope.
:type docstr: str
"""
def __init__(self, name, supers, start_pos, docstr=''):
super(Class, self).__init__(start_pos, docstr)
self.name = name
name.parent = self
self.supers = supers
for s in self.supers:
s.parent = self
self.decorators = []
def get_code(self, first_indent=False, indention=" "):
str = "\n".join('@' + stmt.get_code() for stmt in self.decorators)
str += 'class %s' % (self.name)
if len(self.supers) > 0:
sup = ','.join(stmt.code for stmt in self.supers)
str += '(%s)' % sup
str += ':\n'
str += super(Class, self).get_code(True, indention)
if self.is_empty():
str += "pass\n"
return str
class Function(Scope):
"""
Used to store the parsed contents of a python function.
:param name: The Function name.
:type name: string
:param params: The parameters (Statement) of a Function.
:type params: list
:param start_pos: The start position (line, column) the Function.
:type start_pos: tuple(int, int)
:param docstr: The docstring for the current Scope.
:type docstr: str
"""
def __init__(self, name, params, start_pos, docstr=''):
Scope.__init__(self, start_pos, docstr)
self.name = name
name.parent = self
self.params = params
for p in params:
p.parent = self
self.decorators = []
self.returns = []
self.is_generator = False
def get_code(self, first_indent=False, indention=" "):
str = "\n".join('@' + stmt.get_code() for stmt in self.decorators)
params = ','.join([stmt.code for stmt in self.params])
str += "def %s(%s):\n" % (self.name, params)
str += super(Function, self).get_code(True, indention)
if self.is_empty():
str += "pass\n"
return str
def get_set_vars(self):
n = super(Function, self).get_set_vars()
for p in self.params:
try:
n.append(p.get_name())
except IndexError:
debug.warning("multiple names in param %s" % n)
return n
class Flow(Scope):
"""
Used to describe programming structure - flow statements,
which indent code, but are not classes or functions:
- for
- while
- if
- try
- with
Therefore statements like else, except and finally are also here,
they are now saved in the root flow elements, but in the next variable.
:param command: The flow command, if, while, else, etc.
:type command: str
:param inits: The initializations of a flow -> while 'statement'.
:type inits: list(Statement)
:param start_pos: Position (line, column) of the Flow statement.
:type start_pos: tuple(int, int)
:param set_vars: Local variables used in the for loop (only there).
:type set_vars: list
"""
def __init__(self, command, inits, start_pos, set_vars=None):
self._parent = None
self.next = None
super(Flow, self).__init__(start_pos, '')
self.command = command
# These have to be statements, because of with, which takes multiple.
self.inits = inits
for s in inits:
s.parent = self
if set_vars == None:
self.set_vars = []
else:
self.set_vars = set_vars
for s in self.set_vars:
s.parent = self
@property
def parent(self):
return self._parent
@parent.setter
def parent(self, value):
self._parent = value
if self.next:
self.next.parent = value
def get_code(self, first_indent=False, indention=" "):
if self.set_vars:
vars = ",".join(map(lambda x: x.get_code(), self.set_vars))
vars += ' in '
else:
vars = ''
stmts = []
for s in self.inits:
stmts.append(s.get_code(new_line=False))
stmt = ', '.join(stmts)
str = "%s %s%s:\n" % (self.command, vars, stmt)
str += super(Flow, self).get_code(True, indention)
if self.next:
str += self.next.get_code()
return str
def get_set_vars(self, is_internal_call=False):
"""
Get the names for the flow. This includes also a call to the super
class.
:param is_internal_call: defines an option for internal files to crawl\
through this class. Normally it will just call its superiors, to\
generate the output.
"""
if is_internal_call:
n = list(self.set_vars)
for s in self.inits:
n += s.set_vars
if self.next:
n += self.next.get_set_vars(is_internal_call)
n += super(Flow, self).get_set_vars()
return n
else:
return self.get_parent_until(Class, Function).get_set_vars()
def get_imports(self):
i = super(Flow, self).get_imports()
if self.next:
i += self.next.get_imports()
return i
def set_next(self, next):
""" Set the next element in the flow, those are else, except, etc. """
if self.next:
return self.next.set_next(next)
else:
self.next = next
next.parent = self.parent
return next
class ForFlow(Flow):
"""
Used for the for loop, because there are two statement parts.
