mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-09 05:24:52 +08:00
Update mypy-protobuf (#10914)
Co-authored-by: Avasam <samuel.06@hotmail.com> Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
This commit is contained in:
@@ -2,6 +2,7 @@ version = "2.12.*"
|
||||
upstream_repository = "https://github.com/tensorflow/tensorflow"
|
||||
# requires a version of numpy with a `py.typed` file
|
||||
requires = ["numpy>=1.20", "types-protobuf"]
|
||||
extra_description = "Partially generated using [mypy-protobuf==3.5.0](https://github.com/nipunn1313/mypy-protobuf/tree/v3.5.0) on tensorflow==2.12.1"
|
||||
partial_stub = true
|
||||
|
||||
[tool.stubtest]
|
||||
|
||||
@@ -0,0 +1,94 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
Copyright 2022 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================
|
||||
"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
import tensorflow.tsl.protobuf.autotuning_pb2
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class AutotuneResults(google.protobuf.message.Message):
|
||||
"""A collection of algorithms for particular dot/convs. Usually this is "the
|
||||
best" algorithm for the particular dot/conv, although that's not strictly
|
||||
required.
|
||||
|
||||
Users don't interact with this proto directly. It's used internally to
|
||||
facilitate ahead-of-time autotuning -- The string used by
|
||||
xla::{Serialize,Load}AutotuneResults is, internally, a serialization of this
|
||||
proto.
|
||||
|
||||
LINT.IfChange
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class Entry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DEVICE_FIELD_NUMBER: builtins.int
|
||||
HLO_FIELD_NUMBER: builtins.int
|
||||
RESULT_FIELD_NUMBER: builtins.int
|
||||
device: builtins.str
|
||||
hlo: builtins.str
|
||||
@property
|
||||
def result(self) -> tensorflow.tsl.protobuf.autotuning_pb2.AutotuneResult:
|
||||
"""nb: These results are always tied to a particular version of
|
||||
cublas/cudnn, but this is *especially* true for cublasLt results. For
|
||||
cublasLt gemms, the result is an index into the list of candidate
|
||||
algorithms returned by cublasLt. Different version of cublasLt ->
|
||||
different list of algos -> different interpretation of results!
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: builtins.str | None = ...,
|
||||
hlo: builtins.str | None = ...,
|
||||
result: tensorflow.tsl.protobuf.autotuning_pb2.AutotuneResult | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["result", b"result"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["device", b"device", "hlo", b"hlo", "result", b"result"]) -> None: ...
|
||||
|
||||
VERSION_FIELD_NUMBER: builtins.int
|
||||
DOTS_FIELD_NUMBER: builtins.int
|
||||
CONVS_FIELD_NUMBER: builtins.int
|
||||
version: builtins.int
|
||||
@property
|
||||
def dots(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___AutotuneResults.Entry]: ...
|
||||
@property
|
||||
def convs(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___AutotuneResults.Entry]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
version: builtins.int | None = ...,
|
||||
dots: collections.abc.Iterable[global___AutotuneResults.Entry] | None = ...,
|
||||
convs: collections.abc.Iterable[global___AutotuneResults.Entry] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["convs", b"convs", "dots", b"dots", "version", b"version"]) -> None: ...
|
||||
|
||||
global___AutotuneResults = AutotuneResults
|
||||
@@ -94,6 +94,27 @@ class _CustomCallApiVersionEnumTypeWrapper(google.protobuf.internal.enum_type_wr
|
||||
const char* opaque, size_t opaque_len,
|
||||
XlaCustomCallStatus* status);
|
||||
"""
|
||||
API_VERSION_TYPED_FFI: _CustomCallApiVersion.ValueType # 4
|
||||
"""Api version implementing XLA runtime custom call calling convention. These
|
||||
custom calls can be registered as an XLA runtime custom call (1) or as XLA
|
||||
runtime FFI binding (2).
|
||||
|
||||
This type of custom call uses custom ABI to pass type information along
|
||||
with custom call arguments. Also it passes buffer arguments together with
|
||||
data type, sizes and strides.
|
||||
|
||||
Example: (XLA runtime custom call)
|
||||
|
||||
absl::Status DoCustomCall(StridedMemrefView arg, float attr);
|
||||
|
||||
CustomCall::Bind("custom_call")
|
||||
.Arg<StridedMemrefView>()
|
||||
.Attr<float>("attr")
|
||||
.To(DoCustomCall);
|
||||
|
||||
(1) xla/runtime/custom_call.h
|
||||
(2) xla/runtime/ffi/ffi.h
|
||||
"""
|
||||
|
||||
class CustomCallApiVersion(_CustomCallApiVersion, metaclass=_CustomCallApiVersionEnumTypeWrapper):
|
||||
"""The version of the API used by the custom call function. The signatures for
|
||||
@@ -142,6 +163,27 @@ GPU:
|
||||
const char* opaque, size_t opaque_len,
|
||||
XlaCustomCallStatus* status);
|
||||
"""
|
||||
API_VERSION_TYPED_FFI: CustomCallApiVersion.ValueType # 4
|
||||
"""Api version implementing XLA runtime custom call calling convention. These
|
||||
custom calls can be registered as an XLA runtime custom call (1) or as XLA
|
||||
runtime FFI binding (2).
