mirror of
https://github.com/davidhalter/typeshed.git
synced 2026-01-30 06:35:22 +08:00
@@ -182,7 +182,7 @@ class RaggedTensor(metaclass=ABCMeta):
|
||||
class Operation:
|
||||
def __init__(
|
||||
self,
|
||||
node_def: Incomplete,
|
||||
node_def,
|
||||
g: Graph,
|
||||
# isinstance is used so can not be Sequence/Iterable.
|
||||
inputs: list[Tensor] | None = None,
|
||||
@@ -190,7 +190,7 @@ class Operation:
|
||||
control_inputs: Iterable[Tensor | Operation] | None = None,
|
||||
input_types: Iterable[DType] | None = None,
|
||||
original_op: Operation | None = None,
|
||||
op_def: Incomplete = None,
|
||||
op_def: Incomplete | None = None,
|
||||
) -> None: ...
|
||||
@property
|
||||
def inputs(self) -> list[Tensor]: ...
|
||||
@@ -301,7 +301,7 @@ class TypeSpec(ABC, Generic[_SpecProto]):
|
||||
def experimental_type_proto(cls) -> type[_SpecProto]: ...
|
||||
def is_compatible_with(self, spec_or_value: Self | TensorCompatible | SparseTensor | RaggedTensor) -> _bool: ...
|
||||
# Incomplete as tf.types is not yet covered.
|
||||
def is_subtype_of(self, other: Incomplete) -> _bool: ...
|
||||
def is_subtype_of(self, other) -> _bool: ...
|
||||
def most_specific_common_supertype(self, others: Sequence[Incomplete]) -> Self | None: ...
|
||||
def most_specific_compatible_type(self, other: Self) -> Self: ...
|
||||
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Callable, Iterable, Mapping, Sequence
|
||||
from typing import Any, Literal
|
||||
from typing_extensions import TypeAlias
|
||||
@@ -148,7 +147,7 @@ class ReduceLROnPlateau(Callback):
|
||||
min_delta: float = 1e-4,
|
||||
cooldown: int = 0,
|
||||
min_lr: float = 0,
|
||||
**kwargs: Incomplete,
|
||||
**kwargs,
|
||||
) -> None: ...
|
||||
def in_cooldown(self) -> bool: ...
|
||||
|
||||
|
||||
@@ -4,6 +4,6 @@ import tensorflow as tf
|
||||
from tensorflow.keras.layers.experimental.preprocessing import PreprocessingLayer
|
||||
|
||||
class _IndexLookup(PreprocessingLayer):
|
||||
def compute_output_signature(self, input_spec: Incomplete) -> tf.TensorSpec: ...
|
||||
def compute_output_signature(self, input_spec) -> tf.TensorSpec: ...
|
||||
def get_vocabulary(self, include_special_tokens: bool = True) -> list[Incomplete]: ...
|
||||
def vocabulary_size(self) -> int: ...
|
||||
|
||||
@@ -26,8 +26,8 @@ class Model(Layer[_InputT, _OutputT], tf.Module):
|
||||
def __new__(cls, *args: Any, **kwargs: Any) -> Model[_InputT, _OutputT]: ...
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None: ...
|
||||
def __setattr__(self, name: str, value: Any) -> None: ...
|
||||
def __reduce__(self) -> Incomplete: ...
|
||||
def __deepcopy__(self, memo: Incomplete) -> Incomplete: ...
|
||||
def __reduce__(self): ...
|
||||
def __deepcopy__(self, memo): ...
|
||||
def build(self, input_shape: ShapeLike) -> None: ...
|
||||
def __call__(self, inputs: _InputT, *, training: bool = False, mask: TensorCompatible | None = None) -> _OutputT: ...
|
||||
def call(self, inputs: _InputT, training: bool | None = None, mask: TensorCompatible | None = None) -> _OutputT: ...
|
||||
@@ -61,7 +61,7 @@ class Model(Layer[_InputT, _OutputT], tf.Module):
|
||||
def jit_compile(self) -> bool: ...
|
||||
@property
|
||||
def distribute_reduction_method(self) -> Incomplete | Literal["auto"]: ...
|
||||
def train_step(self, data: TensorCompatible) -> Incomplete: ...
|
||||
def train_step(self, data: TensorCompatible): ...
|
||||
def compute_loss(
|
||||
self,
|
||||
x: TensorCompatible | None = None,
|
||||
@@ -70,7 +70,7 @@ class Model(Layer[_InputT, _OutputT], tf.Module):
|
||||
sample_weight: Incomplete | None = None,
|
||||
) -> tf.Tensor | None: ...
|
||||
def compute_metrics(
|
||||
self, x: TensorCompatible, y: TensorCompatible, y_pred: TensorCompatible, sample_weight: Incomplete
|
||||
self, x: TensorCompatible, y: TensorCompatible, y_pred: TensorCompatible, sample_weight
|
||||
) -> dict[str, float]: ...
|
||||
def get_metrics_result(self) -> dict[str, float]: ...
|
||||
def make_train_function(self, force: bool = False) -> Callable[[tf.data.Iterator[Incomplete]], dict[str, float]]: ...
|
||||
@@ -186,7 +186,7 @@ class Model(Layer[_InputT, _OutputT], tf.Module):
|
||||
def trainable_weights(self) -> list[Variable]: ...
|
||||
@property
|
||||
def non_trainable_weights(self) -> list[Variable]: ...
|
||||
def get_weights(self) -> Incomplete: ...
|
||||
def get_weights(self): ...
|
||||
def save(
|
||||
self, filepath: str | Path, overwrite: bool = True, save_format: Literal["keras", "tf", "h5"] | None = None, **kwargs: Any
|
||||
) -> None: ...
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
from enum import Enum
|
||||
from typing_extensions import Self
|
||||
|
||||
@@ -24,7 +23,7 @@ class Fingerprint:
|
||||
version: Integer | None = None,
|
||||
) -> None: ...
|
||||
@classmethod
|
||||
def from_proto(cls, proto: Incomplete) -> Self: ...
|
||||
def from_proto(cls, proto) -> Self: ...
|
||||
def singleprint(self) -> str: ...
|
||||
|
||||
class TrackableResource(CapturableResource):
|
||||
|
||||
@@ -24,6 +24,6 @@ class GenericFunction(Callable[_P, _R], metaclass=abc.ABCMeta):
|
||||
def get_concrete_function(
|
||||
self, *args: ContainerGeneric[tf.TypeSpec[Any]], **kwargs: ContainerGeneric[tf.TypeSpec[Any]]
|
||||
) -> ConcreteFunction[_P, _R]: ...
|
||||
def experimental_get_compiler_ir(self, *args: Incomplete, **kwargs: Incomplete) -> Incomplete: ...
|
||||
def experimental_get_compiler_ir(self, *args, **kwargs): ...
|
||||
|
||||
def __getattr__(name: str) -> Incomplete: ...
|
||||
|
||||
Reference in New Issue
Block a user