"""
def __init__(self, command, inits, start_pos, set_stmt):
super(ForFlow, self).__init__(command, inits, start_pos,
set_stmt.used_vars)
self.set_stmt = set_stmt
class Import(Simple):
"""
Stores the imports of any Scopes.
>>> 1+1
2
:param start_pos: Position (line, column) of the Import.
:type start_pos: tuple(int, int)
:param namespace: The import, can be empty if a star is given
:type namespace: Name
:param alias: The alias of a namespace(valid in the current namespace).
:type alias: Name
:param from_ns: Like the namespace, can be equally used.
:type from_ns: Name
:param star: If a star is used -> from time import *.
:type star: bool
:param defunct: An Import is valid or not.
:type defunct: bool
"""
def __init__(self, start_pos, end_pos, namespace, alias='', from_ns='', \
star=False, relative_count=None, defunct=False):
super(Import, self).__init__(start_pos, end_pos)
self.namespace = namespace
if namespace:
namespace.parent = self
self.alias = alias
if alias:
alias.parent = self
self.from_ns = from_ns
if from_ns:
from_ns.parent = self
self.star = star
self.relative_count = relative_count
self.defunct = defunct
def get_code(self):
if self.alias:
ns_str = "%s as %s" % (self.namespace, self.alias)
else:
ns_str = str(self.namespace)
if self.from_ns:
if self.star:
ns_str = '*'
return "from %s import %s" % (self.from_ns, ns_str) + '\n'
else:
return "import " + ns_str + '\n'
def get_defined_names(self):
if self.defunct:
return []
if self.star:
return [self]
return [self.alias] if self.alias else [self.namespace]
class Statement(Simple):
"""
This is the class for all the possible statements. Which means, this class
stores pretty much all the Python code, except functions, classes, imports,
and flow functions like if, for, etc.
:param code: The full code of a statement. This is import, if one wants \
to execute the code at some level.
:param code: str
:param set_vars: The variables which are defined by the statement.
:param set_vars: str
:param used_funcs: The functions which are used by the statement.
:param used_funcs: str
:param used_vars: The variables which are used by the statement.
:param used_vars: str
:param token_list: Token list which is also peppered with Name.
:param token_list: list
:param start_pos: Position (line, column) of the Statement.
:type start_pos: tuple(int, int)
"""
def __init__(self, code, set_vars, used_funcs, used_vars, token_list,
start_pos, end_pos):
super(Statement, self).__init__(start_pos, end_pos)
self.code = code
self.set_vars = set_vars
self.used_funcs = used_funcs
self.used_vars = used_vars
self.token_list = token_list
for s in set_vars + used_funcs + used_vars:
s.parent = self
# cache
self._assignment_calls = None
self._assignment_details = None
# this is important for other scripts
self._assignment_calls_calculated = False
def get_code(self, new_line=True):
if new_line:
return self.code + '\n'
else:
return self.code
def get_set_vars(self):
""" Get the names for the statement. """
return list(self.set_vars)
@property
def assignment_details(self):
if self._assignment_details is None:
# normally, this calls sets this variable
self.get_assignment_calls()
# it may not have been set by get_assignment_calls -> just use an empty
# array
return self._assignment_details or []
def is_global(self):
# first keyword of the first token is global -> must be a global
return str(self.token_list[0]) == "global"
def get_assignment_calls(self):
"""
This is not done in the main parser, because it might be slow and
most of the statements won't need this data anyway. This is something
'like' a lazy execution.