|
||||
|
||||
This type of custom call uses custom ABI to pass type information along
|
||||
with custom call arguments. Also it passes buffer arguments together with
|
||||
data type, sizes and strides.
|
||||
|
||||
Example: (XLA runtime custom call)
|
||||
|
||||
absl::Status DoCustomCall(StridedMemrefView arg, float attr);
|
||||
|
||||
CustomCall::Bind("custom_call")
|
||||
.Arg<StridedMemrefView>()
|
||||
.Attr<float>("attr")
|
||||
.To(DoCustomCall);
|
||||
|
||||
(1) xla/runtime/custom_call.h
|
||||
(2) xla/runtime/ffi/ffi.h
|
||||
"""
|
||||
global___CustomCallApiVersion = CustomCallApiVersion
|
||||
|
||||
class _Kind:
|
||||
@@ -174,7 +216,7 @@ global___Kind = Kind
|
||||
@typing_extensions.final
|
||||
class HloInstructionProto(google.protobuf.message.Message):
|
||||
"""Serialization of HloInstruction.
|
||||
Next ID: 80
|
||||
Next ID: 81
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
@@ -254,7 +296,7 @@ class HloInstructionProto(google.protobuf.message.Message):
|
||||
CHOLESKY_OPTIONS_FIELD_NUMBER: builtins.int
|
||||
PARAMETER_REPLICATION_FIELD_NUMBER: builtins.int
|
||||
CUSTOM_CALL_HAS_SIDE_EFFECT_FIELD_NUMBER: builtins.int
|
||||
CUSTOM_CALL_OUTPUT_OPERAND_ALIASING_FIELD_NUMBER: builtins.int
|
||||
OUTPUT_OPERAND_ALIASING_FIELD_NUMBER: builtins.int
|
||||
CUSTOM_CALL_SCHEDULE_FIELD_NUMBER: builtins.int
|
||||
DELTA_FIELD_NUMBER: builtins.int
|
||||
INDICES_ARE_SORTED_FIELD_NUMBER: builtins.int
|
||||
@@ -263,6 +305,7 @@ class HloInstructionProto(google.protobuf.message.Message):
|
||||
RNG_ALGORITHM_FIELD_NUMBER: builtins.int
|
||||
COMPARISON_TYPE_FIELD_NUMBER: builtins.int
|
||||
IS_CROSS_PROGRAM_PREFETCH_FIELD_NUMBER: builtins.int
|
||||
CROSS_PROGRAM_PREFETCH_INDEX_FIELD_NUMBER: builtins.int
|
||||
PADDING_TYPE_FIELD_NUMBER: builtins.int
|
||||
CUSTOM_CALL_API_VERSION_FIELD_NUMBER: builtins.int
|
||||
ASYNC_GROUP_ID_FIELD_NUMBER: builtins.int
|
||||
@@ -424,9 +467,9 @@ class HloInstructionProto(google.protobuf.message.Message):
|
||||
kCustomCall.
|
||||
"""
|
||||
@property
|
||||
def custom_call_output_operand_aliasing(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[tensorflow.compiler.xla.xla_data_pb2.CustomCallOutputOperandAliasing]:
|
||||
"""A list of CustomCallOutputOperandAliasing pairs that specifies aliasing
|
||||
buffers between output and operands for kCustomCall.
|
||||
def output_operand_aliasing(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[tensorflow.compiler.xla.xla_data_pb2.OutputOperandAliasing]:
|
||||
"""A list of OutputOperandAliasing pairs that specifies aliasing buffers
|
||||
between output and operands for kCustomCall and kFusion.
|
||||
"""
|
||||
custom_call_schedule: global___CustomCallSchedule.ValueType
|
||||
"""Specifies the desired schedule for the custom-call. The field is only
|
||||
@@ -450,7 +493,10 @@ class HloInstructionProto(google.protobuf.message.Message):
|
||||
comparison_type: builtins.str
|
||||
"""The comparison type used for kCompare."""
|
||||
is_cross_program_prefetch: builtins.bool
|
||||
"""Specifies if this is a cross-program-prefetch, used by kCopyStart."""
|
||||
"""Specifies if this is a cross-program-prefetch, used by kCopyStart.
|
||||
Deprecated and replaced by optional_cross_program_prefetch_index.
|
||||
"""
|
||||
cross_program_prefetch_index: builtins.int
|
||||
padding_type: tensorflow.compiler.xla.xla_data_pb2.PaddingType.ValueType
|
||||
"""If a convolution is dynamic, a dynamic padding type will be specified."""
