stdlib: add argument default values (#9501)

This commit is contained in:
Jelle Zijlstra
2023-01-18 00:37:34 -08:00
committed by GitHub
parent 6cb934291f
commit ddfaca3200
272 changed files with 2529 additions and 2467 deletions

View File

@@ -37,7 +37,7 @@ _HashableT = TypeVar("_HashableT", bound=Hashable)
class StatisticsError(ValueError): ...
if sys.version_info >= (3, 11):
def fmean(data: Iterable[SupportsFloat], weights: Iterable[SupportsFloat] | None = ...) -> float: ...
def fmean(data: Iterable[SupportsFloat], weights: Iterable[SupportsFloat] | None = None) -> float: ...
elif sys.version_info >= (3, 8):
def fmean(data: Iterable[SupportsFloat]) -> float: ...
@@ -48,7 +48,7 @@ if sys.version_info >= (3, 8):
def mean(data: Iterable[_NumberT]) -> _NumberT: ...
if sys.version_info >= (3, 10):
def harmonic_mean(data: Iterable[_NumberT], weights: Iterable[_Number] | None = ...) -> _NumberT: ...
def harmonic_mean(data: Iterable[_NumberT], weights: Iterable[_Number] | None = None) -> _NumberT: ...
else:
def harmonic_mean(data: Iterable[_NumberT]) -> _NumberT: ...
@@ -68,16 +68,16 @@ def mode(data: Iterable[_HashableT]) -> _HashableT: ...
if sys.version_info >= (3, 8):
def multimode(data: Iterable[_HashableT]) -> list[_HashableT]: ...
def pstdev(data: Iterable[_NumberT], mu: _NumberT | None = ...) -> _NumberT: ...
def pvariance(data: Iterable[_NumberT], mu: _NumberT | None = ...) -> _NumberT: ...
def pstdev(data: Iterable[_NumberT], mu: _NumberT | None = None) -> _NumberT: ...
def pvariance(data: Iterable[_NumberT], mu: _NumberT | None = None) -> _NumberT: ...
if sys.version_info >= (3, 8):
def quantiles(
data: Iterable[_NumberT], *, n: int = ..., method: Literal["inclusive", "exclusive"] = ...
data: Iterable[_NumberT], *, n: int = 4, method: Literal["inclusive", "exclusive"] = "exclusive"
) -> list[_NumberT]: ...
def stdev(data: Iterable[_NumberT], xbar: _NumberT | None = ...) -> _NumberT: ...
def variance(data: Iterable[_NumberT], xbar: _NumberT | None = ...) -> _NumberT: ...
def stdev(data: Iterable[_NumberT], xbar: _NumberT | None = None) -> _NumberT: ...
def variance(data: Iterable[_NumberT], xbar: _NumberT | None = None) -> _NumberT: ...
if sys.version_info >= (3, 8):
class NormalDist:
@@ -94,12 +94,12 @@ if sys.version_info >= (3, 8):
def variance(self) -> float: ...
@classmethod
def from_samples(cls: type[Self], data: Iterable[SupportsFloat]) -> Self: ...
def samples(self, n: int, *, seed: Any | None = ...) -> list[float]: ...
def samples(self, n: int, *, seed: Any | None = None) -> list[float]: ...
def pdf(self, x: float) -> float: ...
def cdf(self, x: float) -> float: ...
def inv_cdf(self, p: float) -> float: ...
def overlap(self, other: NormalDist) -> float: ...
def quantiles(self, n: int = ...) -> list[float]: ...
def quantiles(self, n: int = 4) -> list[float]: ...
if sys.version_info >= (3, 9):
def zscore(self, x: float) -> float: ...
@@ -124,7 +124,7 @@ if sys.version_info >= (3, 10):
if sys.version_info >= (3, 11):
def linear_regression(
__regressor: Sequence[_Number], __dependent_variable: Sequence[_Number], *, proportional: bool = ...
__regressor: Sequence[_Number], __dependent_variable: Sequence[_Number], *, proportional: bool = False
) -> LinearRegression: ...
elif sys.version_info >= (3, 10):