This is not really nice written, sorry for that. If you plan to replace
it and make it nicer, that would be cool :-)
"""
if self._assignment_calls_calculated:
return self._assignment_calls
self._assignment_details = []
result = Array(Array.NOARRAY, self)
top = result
level = 0
is_chain = False
close_brackets = False
debug.dbg('tok_list', self.token_list)
tok_iter = enumerate(self.token_list)
for i, tok_temp in tok_iter:
#print 'tok', tok_temp, result
try:
token_type, tok = tok_temp
except TypeError:
# the token is a Name, which has already been parsed
tok = tok_temp
token_type = None
except ValueError:
debug.warning("unkown value, shouldn't happen",
tok_temp, type(tok_temp))
raise
else:
if tok in ['return', 'yield'] or level == 0 and \
'=' in tok and not tok in ['>=', '<=', '==', '!=']:
# This means, there is an assignment here.
# Add assignments, which can be more than one
self._assignment_details.append((tok, top))
# All these calls wouldn't be important if nonlocal would
# exist. -> Initialize the first item again.
result = Array(Array.NOARRAY, self)
top = result
level = 0
close_brackets = False
is_chain = False
continue
elif tok == 'as':
next(tok_iter)
continue
brackets = {'(': Array.TUPLE, '[': Array.LIST, '{': Array.SET}
is_call = lambda: result.__class__ == Call
is_call_or_close = lambda: is_call() or close_brackets
is_literal = token_type in [tokenize.STRING, tokenize.NUMBER]
if isinstance(tok, Name) or is_literal:
c_type = Call.NAME
if is_literal:
tok = literal_eval(tok)
if token_type == tokenize.STRING:
c_type = Call.STRING
elif token_type == tokenize.NUMBER:
c_type = Call.NUMBER
if is_chain:
call = Call(tok, c_type, parent=result)
result = result.set_next_chain_call(call)
is_chain = False
close_brackets = False
else:
if close_brackets:
result = result.parent
close_brackets = False
if result.__class__ == Call:
result = result.parent
close_brackets = False
call = Call(tok, c_type, parent=result)
result.add_to_current_field(call)
result = call
elif tok in brackets.keys(): # brackets
level += 1
if is_call_or_close():
result = Array(brackets[tok], parent=result)
result = result.parent.add_execution(result)
close_brackets = False
else:
result = Array(brackets[tok], parent=result)
result.parent.add_to_current_field(result)
elif tok == ':':
if is_call_or_close():
result = result.parent
close_brackets = False
if result.type == Array.LIST: # [:] lookups
result.add_to_current_field(tok)
else:
result.add_dictionary_key()
elif tok == '.':
if close_brackets and result.parent != top:
# only get out of the array, if it is a array execution
result = result.parent
close_brackets = False
is_chain = True
elif tok == ',':
while is_call_or_close():
result = result.parent
close_brackets = False
result.add_field()
# important - it cannot be empty anymore
if result.type == Array.NOARRAY:
result.type = Array.TUPLE
elif tok in [')', '}', ']']:
while is_call_or_close():
result = result.parent
close_brackets = False
if tok == '}' and not len(result):
# this is a really special case - empty brackets {} are
# always dictionaries and not sets.
result.type = Array.DICT
level -= 1
#result = result.parent
close_brackets = True
else:
while is_call_or_close():
result = result.parent
close_brackets = False
result.add_to_current_field(tok)
#print 'tok_end', tok_temp, result, close_brackets
if level != 0:
raise ParserError("Brackets don't match: %s. This is not normal "
"behaviour. Please submit a bug" % level)
self._assignment_calls = top
return top
class Param(Statement):
"""
The class which shows definitions of params of classes and functions.
But this is not to define function calls.
"""
def __init__(self, code, set_vars, used_funcs, used_vars, token_list,
start_pos, end_pos):
super(Param, self).__init__(code, set_vars, used_funcs,
used_vars, token_list, start_pos, end_pos)
# this is defined by the parser later on, not at the initialization
# it is the position in the call (first argument, second...)
self.position = None
def get_name(self):
""" get the name of the param """
n = self.set_vars or self.used_vars
if len(n) > 1:
raise IndexError("Multiple param names (%s)." % n)
return n[0]
class Call(object):
"""
TODO doc
"""
NAME = 1
NUMBER = 2
STRING = 3
""" The statement object of functions, to """
def __init__(self, name, type, parent_stmt=None, parent=None):