|
||||
custom_call_api_version: global___CustomCallApiVersion.ValueType
|
||||
@@ -526,7 +572,7 @@ class HloInstructionProto(google.protobuf.message.Message):
|
||||
cholesky_options: tensorflow.compiler.xla.xla_data_pb2.CholeskyOptions | None = ...,
|
||||
parameter_replication: tensorflow.compiler.xla.xla_data_pb2.ParameterReplication | None = ...,
|
||||
custom_call_has_side_effect: builtins.bool | None = ...,
|
||||
custom_call_output_operand_aliasing: collections.abc.Iterable[tensorflow.compiler.xla.xla_data_pb2.CustomCallOutputOperandAliasing] | None = ...,
|
||||
output_operand_aliasing: collections.abc.Iterable[tensorflow.compiler.xla.xla_data_pb2.OutputOperandAliasing] | None = ...,
|
||||
custom_call_schedule: global___CustomCallSchedule.ValueType | None = ...,
|
||||
delta: builtins.int | None = ...,
|
||||
indices_are_sorted: builtins.bool | None = ...,
|
||||
@@ -535,13 +581,15 @@ class HloInstructionProto(google.protobuf.message.Message):
|
||||
rng_algorithm: tensorflow.compiler.xla.xla_data_pb2.RandomAlgorithm.ValueType | None = ...,
|
||||
comparison_type: builtins.str | None = ...,
|
||||
is_cross_program_prefetch: builtins.bool | None = ...,
|
||||
cross_program_prefetch_index: builtins.int | None = ...,
|
||||
padding_type: tensorflow.compiler.xla.xla_data_pb2.PaddingType.ValueType | None = ...,
|
||||
custom_call_api_version: global___CustomCallApiVersion.ValueType | None = ...,
|
||||
async_group_id: builtins.int | None = ...,
|
||||
async_execution_thread: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["cholesky_options", b"cholesky_options", "convolution_dimension_numbers", b"convolution_dimension_numbers", "domain_entry_sharding", b"domain_entry_sharding", "domain_exit_sharding", b"domain_exit_sharding", "dot_dimension_numbers", b"dot_dimension_numbers", "frontend_attributes", b"frontend_attributes", "gather_dimension_numbers", b"gather_dimension_numbers", "literal", b"literal", "metadata", b"metadata", "outfeed_shape", b"outfeed_shape", "padding_config", b"padding_config", "parameter_replication", b"parameter_replication", "precision_config", b"precision_config", "scatter_dimension_numbers", b"scatter_dimension_numbers", "shape", b"shape", "sharding", b"sharding", "triangular_solve_options", b"triangular_solve_options", "window", b"window"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["all_reduce_id", b"all_reduce_id", "async_execution_thread", b"async_execution_thread", "async_group_id", b"async_group_id", "backend_config", b"backend_config", "batch_group_count", b"batch_group_count", "called_computation_ids", b"called_computation_ids", "channel_id", b"channel_id", "cholesky_options", b"cholesky_options", "comparison_direction", b"comparison_direction", "comparison_type", b"comparison_type", "constrain_layout", b"constrain_layout", "control_predecessor_ids", b"control_predecessor_ids", "convolution_dimension_numbers", b"convolution_dimension_numbers", "custom_call_api_version", b"custom_call_api_version", "custom_call_has_side_effect", b"custom_call_has_side_effect", "custom_call_output_operand_aliasing", b"custom_call_output_operand_aliasing", "custom_call_schedule", b"custom_call_schedule", "custom_call_target", b"custom_call_target", "delta", b"delta", "dimensions", b"dimensions", "distribution", b"distribution", "domain_entry_sharding", b"domain_entry_sharding", "domain_exit_sharding", b"domain_exit_sharding", "dot_dimension_numbers", b"dot_dimension_numbers", "dynamic_slice_sizes", b"dynamic_slice_sizes", "epsilon", b"epsilon", "exponent_bits", b"exponent_bits", "feature_group_count", b"feature_group_count", "feature_index", b"feature_index", "fft_length", b"fft_length", "fft_type", b"fft_type", "frontend_attributes", b"frontend_attributes", "fusion_kind", b"fusion_kind", "gather_dimension_numbers", b"gather_dimension_numbers", "gather_slice_sizes", b"gather_slice_sizes", "id", b"id", "indices_are_sorted", b"indices_are_sorted", "infeed_config", b"infeed_config", "is_cross_program_prefetch", b"is_cross_program_prefetch", "is_host_transfer", b"is_host_transfer", "is_stable", b"is_stable", "literal", b"literal", "mantissa_bits", b"mantissa_bits", "metadata", b"metadata", "name", b"name", "opcode", b"opcode", "operand_ids", b"operand_ids", "operand_shapes_with_layout", b"operand_shapes_with_layout", "outfeed_config", b"outfeed_config", "outfeed_shape", b"outfeed_shape", "padding_config", b"padding_config", "padding_type", b"