mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-07 12:44:28 +08:00
tensorflow add tf.random module (#11359)
Partially from Mehdi Drissi's stubs.
This commit is contained in:
@@ -406,7 +406,6 @@ class RaggedTensorSpec(TypeSpec[struct_pb2.TypeSpecProto]):
|
||||
@classmethod
|
||||
def from_value(cls, value: RaggedTensor) -> Self: ...
|
||||
|
||||
def __getattr__(name: str) -> Incomplete: ...
|
||||
def convert_to_tensor(
|
||||
value: TensorCompatible | IndexedSlices,
|
||||
dtype: DTypeLike | None = None,
|
||||
@@ -440,3 +439,4 @@ def cast(x: SparseTensor, dtype: DTypeLike, name: str | None = None) -> SparseTe
|
||||
@overload
|
||||
def cast(x: RaggedTensor, dtype: DTypeLike, name: str | None = None) -> RaggedTensor: ...
|
||||
def reshape(tensor: TensorCompatible, shape: ShapeLike | Tensor, name: str | None = None) -> Tensor: ...
|
||||
def __getattr__(name: str) -> Incomplete: ...
|
||||
|
||||
231
stubs/tensorflow/tensorflow/random.pyi
Normal file
231
stubs/tensorflow/tensorflow/random.pyi
Normal file
@@ -0,0 +1,231 @@
|
||||
from collections.abc import Sequence
|
||||
from enum import Enum
|
||||
from typing import Literal
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import tensorflow as tf
|
||||
from tensorflow._aliases import DTypeLike, ScalarTensorCompatible, ShapeLike
|
||||
from tensorflow.python.trackable import autotrackable
|
||||
|
||||
class Algorithm(Enum):
|
||||
PHILOX = 1
|
||||
THREEFRY = 2
|
||||
AUTO_SELECT = 3
|
||||
|
||||
_Alg: TypeAlias = Literal[Algorithm.PHILOX, Algorithm.THREEFRY, Algorithm.AUTO_SELECT, "philox", "threefry", "auto_select"]
|
||||
|
||||
class Generator(autotrackable.AutoTrackable):
|
||||
@classmethod
|
||||
def from_state(cls, state: tf.Variable, alg: _Alg | None) -> Generator: ...
|
||||
@classmethod
|
||||
def from_seed(cls, seed: int, alg: _Alg | None = None) -> Generator: ...
|
||||
@classmethod
|
||||
def from_non_deterministic_state(cls, alg: _Alg | None = None) -> Generator: ...
|
||||
@classmethod
|
||||
def from_key_counter(
|
||||
cls, key: ScalarTensorCompatible, counter: Sequence[ScalarTensorCompatible], alg: _Alg | None
|
||||
) -> Generator: ...
|
||||
def __init__(self, copy_from: Generator | None = None, state: tf.Variable | None = None, alg: _Alg | None = None) -> None: ...
|
||||
def reset(self, state: tf.Variable) -> None: ...
|
||||
def reset_from_seed(self, seed: int) -> None: ...
|
||||
def reset_from_key_counter(self, key: ScalarTensorCompatible, counter: tf.Variable) -> None: ...
|
||||
@property
|
||||
def state(self) -> tf.Variable: ...
|
||||
@property
|
||||
def algorithm(self) -> int: ...
|
||||
@property
|
||||
def key(self) -> ScalarTensorCompatible: ...
|
||||
def skip(self, delta: int) -> tf.Tensor: ...
|
||||
def normal(
|
||||
self,
|
||||
shape: tf.Tensor | Sequence[int],
|
||||
mean: ScalarTensorCompatible = 0.0,
|
||||
stddev: ScalarTensorCompatible = 1.0,
|
||||
dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def truncated_normal(
|
||||
self,
|
||||
shape: ShapeLike,
|
||||
mean: ScalarTensorCompatible = 0.0,
|
||||
stddev: ScalarTensorCompatible = 1.0,
|
||||
dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def uniform(
|
||||
self,
|
||||
shape: ShapeLike,
|
||||
minval: ScalarTensorCompatible = 0,
|
||||
maxval: ScalarTensorCompatible | None = None,
|
||||
dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def uniform_full_int(self, shape: ShapeLike, dtype: DTypeLike = ..., name: str | None = None) -> tf.Tensor: ...
