mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-09 21:46:42 +08:00
tensorflow: Add tensorflow.keras.callbacks module (#11332)
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
version = "2.15.*"
|
||||
upstream_repository = "https://github.com/tensorflow/tensorflow"
|
||||
# requires a version of numpy with a `py.typed` file
|
||||
requires = ["numpy>=1.20", "types-protobuf"]
|
||||
requires = ["numpy>=1.20", "types-protobuf", "types-requests"]
|
||||
extra_description = "Partially generated using [mypy-protobuf==3.5.0](https://github.com/nipunn1313/mypy-protobuf/tree/v3.5.0) on tensorflow==2.12.1"
|
||||
partial_stub = true
|
||||
|
||||
|
||||
@@ -7,8 +7,10 @@ from tensorflow.keras import (
|
||||
layers as layers,
|
||||
losses as losses,
|
||||
metrics as metrics,
|
||||
models as models,
|
||||
optimizers as optimizers,
|
||||
regularizers as regularizers,
|
||||
)
|
||||
from tensorflow.keras.models import Model as Model
|
||||
|
||||
def __getattr__(name: str) -> Incomplete: ...
|
||||
|
||||
184
stubs/tensorflow/tensorflow/keras/callbacks.pyi
Normal file
184
stubs/tensorflow/tensorflow/keras/callbacks.pyi
Normal file
@@ -0,0 +1,184 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Callable, Iterable, Mapping, Sequence
|
||||
from typing import Any, Literal
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
import tensorflow as tf
|
||||
from requests.api import _HeadersMapping
|
||||
from tensorflow.keras import Model
|
||||
from tensorflow.keras.optimizers.schedules import LearningRateSchedule
|
||||
from tensorflow.train import CheckpointOptions
|
||||
|
||||
_Logs: TypeAlias = Mapping[str, Any] | None | Any
|
||||
|
||||
class Callback:
|
||||
model: Model # Model[Any, object]
|
||||
params: dict[str, Any]
|
||||
def set_model(self, model: Model) -> None: ...
|
||||
def set_params(self, params: dict[str, Any]) -> None: ...
|
||||
def on_batch_begin(self, batch: int, logs: _Logs = None) -> None: ...
|
||||
def on_batch_end(self, batch: int, logs: _Logs = None) -> None: ...
|
||||
def on_epoch_begin(self, epoch: int, logs: _Logs = None) -> None: ...
|
||||
def on_epoch_end(self, epoch: int, logs: _Logs = None) -> None: ...
|
||||
def on_predict_batch_begin(self, batch: int, logs: _Logs = None) -> None: ...
|
||||
def on_predict_batch_end(self, batch: int, logs: _Logs = None) -> None: ...
|
||||
def on_predict_begin(self, logs: _Logs = None) -> None: ...
|
||||
def on_predict_end(self, logs: _Logs = None) -> None: ...
|
||||
def on_test_batch_begin(self, batch: int, logs: _Logs = None) -> None: ...
|
||||
def on_test_batch_end(self, batch: int, logs: _Logs = None) -> None: ...
|
||||
def on_test_begin(self, logs: _Logs = None) -> None: ...
|
||||
def on_test_end(self, logs: _Logs = None) -> None: ...
|
||||
def on_train_batch_begin(self, batch: int, logs: _Logs = None) -> None: ...
|
||||
def on_train_batch_end(self, batch: int, logs: _Logs = None) -> None: ...
|
||||
def on_train_begin(self, logs: _Logs = None) -> None: ...
|
||||
def on_train_end(self, logs: _Logs = None) -> None: ...
|
||||
|
||||
# A CallbackList has exact same api as a callback, but does not actually subclass it.
|
||||
class CallbackList:
|
||||
model: Model
|
||||
params: dict[str, Any]
|
||||
def __init__(
|
||||
self,
|
||||
callbacks: Sequence[Callback] | None = None,
|
||||
add_history: bool = False,
|
||||
add_progbar: bool = False,
|
||||
# model: Model[Any, object] | None = None,
|
||||
model: Model | None = None,
|
||||
**params: Any,
|
||||
) -> None: ...
|
||||
def set_model(self, model: Model) -> None: ...
|
||||
def set_params(self, params: dict[str, Any]) -> None: ...
|
||||
def on_batch_begin(self, batch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_batch_end(self, batch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_epoch_begin(self, epoch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_epoch_end(self, epoch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_predict_batch_begin(self, batch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_predict_batch_end(self, batch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_predict_begin(self, logs: _Logs | None = None) -> None: ...
|
||||
def on_predict_end(self, logs: _Logs | None = None) -> None: ...
|
||||
def on_test_batch_begin(self, batch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_test_batch_end(self, batch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_test_begin(self, logs: _Logs | None = None) -> None: ...
|
||||
def on_test_end(self, logs: _Logs | None = None) -> None: ...
|
||||
def on_train_batch_begin(self, batch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_train_batch_end(self, batch: int, logs: _Logs | None = None) -> None: ...
|
||||
def on_train_begin(self, logs: _Logs | None = None) -> None: ...
|
||||
def on_train_end(self, logs: _Logs | None = None) -> None: ...
|
||||
|
||||
class BackupAndRestore(Callback):
|
||||
def __init__(
|
||||
self, backup_dir: str, save_freq: str = "epoch", delete_checkpoint: bool = True, save_before_preemption: bool = False
|
||||
) -> None: ...