padding_type", "parameter_number", b"parameter_number", "parameter_replication", b"parameter_replication", "precision_config", b"precision_config", "replica_groups", b"replica_groups", "rng_algorithm", b"rng_algorithm", "scatter_dimension_numbers", b"scatter_dimension_numbers", "shape", b"shape", "sharding", b"sharding", "slice_dimensions", b"slice_dimensions", "source_target_pairs", b"source_target_pairs", "triangular_solve_options", b"triangular_solve_options", "tuple_index", b"tuple_index", "unique_indices", b"unique_indices", "use_global_device_ids", b"use_global_device_ids", "window", b"window"]) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["cholesky_options", b"cholesky_options", "convolution_dimension_numbers", b"convolution_dimension_numbers", "cross_program_prefetch_index", b"cross_program_prefetch_index", "domain_entry_sharding", b"domain_entry_sharding", "domain_exit_sharding", b"domain_exit_sharding", "dot_dimension_numbers", b"dot_dimension_numbers", "frontend_attributes", b"frontend_attributes", "gather_dimension_numbers", b"gather_dimension_numbers", "literal", b"literal", "metadata", b"metadata", "optional_cross_program_prefetch_index", b"optional_cross_program_prefetch_index", "outfeed_shape", b"outfeed_shape", "padding_config", b"padding_config", "parameter_replication", b"parameter_replication", "precision_config", b"precision_config", "scatter_dimension_numbers", b"scatter_dimension_numbers", "shape", b"shape", "sharding", b"sharding", "triangular_solve_options", b"triangular_solve_options", "window", b"window"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["all_reduce_id", b"all_reduce_id", "async_execution_thread", b"async_execution_thread", "async_group_id", b"async_group_id", "backend_config", b"backend_config", "batch_group_count", b"batch_group_count", "called_computation_ids", b"called_computation_ids", "channel_id", b"channel_id", "cholesky_options", b"cholesky_options", "comparison_direction", b"comparison_direction", "comparison_type", b"comparison_type", "constrain_layout", b"constrain_layout", "control_predecessor_ids", b"control_predecessor_ids", "convolution_dimension_numbers", b"convolution_dimension_numbers", "cross_program_prefetch_index", b"cross_program_prefetch_index", "custom_call_api_version", b"custom_call_api_version", "custom_call_has_side_effect", b"custom_call_has_side_effect", "custom_call_schedule", b"custom_call_schedule", "custom_call_target", b"custom_call_target", "delta", b"delta", "dimensions", b"dimensions", "distribution", b"distribution", "domain_entry_sharding", b"domain_entry_sharding", "domain_exit_sharding", b"domain_exit_sharding", "dot_dimension_numbers", b"dot_dimension_numbers", "dynamic_slice_sizes", b"dynamic_slice_sizes", "epsilon", b"epsilon", "exponent_bits", b"exponent_bits", "feature_group_count", b"feature_group_count", "feature_index", b"feature_index", "fft_length", b"fft_length", "fft_type", b"fft_type", "frontend_attributes", b"frontend_attributes", "fusion_kind", b"fusion_kind", "gather_dimension_numbers", b"gather_dimension_numbers", "gather_slice_sizes", b"gather_slice_sizes", "id", b"id", "indices_are_sorted", b"indices_are_sorted", "infeed_config", b"infeed_config", "is_cross_program_prefetch", b"is_cross_program_prefetch", "is_host_transfer", b"is_host_transfer", "is_stable", b"is_stable", "literal", b"literal", "mantissa_bits", b"mantissa_bits", "metadata", b"metadata", "name", b"name", "opcode", b"opcode", "operand_ids", b"operand_ids", "operand_shapes_with_layout", b"operand_shapes_with_layout", "optional_cross_program_prefetch_index", b"optional_cross_program_prefetch_index", "outfeed_config", b"outfeed_config", "outfeed_shape", b"outfeed_shape", "output_operand_aliasing", b"output_operand_aliasing", "padding_config", b"padding_config", "padding_type", b"padding_type", "parameter_number", b"parameter_number", "parameter_replication", b"parameter_replication", "precision_config", b"precision_config", "replica_groups", b"replica_groups", "rng_algorithm", b"rng_algorithm", "scatter_dimension_numbers", b"scatter_dimension_numbers", "shape", b"shape", "sharding", b"sharding", "slice_dimensions", b"slice_dimensions", "source_target_pairs", b"source_target_pairs", "triangular_solve_options", b"triangular_solve_options", "tuple_index", b"tuple_index", "unique_indices", b"unique_indices", "use_global_device_ids", b"use_global_device_ids", "window", b"window"]) -> None: ...
