Files
parso/parso/pgen2/pgen.py
2018-06-18 01:14:09 +02:00

182 lines
6.3 KiB
Python

# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
# Modifications:
# Copyright David Halter and Contributors
# Modifications are dual-licensed: MIT and PSF.
"""
Specifying grammars in pgen is possible with this grammar::
grammar: (NEWLINE | rule)* ENDMARKER
rule: NAME ':' rhs NEWLINE
rhs: items ('|' items)*
items: item+
item: '[' rhs ']' | atom ['+' | '*']
atom: '(' rhs ')' | NAME | STRING
This grammar is self-referencing.
"""
from parso.pgen2.grammar import Grammar
from parso.pgen2.grammar_parser import GrammarParser, NFAState
class DFAState(object):
def __init__(self, from_rule, nfa_set, final):
assert isinstance(nfa_set, set)
assert isinstance(next(iter(nfa_set)), NFAState)
assert isinstance(final, NFAState)
self.from_rule = from_rule
self.nfa_set = nfa_set
self.isfinal = final in nfa_set
self.arcs = {} # map from terminals/nonterminals to DFAState
def add_arc(self, next_, label):
assert isinstance(label, str)
assert label not in self.arcs
assert isinstance(next_, DFAState)
self.arcs[label] = next_
def unifystate(self, old, new):
for label, next_ in self.arcs.items():
if next_ is old:
self.arcs[label] = new
def __eq__(self, other):
# Equality test -- ignore the nfa_set instance variable
assert isinstance(other, DFAState)
if self.isfinal != other.isfinal:
return False
# Can't just return self.arcs == other.arcs, because that
# would invoke this method recursively, with cycles...
if len(self.arcs) != len(other.arcs):
return False
for label, next_ in self.arcs.items():
if next_ is not other.arcs.get(label):
return False
return True
__hash__ = None # For Py3 compatibility.
def _simplify_dfas(dfas):
# This is not theoretically optimal, but works well enough.
# Algorithm: repeatedly look for two states that have the same
# set of arcs (same labels pointing to the same nodes) and
# unify them, until things stop changing.
# dfas is a list of DFAState instances
changes = True
while changes:
changes = False
for i, state_i in enumerate(dfas):
for j in range(i + 1, len(dfas)):
state_j = dfas[j]
if state_i == state_j:
#print " unify", i, j
del dfas[j]
for state in dfas:
state.unifystate(state_j, state_i)
changes = True
break
def _make_dfas(start, finish):
"""
This is basically doing what the powerset construction algorithm is doing.
"""
# To turn an NFA into a DFA, we define the states of the DFA
# to correspond to *sets* of states of the NFA. Then do some
# state reduction.
assert isinstance(start, NFAState)
assert isinstance(finish, NFAState)
def addclosure(nfa_state, base_nfa_set):
assert isinstance(nfa_state, NFAState)
if nfa_state in base_nfa_set:
return
base_nfa_set.add(nfa_state)
for nfa_arc in nfa_state.arcs:
if nfa_arc.nonterminal_or_string is None:
addclosure(nfa_arc.next, base_nfa_set)
base_nfa_set = set()
addclosure(start, base_nfa_set)
states = [DFAState(start.from_rule, base_nfa_set, finish)]
for state in states: # NB states grows while we're iterating
arcs = {}
# Find state transitions and store them in arcs.
for nfa_state in state.nfa_set:
for nfa_arc in nfa_state.arcs:
if nfa_arc.nonterminal_or_string is not None:
nfa_set = arcs.setdefault(nfa_arc.nonterminal_or_string, set())
addclosure(nfa_arc.next, nfa_set)
# Now create the dfa's with no None's in arcs anymore. All Nones have
# been eliminated and state transitions (arcs) are properly defined, we
# just need to create the dfa's.
for nonterminal_or_string, nfa_set in arcs.items():
for nested_state in states:
if nested_state.nfa_set == nfa_set:
# The DFA state already exists for this rule.
break
else:
nested_state = DFAState(start.from_rule, nfa_set, finish)
states.append(nested_state)
state.add_arc(nested_state, nonterminal_or_string)
return states # List of DFAState instances; first one is start
def _dump_nfa(start, finish):
print("Dump of NFA for", start.from_rule)
todo = [start]
for i, state in enumerate(todo):
print(" State", i, state is finish and "(final)" or "")
for label, next_ in state.arcs:
if next_ in todo:
j = todo.index(next_)
else:
j = len(todo)
todo.append(next_)
if label is None:
print(" -> %d" % j)
else:
print(" %s -> %d" % (label, j))
def _dump_dfas(dfas):
print("Dump of DFA for", dfas[0].from_rule)
for i, state in enumerate(dfas):
print(" State", i, state.isfinal and "(final)" or "")
for nonterminal, next_ in state.arcs.items():
print(" %s -> %d" % (nonterminal, dfas.index(next_)))
def generate_grammar(bnf_grammar, token_namespace):
"""
``bnf_text`` is a grammar in extended BNF (using * for repetition, + for
at-least-once repetition, [] for optional parts, | for alternatives and ()
for grouping).
It's not EBNF according to ISO/IEC 14977. It's a dialect Python uses in its
own parser.
"""
rule_to_dfas = {}
start_nonterminal = None
for nfa_a, nfa_z in GrammarParser(bnf_grammar).parse():
#_dump_nfa(a, z)
dfas = _make_dfas(nfa_a, nfa_z)
#_dump_dfas(dfas)
# oldlen = len(dfas)
_simplify_dfas(dfas)
# newlen = len(dfas)
rule_to_dfas[nfa_a.from_rule] = dfas
#print(nfa_a.from_rule, oldlen, newlen)
if start_nonterminal is None:
start_nonterminal = nfa_a.from_rule
return Grammar(bnf_grammar, start_nonterminal, rule_to_dfas, token_namespace)