mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-20 19:01:15 +08:00
stdlib: add argument default values (#9501)
This commit is contained in:
@@ -37,7 +37,7 @@ _HashableT = TypeVar("_HashableT", bound=Hashable)
|
||||
class StatisticsError(ValueError): ...
|
||||
|
||||
if sys.version_info >= (3, 11):
|
||||
def fmean(data: Iterable[SupportsFloat], weights: Iterable[SupportsFloat] | None = ...) -> float: ...
|
||||
def fmean(data: Iterable[SupportsFloat], weights: Iterable[SupportsFloat] | None = None) -> float: ...
|
||||
|
||||
elif sys.version_info >= (3, 8):
|
||||
def fmean(data: Iterable[SupportsFloat]) -> float: ...
|
||||
@@ -48,7 +48,7 @@ if sys.version_info >= (3, 8):
|
||||
def mean(data: Iterable[_NumberT]) -> _NumberT: ...
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
def harmonic_mean(data: Iterable[_NumberT], weights: Iterable[_Number] | None = ...) -> _NumberT: ...
|
||||
def harmonic_mean(data: Iterable[_NumberT], weights: Iterable[_Number] | None = None) -> _NumberT: ...
|
||||
|
||||
else:
|
||||
def harmonic_mean(data: Iterable[_NumberT]) -> _NumberT: ...
|
||||
@@ -68,16 +68,16 @@ def mode(data: Iterable[_HashableT]) -> _HashableT: ...
|
||||
if sys.version_info >= (3, 8):
|
||||
def multimode(data: Iterable[_HashableT]) -> list[_HashableT]: ...
|
||||
|
||||
def pstdev(data: Iterable[_NumberT], mu: _NumberT | None = ...) -> _NumberT: ...
|
||||
def pvariance(data: Iterable[_NumberT], mu: _NumberT | None = ...) -> _NumberT: ...
|
||||
def pstdev(data: Iterable[_NumberT], mu: _NumberT | None = None) -> _NumberT: ...
|
||||
def pvariance(data: Iterable[_NumberT], mu: _NumberT | None = None) -> _NumberT: ...
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
def quantiles(
|
||||
data: Iterable[_NumberT], *, n: int = ..., method: Literal["inclusive", "exclusive"] = ...
|
||||
data: Iterable[_NumberT], *, n: int = 4, method: Literal["inclusive", "exclusive"] = "exclusive"
|
||||
) -> list[_NumberT]: ...
|
||||
|
||||
def stdev(data: Iterable[_NumberT], xbar: _NumberT | None = ...) -> _NumberT: ...
|
||||
def variance(data: Iterable[_NumberT], xbar: _NumberT | None = ...) -> _NumberT: ...
|
||||
def stdev(data: Iterable[_NumberT], xbar: _NumberT | None = None) -> _NumberT: ...
|
||||
def variance(data: Iterable[_NumberT], xbar: _NumberT | None = None) -> _NumberT: ...
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
class NormalDist:
|
||||
@@ -94,12 +94,12 @@ if sys.version_info >= (3, 8):
|
||||
def variance(self) -> float: ...
|
||||
@classmethod
|
||||
def from_samples(cls: type[Self], data: Iterable[SupportsFloat]) -> Self: ...
|
||||
def samples(self, n: int, *, seed: Any | None = ...) -> list[float]: ...
|
||||
def samples(self, n: int, *, seed: Any | None = None) -> list[float]: ...
|
||||
def pdf(self, x: float) -> float: ...
|
||||
def cdf(self, x: float) -> float: ...
|
||||
def inv_cdf(self, p: float) -> float: ...
|
||||
def overlap(self, other: NormalDist) -> float: ...
|
||||
def quantiles(self, n: int = ...) -> list[float]: ...
|
||||
def quantiles(self, n: int = 4) -> list[float]: ...
|
||||
if sys.version_info >= (3, 9):
|
||||
def zscore(self, x: float) -> float: ...
|
||||
|
||||
@@ -124,7 +124,7 @@ if sys.version_info >= (3, 10):
|
||||
|
||||
if sys.version_info >= (3, 11):
|
||||
def linear_regression(
|
||||
__regressor: Sequence[_Number], __dependent_variable: Sequence[_Number], *, proportional: bool = ...
|
||||
__regressor: Sequence[_Number], __dependent_variable: Sequence[_Number], *, proportional: bool = False
|
||||
) -> LinearRegression: ...
|
||||
|
||||
elif sys.version_info >= (3, 10):
|
||||
|
||||
Reference in New Issue
Block a user