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["optional_cross_program_prefetch_index", b"optional_cross_program_prefetch_index"]) -> typing_extensions.Literal["cross_program_prefetch_index"] | None: ...
|
||||
|
||||
global___HloInstructionProto = HloInstructionProto
|
||||
|
||||
@@ -712,7 +760,7 @@ class DynamicParameterBindingProto(google.protobuf.message.Message):
|
||||
|
||||
@typing_extensions.final
|
||||
class Binding(google.protobuf.message.Message):
|
||||
"""A list of bindings which indicates that the `target_dim_num` in
|
||||
"""A list of bindings which indicates that the `target_param_dim_num` in
|
||||
the subshape `target_param_index` of parameter `target_param_num`
|
||||
is a dynamic dimension and its real dynamic size is represented
|
||||
by `dynamic_param_index` in parameter `dynamic_param_num`.
|
||||
@@ -734,7 +782,7 @@ class DynamicParameterBindingProto(google.protobuf.message.Message):
|
||||
dynamic_param_index = {}
|
||||
target_param_num = 0
|
||||
target_param_index = {}
|
||||
target_param_dim = 0
|
||||
target_param_dim_num = 0
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
@@ -780,16 +828,19 @@ class CrossProgramPrefetch(google.protobuf.message.Message):
|
||||
|
||||
PARAMETER_FIELD_NUMBER: builtins.int
|
||||
INDEX_FIELD_NUMBER: builtins.int
|
||||
OFFSET_FIELD_NUMBER: builtins.int
|
||||
parameter: builtins.int
|
||||
@property
|
||||
def index(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]: ...
|
||||
offset: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
parameter: builtins.int | None = ...,
|
||||
index: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
offset: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["index", b"index", "parameter", b"parameter"]) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["index", b"index", "offset", b"offset", "parameter", b"parameter"]) -> None: ...
|
||||
|
||||
global___CrossProgramPrefetch = CrossProgramPrefetch
|
||||
|
||||
@@ -803,7 +854,7 @@ class HloModuleProto(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ProfileTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[HloModuleProto._ProfileType.ValueType], builtins.type): # noqa: F821
|
||||
class _ProfileTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[HloModuleProto._ProfileType.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
INVALID: HloModuleProto._ProfileType.ValueType # 0
|
||||
FLAG: HloModuleProto._ProfileType.ValueType # 1
|
||||
@@ -940,28 +991,22 @@ class LogicalBufferProto(google.protobuf.message.Message):
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
COMPUTATION_NAME_FIELD_NUMBER: builtins.int
|
||||
INSTRUCTION_NAME_FIELD_NUMBER: builtins.int
|
||||
INSTRUCTION_ID_FIELD_NUMBER: builtins.int
|
||||
SHAPE_INDEX_FIELD_NUMBER: builtins.int
|
||||
computation_name: builtins.str
|
||||
"""NOTE: module_name isn't necessary, since all LogicalBuffers are
|
||||
associated with a single HloModule.
|
||||
TODO(b/239098765): Remove instruction_name and computation_name.
|
||||
"""
|
||||
instruction_name: builtins.str
|
||||
"""TODO(b/239098765): Remove instruction_name and computation_name."""
|
||||
instruction_id: builtins.int
|
||||
@property
|
||||
def shape_index(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
computation_name: builtins.str | None = ...,
|
||||
instruction_name: builtins.str | None = ...,
|
||||
instruction_id: builtins.int | None = ...,
|
||||
shape_index: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["computation_name", b"computation_name", "instruction_id", b"instruction_id", "instruction_name", b"instruction_name", "shape_index", b"shape_index"]) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["instruction_id", b"instruction_id", "instruction_name", b"instruction_name", "shape_index", b"shape_index"]) -> None: ...
|
||||
|
||||
ID_FIELD_NUMBER: builtins.int
|
||||
SIZE_FIELD_NUMBER: builtins.int
|
||||
@@ -1076,7 +1121,7 @@ class HeapSimulatorTrace(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _KindEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[HeapSimulatorTrace.Event._Kind.ValueType], builtins.type): # noqa: F821
|
||||
class _KindEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[HeapSimulatorTrace.Event._Kind.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
ALLOC: HeapSimulatorTrace.Event._Kind.ValueType # 0
|
||||
"""A memory region was allocated for the buffer."""
|
||||
@@ -1488,14 +1533,10 @@ class XlaRuntimeExecutableProto(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
HLO_MODULE_PROTO_FIELD_NUMBER: builtins.int
|
||||
ENTRY_FUNC_ATTRS_FIELD_NUMBER: builtins.int
|
||||
OBJ_FILE_FIELD_NUMBER: builtins.int
|
||||
MLIR_MODULE_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def hlo_module_proto(self) -> global___HloModuleProto: ...
|
||||
@property
|
||||
def entry_func_attrs(self) -> global___EntryFunctionAttributes:
|
||||
"""XLA-specific attributes of the executable's entry function."""