self.name = name
# parent is not the oposite of next. The parent of c: a = [b.c] would
# be an array.
self.parent = parent
self.type = type
self.next = None
self.execution = None
self._parent_stmt = parent_stmt
@property
def parent_stmt(self):
if self._parent_stmt:
return self._parent_stmt
elif self.parent:
return self.parent.parent_stmt
else:
return None
@parent_stmt.setter
def parent_stmt(self, value):
self._parent_stmt = value
def set_next_chain_call(self, call):
""" Adds another part of the statement"""
self.next = call
#print '\n\npar', call.parent, self.parent, type(call), type(self)
call.parent = self.parent
return call
def add_execution(self, call):
"""
An execution is nothing else than brackets, with params in them, which
shows access on the internals of this name.
"""
self.execution = call
# there might be multiple executions, like a()[0], in that case, they
# have the same parent. Otherwise it's not possible to parse proper.
if self.parent.execution == self:
call.parent = self.parent
else:
call.parent = self
return call
def generate_call_list(self):
try:
for name_part in self.name.names:
yield name_part
except AttributeError:
yield self
if self.execution is not None:
for y in self.execution.generate_call_list():
yield y
if self.next is not None:
for y in self.next.generate_call_list():
yield y
def __repr__(self):
return "<%s: %s>" % \
(self.__class__.__name__, self.name)
class Array(Call):
"""
Describes the different python types for an array, but also empty
statements. In the Python syntax definitions this type is named 'atom'.
http://docs.python.org/release/3.0.1/reference/grammar.html
Array saves sub-arrays as well as normal operators and calls to methods.
:param array_type: The type of an array, which can be one of the constants\
below.
:type array_type: int
"""
NOARRAY = None
TUPLE = 'tuple'
LIST = 'list'
DICT = 'dict'
SET = 'set'
def __init__(self, arr_type, parent_stmt=None, parent=None, values=None):
super(Array, self).__init__(None, arr_type, parent_stmt, parent)
self.values = values if values else []
self.keys = []
def add_field(self):
"""
Just add a new field to the values.
Each value has a sub-array, because there may be different tokens in
one array.
"""
self.values.append([])
def add_to_current_field(self, tok):
""" Adds a token to the latest field (in content). """
if not self.values:
# An empty round brace is just a tuple, filled it is unnecessary.
if self.type == Array.TUPLE:
self.type = Array.NOARRAY
# Add the first field, this is done here, because if nothing
# gets added, the list is empty, which is also needed sometimes.
self.values.append([])
self.values[-1].append(tok)
def add_dictionary_key(self):
"""
Only used for dictionaries, automatically adds the tokens added by now
from the values to keys, because the parser works this way.
"""
self.type = Array.DICT
self.keys.append(self.values.pop())
self.values.append([])
def get_only_subelement(self):
"""
Returns the only element that an array contains. If it contains
more than one element, raise an exception.
"""
if len(self.values) != 1 or len(self.values[0]) != 1:
raise AttributeError("More than one value found")
return self.values[0][0]
@staticmethod
def is_type(instance, *types):
"""
This is not only used for calls on the actual object, but for
ducktyping, to invoke this function with anything as `self`.
"""
if isinstance(instance, Array):
if instance.type in types:
return True
return False
def __len__(self):
return len(self.values)
def __getitem__(self, key):
return self.values[key]
def __iter__(self):
if self.type == self.DICT:
return iter(zip(self.keys, self.values))
else:
return iter(self.values)
def __repr__(self):
if self.type == self.NOARRAY:
type = 'noarray'
else:
type = self.type
return "<%s: %s%s>" % (self.__class__.__name__, type, self.values)
class NamePart(str):
"""
A string. Sometimes it is important to know if the string belongs to a name
or not.
"""
pass
class Name(Simple):
"""
Used to define names in python.
Which means the whole namespace/class/function stuff.