|
||||
def binomial(
|
||||
self, shape: ShapeLike, counts: tf.Tensor, probs: tf.Tensor, dtype: DTypeLike = ..., name: str | None = None
|
||||
) -> tf.Tensor: ...
|
||||
def make_seeds(self, count: int = 1) -> tf.Tensor: ...
|
||||
def split(self, count: int = 1) -> list[Generator]: ...
|
||||
|
||||
def all_candidate_sampler(
|
||||
true_classes: tf.Tensor, num_true: int, num_sampled: int, unique: bool, seed: int | None = None, name: str | None = None
|
||||
) -> tuple[tf.Tensor, tf.Tensor, tf.Tensor]: ...
|
||||
def categorical(
|
||||
logits: tf.Tensor,
|
||||
num_samples: int | tf.Tensor,
|
||||
dtype: DTypeLike | None = None,
|
||||
seed: int | None = None,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def create_rng_state(seed: int, alg: _Alg) -> npt.NDArray[np.int64]: ...
|
||||
def fixed_unigram_candidate_sampler(
|
||||
true_classes: tf.Tensor,
|
||||
num_true: int,
|
||||
num_sampled: int,
|
||||
unique: bool,
|
||||
range_max: int,
|
||||
vocab_file: str = "",
|
||||
distortion: float = 1.0,
|
||||
num_reserved_ids: int = 0,
|
||||
num_shards: int = 1,
|
||||
shard: int = 0,
|
||||
unigrams: Sequence[float] = (),
|
||||
seed: int | None = None,
|
||||
name: str | None = None,
|
||||
) -> tuple[tf.Tensor, tf.Tensor, tf.Tensor]: ...
|
||||
def fold_in(seed: tf.Tensor | Sequence[int], data: int, alg: _Alg = "auto_select") -> int: ...
|
||||
def gamma(
|
||||
shape: tf.Tensor | Sequence[int],
|
||||
alpha: tf.Tensor | float | Sequence[float],
|
||||
beta: tf.Tensor | float | Sequence[float] | None = None,
|
||||
dtype: DTypeLike = ...,
|
||||
seed: int | None = None,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def get_global_generator() -> Generator: ...
|
||||
def learned_unigram_candidate_sampler(
|
||||
true_classes: tf.Tensor,
|
||||
num_true: int,
|
||||
num_sampled: int,
|
||||
unique: bool,
|
||||
range_max: int,
|
||||
seed: int | None = None,
|
||||
name: str | None = None,
|
||||
) -> tuple[tf.Tensor, tf.Tensor, tf.Tensor]: ...
|
||||
def log_uniform_candidate_sampler(
|
||||
true_classes: tf.Tensor,
|
||||
num_true: int,
|
||||
num_sampled: int,
|
||||
unique: bool,
|
||||
range_max: int,
|
||||
seed: int | None = None,
|
||||
name: str | None = None,
|
||||
) -> tuple[tf.Tensor, tf.Tensor, tf.Tensor]: ...
|
||||
def normal(
|
||||
shape: ShapeLike,
|
||||
mean: ScalarTensorCompatible = 0.0,
|
||||
stddev: ScalarTensorCompatible = 1.0,
|
||||
dtype: DTypeLike = ...,
|
||||
seed: int | None = None,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def poisson(
|
||||
shape: ShapeLike, lam: ScalarTensorCompatible, dtype: DTypeLike = ..., seed: int | None = None, name: str | None = None
|
||||
) -> tf.Tensor: ...
|
||||
def set_global_generator(generator: Generator) -> None: ...
|
||||
def set_seed(seed: int) -> None: ...