|
||||
obj_file: builtins.bytes
|
||||
"""TODO(b/232263665)): Serialized executable has to know what APIs it has to
|
||||
be linked with, including the version. For example Gpu executable must be
|
||||
@@ -1509,11 +1550,10 @@ class XlaRuntimeExecutableProto(google.protobuf.message.Message):
|
||||
self,
|
||||
*,
|
||||
hlo_module_proto: global___HloModuleProto | None = ...,
|
||||
entry_func_attrs: global___EntryFunctionAttributes | None = ...,
|
||||
obj_file: builtins.bytes | None = ...,
|
||||
mlir_module: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["entry_func_attrs", b"entry_func_attrs", "hlo_module_proto", b"hlo_module_proto"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["entry_func_attrs", b"entry_func_attrs", "hlo_module_proto", b"hlo_module_proto", "mlir_module", b"mlir_module", "obj_file", b"obj_file"]) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["hlo_module_proto", b"hlo_module_proto"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["hlo_module_proto", b"hlo_module_proto", "mlir_module", b"mlir_module", "obj_file", b"obj_file"]) -> None: ...
|
||||
|
||||
global___XlaRuntimeExecutableProto = XlaRuntimeExecutableProto
|
||||
|
||||
@@ -0,0 +1,73 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import builtins
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.duration_pb2
|
||||
import google.protobuf.internal.enum_type_wrapper
|
||||
import google.protobuf.message
|
||||
import google.protobuf.timestamp_pb2
|
||||
import sys
|
||||
import typing
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class CompilationLogEntry(google.protobuf.message.Message):
|
||||
"""Defines XLA compilation metrics."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
class _CompilationStage:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _CompilationStageEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[CompilationLogEntry._CompilationStage.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNSPECIFIED: CompilationLogEntry._CompilationStage.ValueType # 0
|
||||
END_TO_END: CompilationLogEntry._CompilationStage.ValueType # 1
|
||||
HLO_PASSES: CompilationLogEntry._CompilationStage.ValueType # 2
|
||||
CODE_GENERATION: CompilationLogEntry._CompilationStage.ValueType # 3
|
||||
BACKEND_PASSES: CompilationLogEntry._CompilationStage.ValueType # 4
|
||||
|
||||
class CompilationStage(_CompilationStage, metaclass=_CompilationStageEnumTypeWrapper):
|
||||
"""Defines compilation stages for which metrics are collected."""
|
||||
|
||||
UNSPECIFIED: CompilationLogEntry.CompilationStage.ValueType # 0
|
||||
END_TO_END: CompilationLogEntry.CompilationStage.ValueType # 1
|
||||
HLO_PASSES: CompilationLogEntry.CompilationStage.ValueType # 2
|
||||
CODE_GENERATION: CompilationLogEntry.CompilationStage.ValueType # 3
|
||||
BACKEND_PASSES: CompilationLogEntry.CompilationStage.ValueType # 4
|
||||
|
||||
TIMESTAMP_FIELD_NUMBER: builtins.int
|
||||
STAGE_FIELD_NUMBER: builtins.int
|
||||
DURATION_FIELD_NUMBER: builtins.int
|
||||
TASK_INDEX_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def timestamp(self) -> google.protobuf.timestamp_pb2.Timestamp:
|
||||
"""Time when the event captured by this log entry occurred."""
|
||||
stage: global___CompilationLogEntry.CompilationStage.ValueType
|
||||
"""Compilation stage recorded by this log entry."""
|
||||
@property
|
||||
def duration(self) -> google.protobuf.duration_pb2.Duration:
|
||||
"""Duration of the given compilation stage."""
|
||||
task_index: builtins.int
|
||||
"""Task index from which this log entry was recorded."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
timestamp: google.protobuf.timestamp_pb2.Timestamp | None = ...,
|
||||
stage: global___CompilationLogEntry.CompilationStage.ValueType | None = ...,
|
||||
duration: google.protobuf.duration_pb2.Duration | None = ...,
|
||||
task_index: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["duration", b"duration", "timestamp", b"timestamp"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["duration", b"duration", "stage", b"stage", "task_index", b"task_index", "timestamp", b"timestamp"]) -> None: ...
|
||||
|
||||
global___CompilationLogEntry = CompilationLogEntry
|
||||
@@ -65,6 +65,22 @@ class _PrimitiveTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._
|
||||
and 7 bits for the mantissa.
|
||||
"""
|
||||
F64: _PrimitiveType.ValueType # 12
|
||||
F8E5M2: _PrimitiveType.ValueType # 19
|
||||
"""FP8 dtypes, as described in this paper: https://arxiv.org/abs/2209.05433
|
||||
|
||||
F8E5M2 has 5 exponent bits and 2 mantissa bits, and is similar to the
|
||||
existing IEEE types.
|
||||
|
||||
F8E4M3FN has 4 exponent bits and 3 mantissa bits. The "FN" means only
|
||||
Finite and NaN values are supported. Unlike IEEE types, infinities are not
|
||||
supported. NaN is represented when the exponent and mantissa bits are all
|
||||
1s. All other values are finite.
|
||||
|
||||
Support for these dtypes is under development. They do not yet work
|
||||
properly in most cases.
