Files
parso/parso/pgen2/pgen.py
Dave Halter da4df9c0f1 Rename
2018-06-13 21:12:48 +02:00

300 lines
10 KiB
Python

# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
# Modifications:
# Copyright David Halter and Contributors
# Modifications are dual-licensed: MIT and PSF.
"""
Specifying grammars in pgen is possible with this grammar::
grammar: (NEWLINE | rule)* ENDMARKER
rule: NAME ':' rhs NEWLINE
rhs: items ('|' items)*
items: item+
item: '[' rhs ']' | atom ['+' | '*']
atom: '(' rhs ')' | NAME | STRING
This grammar is self-referencing.
"""
from parso.pgen2.grammar import Grammar
from parso.python import token
from parso.pgen2.grammar_parser import GrammarParser, NFAState
class ParserGenerator(object):
def __init__(self, rule_to_dfas, token_namespace):
self._token_namespace = token_namespace
self.dfas = rule_to_dfas
def make_grammar(self, grammar):
self._first = {} # map from symbol name to set of tokens
self._addfirstsets()
names = list(self.dfas.keys())
names.sort()
for name in names:
i = 256 + len(grammar.symbol2number)
grammar.symbol2number[name] = i
grammar.number2symbol[i] = name
for name in names:
dfa = self.dfas[name]
states = []
for state in dfa:
arcs = []
for label, next in state.arcs.items():
arcs.append((self._make_label(grammar, label), dfa.index(next)))
if state.isfinal:
arcs.append((0, dfa.index(state)))
states.append(arcs)
grammar.states.append(states)
grammar.dfas[grammar.symbol2number[name]] = (states, self._make_first(grammar, name))
return grammar
def _make_first(self, grammar, name):
rawfirst = self._first[name]
first = {}
for label in rawfirst:
ilabel = self._make_label(grammar, label)
##assert ilabel not in first # XXX failed on <> ... !=
first[ilabel] = 1
return first
def _make_label(self, grammar, label):
# XXX Maybe this should be a method on a subclass of converter?
ilabel = len(grammar.labels)
if label[0].isalpha():
# Either a symbol name or a named token
if label in grammar.symbol2number:
# A symbol name (a non-terminal)
if label in grammar.symbol2label:
return grammar.symbol2label[label]
else:
grammar.labels.append((grammar.symbol2number[label], None))
grammar.symbol2label[label] = ilabel
grammar.label2symbol[ilabel] = label
return ilabel
else:
# A named token (NAME, NUMBER, STRING)
itoken = getattr(self._token_namespace, label, None)
assert isinstance(itoken, int), label
if itoken in grammar.tokens:
return grammar.tokens[itoken]
else:
grammar.labels.append((itoken, None))
grammar.tokens[itoken] = ilabel
return ilabel
else:
# Either a keyword or an operator
assert label[0] in ('"', "'"), label
value = eval(label)
if value[0].isalpha():
# A keyword
if value in grammar.keywords:
return grammar.keywords[value]
else:
# TODO this might be an issue?! Using token.NAME here?
grammar.labels.append((token.NAME, value))
grammar.keywords[value] = ilabel
return ilabel
else:
# An operator (any non-numeric token)
itoken = self._token_namespace.generate_token_id(value)
if itoken in grammar.tokens:
return grammar.tokens[itoken]
else:
grammar.labels.append((itoken, None))
grammar.tokens[itoken] = ilabel
return ilabel
def _addfirstsets(self):
names = list(self.dfas.keys())
names.sort()
for name in names:
if name not in self._first:
self._calcfirst(name)
#print name, self._first[name].keys()
def _calcfirst(self, name):
dfa = self.dfas[name]
self._first[name] = None # dummy to detect left recursion
state = dfa[0]
totalset = {}
overlapcheck = {}
for label, next in state.arcs.items():
if label in self.dfas:
if label in self._first:
fset = self._first[label]
if fset is None:
raise ValueError("recursion for rule %r" % name)
else:
self._calcfirst(label)
fset = self._first[label]
totalset.update(fset)
overlapcheck[label] = fset
else:
totalset[label] = 1
overlapcheck[label] = {label: 1}
inverse = {}
for label, itsfirst in overlapcheck.items():
for symbol in itsfirst:
if symbol in inverse:
raise ValueError("rule %s is ambiguous; %s is in the"
" first sets of %s as well as %s" %
(name, symbol, label, inverse[symbol]))
inverse[symbol] = label
self._first[name] = totalset
class DFAState(object):
def __init__(self, nfaset, final):
assert isinstance(nfaset, dict)
assert isinstance(next(iter(nfaset)), NFAState)
assert isinstance(final, NFAState)
self.nfaset = nfaset
self.isfinal = final in nfaset
self.arcs = {} # map from label to DFAState
def add_arc(self, next, label):
assert isinstance(label, str)
assert label not in self.arcs
assert isinstance(next, DFAState)
self.arcs[label] = next
def unifystate(self, old, new):
for label, next in self.arcs.items():
if next is old:
self.arcs[label] = new
def __eq__(self, other):
# Equality test -- ignore the nfaset instance variable
assert isinstance(other, DFAState)
if self.isfinal != other.isfinal:
return False
# Can't just return self.arcs == other.arcs, because that
# would invoke this method recursively, with cycles...
if len(self.arcs) != len(other.arcs):
return False
for label, next in self.arcs.items():
if next is not other.arcs.get(label):
return False
return True
__hash__ = None # For Py3 compatibility.
def _simplify_dfas(dfas):
# This is not theoretically optimal, but works well enough.
# Algorithm: repeatedly look for two states that have the same
# set of arcs (same labels pointing to the same nodes) and
# unify them, until things stop changing.
# dfas is a list of DFAState instances
changes = True
while changes:
changes = False
for i, state_i in enumerate(dfas):
for j in range(i + 1, len(dfas)):
state_j = dfas[j]
if state_i == state_j:
#print " unify", i, j
del dfas[j]
for state in dfas:
state.unifystate(state_j, state_i)
changes = True
break
def _make_dfas(start, finish):
# To turn an NFA into a DFA, we define the states of the DFA
# to correspond to *sets* of states of the NFA. Then do some
# state reduction. Let's represent sets as dicts with 1 for
# values.
assert isinstance(start, NFAState)
assert isinstance(finish, NFAState)
def closure(state):
base = {}
addclosure(state, base)
return base
def addclosure(state, base):
assert isinstance(state, NFAState)
if state in base:
return
base[state] = 1
for label, next in state.arcs:
if label is None:
addclosure(next, base)
states = [DFAState(closure(start), finish)]
for state in states: # NB states grows while we're iterating
arcs = {}
for nfastate in state.nfaset:
for label, next in nfastate.arcs:
if label is not None:
addclosure(next, arcs.setdefault(label, {}))
for label, nfaset in arcs.items():
for st in states:
if st.nfaset == nfaset:
break
else:
st = DFAState(nfaset, finish)
states.append(st)
state.add_arc(st, label)
return states # List of DFAState instances; first one is start
def _dump_nfa(start, finish):
print("Dump of NFA for", start.from_rule)
todo = [start]
for i, state in enumerate(todo):
print(" State", i, state is finish and "(final)" or "")
for label, next in state.arcs:
if next in todo:
j = todo.index(next)
else:
j = len(todo)
todo.append(next)
if label is None:
print(" -> %d" % j)
else:
print(" %s -> %d" % (label, j))
def _dump_dfas(name, dfas):
print("Dump of DFA for", name)
for i, state in enumerate(dfas):
print(" State", i, state.isfinal and "(final)" or "")
for label, next in state.arcs.items():
print(" %s -> %d" % (label, dfas.index(next)))
def generate_grammar(bnf_grammar, token_namespace):
"""
``bnf_text`` is a grammar in extended BNF (using * for repetition, + for
at-least-once repetition, [] for optional parts, | for alternatives and ()
for grouping).
It's not EBNF according to ISO/IEC 14977. It's a dialect Python uses in its
own parser.
"""
rule_to_dfas = {}
start_symbol = None
for nfa_a, nfa_z in GrammarParser(bnf_grammar).parse():
#_dump_nfa(a, z)
dfas = _make_dfas(nfa_a, nfa_z)
#_dump_dfas(self._current_rule_name, dfas)
# oldlen = len(dfas)
_simplify_dfas(dfas)
# newlen = len(dfas)
rule_to_dfas[nfa_a.from_rule] = dfas
#print(self._current_rule_name, oldlen, newlen)
if start_symbol is None:
start_symbol = nfa_a.from_rule
p = ParserGenerator(rule_to_dfas, token_namespace)
return p.make_grammar(Grammar(bnf_grammar, start_symbol))