So a name like "module.class.function"
would result in an array of [module, class, function]
"""
def __init__(self, names, start_pos, end_pos):
super(Name, self).__init__(start_pos, end_pos)
self.names = tuple(NamePart(n) for n in names)
def get_code(self):
""" Returns the names in a full string format """
return ".".join(self.names)
def __str__(self):
return self.get_code()
def __eq__(self, other):
return self.names == other.names and self.start_pos == other.end_pos
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.names) + hash(self.start_pos[0]) \
+ hash(self.start_pos[1])
def __len__(self):
return len(self.names)
class PyFuzzyParser(object):
"""
This class is used to parse a Python file, it then divides them into a
class structure of different scopes.
:param code: The codebase for the parser.
:type code: str
:param user_position: The line/column, the user is currently on.
:type user_position: tuple(int, int)
"""
def __init__(self, code, module_path=None, user_position=None):
self.user_position = user_position
self.user_stmt = None
self.code = code + '\n' # end with \n, because the parser needs it
if is_py3k():
self.code = self.code.encode()
# initialize global Scope
self.top = Module(module_path)
self.scope = self.top
self.current = (None, None, None)
# Stuff to fix tokenize errors. The parser is pretty good in tolerating
# any errors of tokenize and just parse ahead.
self._tokenize_start_pos = 0
self._line_of_tokenize_restart = 0
self.parse()
# delete code again, only the parser needs it
del self.code
def __repr__(self):
return "<%s: %s>" % (self.__class__.__name__, self.top)
@property
def start_pos(self):
return (self._line_of_tokenize_restart + self._tokenize_start_pos[0],
self._tokenize_start_pos[1])
@property
def end_pos(self):
return (self._line_of_tokenize_restart + self._tokenize_end_pos[0],
self._tokenize_end_pos[1])
def check_user_stmt(self, simple):
if not self.user_position:
return
# the position is right
if simple.start_pos < self.user_position <= simple.end_pos:
if self.user_stmt is not None:
# if there is already a user position (another import, because
# imports are splitted) the names are checked.
for n in simple.get_defined_names():
if n.start_pos < self.user_position <= n.end_pos:
self.user_stmt = simple
else:
self.user_stmt = simple
def _parsedotname(self, pre_used_token=None):
"""
The dot name parser parses a name, variable or function and returns
their names.
:return: Tuple of Name, token_type, nexttoken.
:rtype: tuple(Name, int, str)
"""
names = []
if pre_used_token is None:
token_type, tok = self.next()
if token_type != tokenize.NAME and tok != '*':
return ([], token_type, tok, self.start_pos)
else:
token_type, tok = pre_used_token
names.append(tok)
first_pos = self.start_pos
while True:
token_type, tok = self.next()
if tok != '.':
break
token_type, tok = self.next()
if token_type != tokenize.NAME:
break
names.append(tok)
n = Name(names, first_pos, self.end_pos) if names else None
return (n, token_type, tok)
def _parseimportlist(self):
"""
The parser for the imports. Unlike the class and function parse
function, this returns no Import class, but rather an import list,
which is then added later on.
The reason, why this is not done in the same class lies in the nature
of imports. There are two ways to write them:
- from ... import ...
- import ...
To distinguish, this has to be processed after the parser.
:return: List of imports.
:rtype: list
"""
imports = []
brackets = False
continue_kw = [",", ";", "\n", ')'] \
+ list(set(keyword.kwlist) - set(['as']))
while True:
defunct = False
token_type, tok = self.next()
if brackets and tok == '\n':
self.next()
if tok == '(': # python allows only one `(` in the statement.
brackets = True
self.next()
i, token_type, tok = self._parsedotname(self.current)
if not i:
defunct = True
name2 = None
if tok == 'as':
name2, token_type, tok = self._parsedotname()
imports.append((i, name2, defunct))
while tok not in continue_kw:
token_type, tok = self.next()
if not (tok == "," or brackets and tok == '\n'):
break
return imports
def _parseparen(self):
"""
Functions and Classes have params (which means for classes
super-classes). They are parsed here and returned as Statements.
:return: List of Statements
:rtype: list
"""
names = []
tok = None
pos = 0
while tok not in [')', ':']:
stmt, tok = self._parse_statement(added_breaks=',',
stmt_class=Param)
if stmt:
stmt.position = pos
names.append(stmt)
pos += 1
return names
def _parsefunction(self):
"""
The parser for a text functions. Process the tokens, which follow a
function definition.