|
||||
|
||||
class BaseLogger(Callback):
|
||||
def __init__(self, stateful_metrics: Iterable[str] | None = None) -> None: ...
|
||||
|
||||
class CSVLogger(Callback):
|
||||
def __init__(self, filename: str, separator: str = ",", append: bool = False) -> None: ...
|
||||
|
||||
class EarlyStopping(Callback):
|
||||
monitor_op: Any
|
||||
def __init__(
|
||||
self,
|
||||
monitor: str = "val_loss",
|
||||
min_delta: float = 0,
|
||||
patience: int = 0,
|
||||
verbose: Literal[0, 1] = 0,
|
||||
mode: Literal["auto", "min", "max"] = "auto",
|
||||
baseline: float | None = None,
|
||||
restore_best_weights: bool = False,
|
||||
start_from_epoch: int = 0,
|
||||
) -> None: ...
|
||||
|
||||
class History(Callback):
|
||||
history: dict[str, list[Any]]
|
||||
|
||||
class LambdaCallback(Callback):
|
||||
def __init__(
|
||||
self,
|
||||
on_epoch_begin: Callable[[int, _Logs], object] | None = None,
|
||||
on_epoch_end: Callable[[int, _Logs], object] | None = None,
|
||||
on_batch_begin: Callable[[int, _Logs], object] | None = None,
|
||||
on_batch_end: Callable[[int, _Logs], object] | None = None,
|
||||
on_train_begin: Callable[[_Logs], object] | None = None,
|
||||
on_train_end: Callable[[_Logs], object] | None = None,
|
||||
**kwargs: Any,
|
||||
) -> None: ...
|
||||
|
||||
class LearningRateScheduler(Callback):
|
||||
def __init__(
|
||||
self,
|
||||
schedule: LearningRateSchedule | Callable[[int], float | tf.Tensor] | Callable[[int, float], float | tf.Tensor],
|
||||
verbose: Literal[0, 1] = 0,
|
||||
) -> None: ...
|
||||
|
||||
class ModelCheckpoint(Callback):
|
||||
monitor_op: Any
|
||||
filepath: str
|
||||
_options: CheckpointOptions | tf.saved_model.SaveOptions | None
|
||||
def __init__(
|
||||
self,
|
||||
filepath: str,
|
||||
monitor: str = "val_loss",
|
||||
verbose: Literal[0, 1] = 0,
|
||||
save_best_only: bool = False,
|
||||
save_weights_only: bool = False,
|
||||
mode: Literal["auto", "min", "max"] = "auto",
|
||||
save_freq: str | int = "epoch",
|
||||
options: CheckpointOptions | tf.saved_model.SaveOptions | None = None,
|
||||
initial_value_threshold: float | None = None,
|
||||
) -> None: ...
|
||||
def _save_model(self, epoch: int, batch: int | None, logs: _Logs) -> None: ...
|
||||
|
||||
class ProgbarLogger(Callback):
|
||||
use_steps: bool
|
||||
def __init__(
|
||||
self, count_mode: Literal["steps", "samples"] = "samples", stateful_metrics: Iterable[str] | None = None
|
||||
) -> None: ...
|
||||
|
||||
class ReduceLROnPlateau(Callback):
|
||||
def __init__(
|
||||
self,
|
||||
monitor: str = "val_loss",
|
||||
factor: float = 0.1,
|
||||
patience: int = 10,
|
||||
verbose: Literal[0, 1] = 0,
|
||||
mode: Literal["auto", "min", "max"] = "auto",
|
||||
min_delta: float = 1e-4,
|
||||
cooldown: int = 0,
|
||||
min_lr: float = 0,
|
||||
**kwargs: Incomplete,
|
||||
) -> None: ...
|
||||
def in_cooldown(self) -> bool: ...
|
||||
|
||||
class RemoteMonitor(Callback):
|
||||
def __init__(
|
||||
self,
|
||||
root: str = "http://localhost:9000",
|
||||
path: str = "/publish/epoch/end/",
|
||||
field: str = "data",
|
||||
headers: _HeadersMapping | None = None,
|
||||
send_as_json: bool = False,
|
||||
) -> None: ...
|
||||
|
||||
class TensorBoard(Callback):
|
||||
write_steps_per_second: bool
|
||||
update_freq: int | Literal["epoch"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
log_dir: str = "logs",
|
||||
histogram_freq: int = 0,
|
||||
write_graph: bool = True,
|
||||
write_images: bool = False,
|
||||
write_steps_per_second: bool = False,
|
||||
update_freq: int | Literal["epoch"] = "epoch",
|
||||
profile_batch: int | tuple[int, int] = 0,
|
||||
embeddings_freq: int = 0,
|
||||
embeddings_metadata: dict[str, None] | None = None,
|
||||
**kwargs: Any,
|
||||
) -> None: ...
|
||||
def _write_keras_model_train_graph(self) -> None: ...
|
||||
def _stop_trace(self, batch: int | None = None) -> None: ...
|
||||
|
||||
class TerminateOnNaN(Callback): ...
|
||||
3
stubs/tensorflow/tensorflow/keras/models.pyi
Normal file
3
stubs/tensorflow/tensorflow/keras/models.pyi
Normal file
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
Model = Incomplete
|
||||
Reference in New Issue
Block a user