|
||||
TODO(b/259609697): Fully support FP8.
|
||||
"""
|
||||
F8E4M3FN: _PrimitiveType.ValueType # 20
|
||||
C64: _PrimitiveType.ValueType # 15
|
||||
"""Complex values of fixed width.
|
||||
Paired F32 (real, imag), as in std::complex<float>.
|
||||
@@ -128,6 +144,22 @@ floating-point format, but uses 1 bit for the sign, 8 bits for the exponent
|
||||
and 7 bits for the mantissa.
|
||||
"""
|
||||
F64: PrimitiveType.ValueType # 12
|
||||
F8E5M2: PrimitiveType.ValueType # 19
|
||||
"""FP8 dtypes, as described in this paper: https://arxiv.org/abs/2209.05433
|
||||
|
||||
F8E5M2 has 5 exponent bits and 2 mantissa bits, and is similar to the
|
||||
existing IEEE types.
|
||||
|
||||
F8E4M3FN has 4 exponent bits and 3 mantissa bits. The "FN" means only
|
||||
Finite and NaN values are supported. Unlike IEEE types, infinities are not
|
||||
supported. NaN is represented when the exponent and mantissa bits are all
|
||||
1s. All other values are finite.
|
||||
|
||||
Support for these dtypes is under development. They do not yet work
|
||||
properly in most cases.
|
||||
TODO(b/259609697): Fully support FP8.
|
||||
"""
|
||||
F8E4M3FN: PrimitiveType.ValueType # 20
|
||||
C64: PrimitiveType.ValueType # 15
|
||||
"""Complex values of fixed width.
|
||||
Paired F32 (real, imag), as in std::complex<float>.
|
||||
@@ -434,11 +466,15 @@ class LayoutProto(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DIM_LEVEL_TYPES_FIELD_NUMBER: builtins.int
|
||||
DIM_UNIQUE_FIELD_NUMBER: builtins.int
|
||||
DIM_ORDERED_FIELD_NUMBER: builtins.int
|
||||
MINOR_TO_MAJOR_FIELD_NUMBER: builtins.int
|
||||
TILES_FIELD_NUMBER: builtins.int
|
||||
ELEMENT_SIZE_IN_BITS_FIELD_NUMBER: builtins.int
|
||||
MEMORY_SPACE_FIELD_NUMBER: builtins.int
|
||||
INDEX_PRIMITIVE_TYPE_FIELD_NUMBER: builtins.int
|
||||
POINTER_PRIMITIVE_TYPE_FIELD_NUMBER: builtins.int
|
||||
PHYSICAL_SHAPE_FIELD_NUMBER: builtins.int
|
||||
DYNAMIC_SHAPE_METADATA_PREFIX_BYTES_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def dim_level_types(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[global___DimLevelType.ValueType]:
|
||||
"""The dimension level type list for this array, specifying the way in which
|
||||
@@ -446,6 +482,16 @@ class LayoutProto(google.protobuf.message.Message):
|
||||
array is assumed to be dense.
|
||||
"""
|
||||
@property
|
||||
def dim_unique(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.bool]:
|
||||
"""Whether each dimension is unique or ordered. Each of the following lists
|
||||
must be empty, or have one entry for each entry of dim_level_types. If
|
||||
either list is empty, all dimensions are assumed to be unique and ordered,
|
||||
respectively. Entries in this list may not be false for some DimLevelType
|
||||
values (such as DIM_DENSE in particular).
|
||||
"""
|
||||
@property
|
||||
def dim_ordered(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.bool]: ...
|
||||
@property
|
||||
def minor_to_major(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]:
|
||||
"""Sequence of dimension numbers, from minor (fastest varying index) to major
|
||||
(slowest varying index). This field is required.
|
||||
@@ -458,17 +504,19 @@ class LayoutProto(google.protobuf.message.Message):
|
||||
TODO(b/119839262): implement tiling in each backend or add Unimplemented
|
||||
error.
|
||||
"""
|
||||
element_size_in_bits: builtins.int
|
||||
"""Bit size of each element. If the size is bigger than what the element
|
||||
type requires, the value is stored in the least significant
|
||||
bits and the additional most significant bits are filled with 0's.
|
||||
|
||||
TODO(b/119839262): implement in each backend or add Unimplemented error.
|
||||
"""
|
||||
memory_space: builtins.int
|
||||
"""Memory space where this array resides. The integer field is interpreted in
|
||||
a backend-specific manner.
|
||||
"""
|
||||
index_primitive_type: global___PrimitiveType.ValueType
|
||||
"""The integer types to be used for indices and pointers. These fields must
|
||||
not be used unless the layout represents a sparse array. The PrimitiveType
|
||||
must correspond to an unsigned integer (U8, U16, U32, or U64).
|
||||
If not provided, the compiler will use the largest unsigned integer
|
||||
that is naturally supported by the target device (U32 or U64 in currently
|
||||
supported devices).