|
||||
def shuffle(value: tf.Tensor, seed: int | None = None, name: str | None = None) -> tf.Tensor: ...
|
||||
def split(seed: tf.Tensor | Sequence[int], num: int = 2, alg: _Alg = "auto_select") -> tf.Tensor: ...
|
||||
def stateless_binomial(
|
||||
shape: ShapeLike,
|
||||
seed: tuple[int, int] | tf.Tensor,
|
||||
counts: tf.Tensor,
|
||||
probs: tf.Tensor,
|
||||
output_dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def stateless_categorical(
|
||||
logits: tf.Tensor,
|
||||
num_samples: int | tf.Tensor,
|
||||
seed: tuple[int, int] | tf.Tensor,
|
||||
dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def stateless_gamma(
|
||||
shape: ShapeLike,
|
||||
seed: tuple[int, int] | tf.Tensor,
|
||||
alpha: tf.Tensor,
|
||||
beta: tf.Tensor | None = None,
|
||||
dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def stateless_normal(
|
||||
shape: tf.Tensor | Sequence[int],
|
||||
seed: tuple[int, int] | tf.Tensor,
|
||||
mean: float | tf.Tensor = 0.0,
|
||||
stddev: float | tf.Tensor = 1.0,
|
||||
dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
alg: _Alg = "auto_select",
|
||||
) -> tf.Tensor: ...
|
||||
def stateless_parameterized_truncated_normal(
|
||||
shape: tf.Tensor | Sequence[int],
|
||||
seed: tuple[int, int] | tf.Tensor,
|
||||
means: float | tf.Tensor = 0.0,
|
||||
stddevs: float | tf.Tensor = 1.0,
|
||||
minvals: tf.Tensor | float = -2.0,
|
||||
maxvals: tf.Tensor | float = 2.0,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def stateless_poisson(
|
||||
shape: tf.Tensor | Sequence[int],
|
||||
seed: tuple[int, int] | tf.Tensor,
|
||||
lam: tf.Tensor,
|
||||
dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def stateless_truncated_normal(
|
||||
shape: tf.Tensor | Sequence[int],
|
||||
seed: tuple[int, int] | tf.Tensor,
|
||||
mean: float | tf.Tensor = 0.0,
|
||||
stddev: float | tf.Tensor = 1.0,
|
||||
dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
alg: _Alg = "auto_select",
|
||||
) -> tf.Tensor: ...
|
||||
def stateless_uniform(
|
||||
shape: tf.Tensor | Sequence[int],
|
||||
seed: tuple[int, int] | tf.Tensor,
|
||||
minval: float | tf.Tensor = 0,
|
||||
maxval: float | tf.Tensor | None = None,
|
||||
dtype: DTypeLike = ...,
|
||||
name: str | None = None,
|
||||
alg: _Alg = "auto_select",
|
||||
) -> tf.Tensor: ...
|
||||
def truncated_normal(
|
||||
shape: tf.Tensor | Sequence[int],
|
||||
mean: float | tf.Tensor = 0.0,
|
||||
stddev: float | tf.Tensor = 1.0,
|
||||
dtype: DTypeLike = ...,
|
||||
seed: int | None = None,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def uniform(
|
||||
shape: tf.Tensor | Sequence[int],
|
||||
minval: float | tf.Tensor = 0,
|
||||
maxval: float | tf.Tensor | None = None,
|
||||
dtype: DTypeLike = ...,
|
||||
seed: int | None = None,
|
||||
name: str | None = None,
|
||||
) -> tf.Tensor: ...
|
||||
def uniform_candidate_sampler(
|
||||
true_classes: tf.Tensor,
|
||||
num_true: int,
|
||||
num_sampled: int,
|
||||
unique: bool,
|
||||
range_max: int,
|
||||
seed: int | None = None,
|
||||
name: str | None = None,
|
||||
) -> tuple[tf.Tensor, tf.Tensor, tf.Tensor]: ...
|
||||
Reference in New Issue
Block a user