:return: Return a Scope representation of the tokens.
:rtype: Function
"""
first_pos = self.start_pos
token_type, fname = self.next()
if token_type != tokenize.NAME:
return None
fname = Name([fname], self.start_pos, self.end_pos)
token_type, open = self.next()
if open != '(':
return None
params = self._parseparen()
token_type, colon = self.next()
if colon != ':':
return None
return Function(fname, params, first_pos)
def _parseclass(self):
"""
The parser for a text class. Process the tokens, which follow a
class definition.
:return: Return a Scope representation of the tokens.
:rtype: Class
"""
first_pos = self.start_pos
token_type, cname = self.next()
if token_type != tokenize.NAME:
debug.dbg("class: syntax error - token is not a name@%s (%s: %s)"
% (self.start_pos[0], tokenize.tok_name[token_type], cname))
return None
cname = Name([cname], self.start_pos, self.end_pos)
super = []
token_type, next = self.next()
if next == '(':
super = self._parseparen()
token_type, next = self.next()
if next != ':':
debug.dbg("class syntax: %s@%s" % (cname, self.start_pos[0]))
return None
return Class(cname, super, first_pos)
def _parse_statement(self, pre_used_token=None, added_breaks=None,
stmt_class=Statement):
"""
Parses statements like:
>>> a = test(b)
>>> a += 3 - 2 or b
and so on. One line at a time.
:param pre_used_token: The pre parsed token.
:type pre_used_token: set
:return: Statement + last parsed token.
:rtype: (Statement, str)
TODO improve abort criterion of not closing parentheses
"""
string = ''
set_vars = []
used_funcs = []
used_vars = []
level = 0 # The level of parentheses
is_return = None
if pre_used_token:
token_type, tok = pre_used_token
else:
token_type, tok = self.next()
first_pos = self.start_pos
# the difference between "break" and "always break" is that the latter
# will even break in parentheses. This is true for typical flow
# commands like def and class and the imports, which will never be used
# in a statement.
breaks = ['\n', ':', ')']
always_break = [';', 'import', 'from', 'class', 'def', 'try', 'except',
'finally', 'while']
if added_breaks:
breaks += added_breaks
tok_list = []
while not (tok in always_break or tok in breaks and level <= 0):
set_string = None
#print 'parse_stmt', tok, tokenize.tok_name[token_type]
tok_list.append(self.current)
if tok == 'as':
string += " %s " % tok
token_type, tok = self.next()
if token_type == tokenize.NAME:
n, token_type, tok = self._parsedotname(self.current)
if n:
set_vars.append(n)
tok_list.append(n)
string += ".".join(n.names)
continue
elif token_type == tokenize.NAME:
#print 'is_name', tok
if tok in ['return', 'yield', 'del', 'raise', 'assert']:
if len(tok_list) > 1:
# this happens, when a statement has opening brackets,
# which are not closed again, here I just start a new
# statement. This is a hack, but I could not come up
# with a better solution.
# This is basically a reset of the statement.
debug.warning('keyword in statement %s@%s', tok_list,
self.start_pos[0])
tok_list = [self.current]
set_vars = []
used_funcs = []
used_vars = []
level = 0
set_string = tok + ' '
if tok in ['return', 'yield']:
is_return = tok
elif tok in ['print', 'exec']:
# TODO they should be reinstated, since the goal of the
# parser is a different one.
# delete those statements, just let the rest stand there
set_string = ''
else:
n, token_type, tok = self._parsedotname(self.current)
tok_list.pop() # removed last entry, because we add Name
tok_list.append(n)
if tok == '(':
# it must be a function
used_funcs.append(n)
else:
used_vars.append(n)
if string and re.match(r'[\w\d\'"]', string[-1]):
string += ' '
string += ".".join(n.names)
#print 'parse_stmt', tok, tokenize.tok_name[token_type]
continue
elif '=' in tok and not tok in ['>=', '<=', '==', '!=']:
# there has been an assignement -> change vars
if level == 0:
set_vars = used_vars
used_vars = []
elif tok in ['{', '(', '[']:
level += 1
elif tok in ['}', ')', ']']:
level -= 1
if set_string is not None:
string = set_string
else:
string += tok
token_type, tok = self.next()
if not string:
return None, tok
#print 'new_stat', string, set_vars, used_funcs, used_vars
if self.freshscope and len(tok_list) > 1 \
and self.last_token[1] == tokenize.STRING:
self.scope.add_docstr(self.last_token[1])
print('i want to see you')
else:
stmt = stmt_class(string, set_vars, used_funcs, used_vars, \
tok_list, first_pos, self.end_pos)
self.check_user_stmt(stmt)
if is_return:
# add returns to the scope
func = self.scope.get_parent_until(Function)
if is_return == 'yield':
func.is_generator = True
try:
func.returns.append(stmt)
except AttributeError:
debug.warning('return in non-function')
return stmt, tok
def next(self):
""" Generate the next tokenize pattern. """
type, tok, self._tokenize_start_pos, self._tokenize_end_pos, \
self.parserline = next(self.gen)
if self.user_position and self.start_pos[0] == self.user_position[0]:
debug.dbg('user scope found [%s] =%s' % \
(self.parserline.replace('\n', ''), repr(self.scope)))
self.user_scope = self.scope
self.last_token = self.current
self.current = (type, tok)
return self.current
def parse(self):
"""
The main part of the program. It analyzes the given code-text and
returns a tree-like scope. For a more detailed description, see the
class description.
:param text: The code which should be parsed.
:param type: str
:raises: IndentationError
"""
buf = BytesIO(self.code)
self.gen = tokenize_func(buf.readline)
self.currentscope = self.scope
extended_flow = ['else', 'elif', 'except', 'finally']
statement_toks = ['{', '[', '(', '`']
decorators = []
self.freshscope = True
while True:
try:
token_type, tok = self.next()
#debug.dbg('main: tok=[%s] type=[%s] indent=[%s]'\
# % (tok, token_type, start_position[0]))
while token_type == tokenize.DEDENT and self.scope != self.top:
debug.dbg('dedent', self.scope)
token_type, tok = self.next()
if self.start_pos[1] <= self.scope.start_pos[1]:
self.scope.end_pos = self.start_pos
self.scope = self.scope.parent
# check again for unindented stuff. this is true for syntax
# errors. only check for names, because thats relevant here. If
# some docstrings are not indented, I don't care.
while self.start_pos[1] <= self.scope.start_pos[1] \
and (token_type == tokenize.NAME or tok in ['(', '['])\
and self.scope != self.top:
debug.dbg('syntax: dedent @%s - %s<=%s', self.start_pos)
self.scope.end_pos = self.start_pos
self.scope = self.scope.parent
first_pos = self.start_pos
if tok == 'def':
func = self._parsefunction()
if func is None:
debug.warning("function: syntax error@%s" %
self.start_pos[0])
continue
debug.dbg("new scope: function %s" % (func.name))
self.freshscope = True
self.scope = self.scope.add_scope(func, decorators)
decorators = []
elif tok == 'class':
cls = self._parseclass()
if cls is None:
debug.warning("class: syntax error@%s" %
self.start_pos[0])
continue
self.freshscope = True
debug.dbg("new scope: class %s" % (cls.name))
self.scope = self.scope.add_scope(cls, decorators)
decorators = []
# import stuff
elif tok == 'import':
imports = self._parseimportlist()
for m, alias, defunct in imports:
i = Import(first_pos, self.end_pos, m, alias,
defunct=defunct)
self.check_user_stmt(i)
self.scope.add_import(i)
debug.dbg("new import: %s" % (i), self.current)
if not imports:
i = Import(first_pos, self.end_pos, None, defunct=True)
self.check_user_stmt(i)
self.freshscope = False
elif tok == 'from':
defunct = False
# take care for relative imports
relative_count = 0
while 1:
token_type, tok = self.next()
if tok != '.':
break
relative_count += 1
# the from import
mod, token_type, tok = self._parsedotname(self.current)
if not mod or tok != "import":
debug.warning("from: syntax error@%s" %
self.start_pos[0])
defunct = True
names = self._parseimportlist()
for name, alias, defunct2 in names:
star = name.names[0] == '*'
if star:
name = None
i = Import(first_pos, self.end_pos, name, alias, mod,
star, relative_count, defunct=defunct or defunct2)
self.check_user_stmt(i)
self.scope.add_import(i)
debug.dbg("new from: %s" % (i))
if not names:
i = Import(first_pos, self.end_pos, mod, defunct=True,
relative_count=relative_count)
self.check_user_stmt(i)
self.freshscope = False
#loops
elif tok == 'for':
set_stmt, tok = self._parse_statement(added_breaks=['in'])
if tok == 'in':
statement, tok = self._parse_statement()
if tok == ':':
f = ForFlow('for', [statement], first_pos,
set_stmt)
debug.dbg("new scope: forflow@%s" % f.start_pos[0])
self.scope = self.scope.add_statement(f)
elif tok in ['if', 'while', 'try', 'with'] + extended_flow:
added_breaks = []
command = tok
if command in ['except', 'with']:
added_breaks.append(',')
# multiple statements because of with
inits = []
first = True
while first or command == 'with' and tok != ':':
statement, tok = \
self._parse_statement(added_breaks=added_breaks)
if command == 'except' and tok in added_breaks:
# the except statement defines a var
# this is only true for python 2
n, token_type, tok = self._parsedotname()
if n:
statement.set_vars.append(n)
statement.code += ',' + n.get_code()
if statement:
inits.append(statement)
first = False
if tok == ':':
f = Flow(command, inits, first_pos)
debug.dbg("new scope: flow %s@%s"
% (command, self.start_pos[0]))
if command in extended_flow:
# the last statement has to be another part of
# the flow statement, because a dedent releases the
# main scope, so just take the last statement.
try:
s = self.scope.statements[-1].set_next(f)
except (AttributeError, IndexError):
# If set_next doesn't exist, just add it.
s = self.scope.add_statement(f)
else:
s = self.scope.add_statement(f)
self.scope = s
else:
debug.warning('syntax err, flow started @%s',
self.start_pos[0])
# globals
elif tok == 'global':
stmt, tok = self._parse_statement(self.current)
if stmt:
self.scope.add_statement(stmt)
debug.dbg('global_vars', stmt.used_vars)
for name in stmt.used_vars:
# add the global to the top, because there it is
# important.
self.top.add_global(name)
# decorator
elif tok == '@':
stmt, tok = self._parse_statement()
decorators.append(stmt)
elif tok == 'pass':
continue
# default
elif token_type in [tokenize.NAME, tokenize.STRING,
tokenize.NUMBER] \
or tok in statement_toks:
# this is the main part - a name can be a function or a
# normal var, which can follow anything. but this is done
# by the statement parser.
stmt, tok = self._parse_statement(self.current)
if stmt:
debug.dbg('new stmt', stmt)
self.scope.add_statement(stmt)
self.freshscope = False
else:
if token_type not in [tokenize.COMMENT, tokenize.INDENT,
tokenize.NEWLINE, tokenize.NL,
tokenize.ENDMARKER]:
debug.warning('token not classified', tok, token_type,
self.start_pos[0])
except StopIteration: # thrown on EOF
break
except tokenize.TokenError:
# We just ignore this error, I try to handle it earlier - as
# good as possible
debug.warning('parentheses not closed error')
except IndentationError:
# This is an error, that tokenize may produce, because the code
# is not indented as it should. Here it just ignores this line
# and restarts the parser.
# (This is a rather unlikely error message, for normal code,
# tokenize seems to be pretty tolerant)
self._line_of_tokenize_restart = self.start_pos[0] + 1
self._tokenize_start_pos = (0,0)
self._tokenize_end_pos = (0,0)
debug.warning('indentation error on line %s, ignoring it' %
(self.start_pos[0]))
self.gen = tokenize.generate_tokens(buf.readline)
return self.top