|
||||
"""
|
||||
pointer_primitive_type: global___PrimitiveType.ValueType
|
||||
@property
|
||||
def physical_shape(self) -> global___ShapeProto:
|
||||
"""The physical, on-device shape used to represent the shape this layout
|
||||
@@ -476,18 +524,27 @@ class LayoutProto(google.protobuf.message.Message):
|
||||
The layout(s) contained within the physical shape should not also contain
|
||||
a physical shape.
|
||||
"""
|
||||
dynamic_shape_metadata_prefix_bytes: builtins.int
|
||||
"""The dynamic shape metadata size in bytes in front of the shape data. The
|
||||
field may be non-zero for a static shape whose associated buffer is for a
|
||||
dynamic shape, e.g. a result of SliceToDynamic.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim_level_types: collections.abc.Iterable[global___DimLevelType.ValueType] | None = ...,
|
||||
dim_unique: collections.abc.Iterable[builtins.bool] | None = ...,
|
||||
dim_ordered: collections.abc.Iterable[builtins.bool] | None = ...,
|
||||
minor_to_major: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
tiles: collections.abc.Iterable[global___TileProto] | None = ...,
|
||||
element_size_in_bits: builtins.int | None = ...,
|
||||
memory_space: builtins.int | None = ...,
|
||||
index_primitive_type: global___PrimitiveType.ValueType | None = ...,
|
||||
pointer_primitive_type: global___PrimitiveType.ValueType | None = ...,
|
||||
physical_shape: global___ShapeProto | None = ...,
|
||||
dynamic_shape_metadata_prefix_bytes: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["physical_shape", b"physical_shape"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["dim_level_types", b"dim_level_types", "element_size_in_bits", b"element_size_in_bits", "memory_space", b"memory_space", "minor_to_major", b"minor_to_major", "physical_shape", b"physical_shape", "tiles", b"tiles"]) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["dim_level_types", b"dim_level_types", "dim_ordered", b"dim_ordered", "dim_unique", b"dim_unique", "dynamic_shape_metadata_prefix_bytes", b"dynamic_shape_metadata_prefix_bytes", "index_primitive_type", b"index_primitive_type", "memory_space", b"memory_space", "minor_to_major", b"minor_to_major", "physical_shape", b"physical_shape", "pointer_primitive_type", b"pointer_primitive_type", "tiles", b"tiles"]) -> None: ...
|
||||
|
||||
global___LayoutProto = LayoutProto
|
||||
|
||||
@@ -848,7 +905,7 @@ class ChannelHandle(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ChannelTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ChannelHandle._ChannelType.ValueType], builtins.type): # noqa: F821
|
||||
class _ChannelTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ChannelHandle._ChannelType.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
CHANNEL_TYPE_INVALID: ChannelHandle._ChannelType.ValueType # 0
|
||||
"""Invalid primitive type to serve as default."""
|
||||
@@ -965,6 +1022,8 @@ class LiteralProto(google.protobuf.message.Message):
|
||||
BF16S_FIELD_NUMBER: builtins.int
|
||||
U16S_FIELD_NUMBER: builtins.int
|
||||
S16S_FIELD_NUMBER: builtins.int
|
||||
F8E5M2S_FIELD_NUMBER: builtins.int
|
||||
F8E4M3FNS_FIELD_NUMBER: builtins.int
|
||||
SPARSE_INDICES_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def shape(self) -> global___ShapeProto: ...
|
||||
@@ -997,9 +1056,11 @@ class LiteralProto(google.protobuf.message.Message):
|
||||
bf16s: builtins.bytes
|
||||
u16s: builtins.bytes
|
||||
s16s: builtins.bytes
|
||||
f8e5m2s: builtins.bytes
|
||||
f8e4m3fns: builtins.bytes
|
||||
@property
|
||||
def sparse_indices(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]:
|
||||
"""Next = 19"""
|
||||
"""Next = 21"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
@@ -1020,10 +1081,12 @@ class LiteralProto(google.protobuf.message.Message):
|
||||
bf16s: builtins.bytes | None = ...,
|
||||
u16s: builtins.bytes | None = ...,
|
||||
s16s: builtins.bytes | None = ...,
|
||||
f8e5m2s: builtins.bytes | None = ...,
|
||||
f8e4m3fns: builtins.bytes | None = ...,
|
||||
sparse_indices: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["shape", b"shape"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bf16s", b"bf16s", "c128s", b"c128s", "c64s", b"c64s", "f16s", b"f16s", "f32s", b"f32s", "f64s", b"f64s", "preds", b"preds", "s16s", b"s16s", "s32s", b"s32s", "s64s", b"s64s", "s8s", b"s8s", "shape", b"shape", "sparse_indices", b"sparse_indices", "tuple_literals", b"tuple_literals", "u16s", b"u16s", "u32s", b"u32s", "u64s", b"u64s", "u8s", b"u8s"]) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bf16s", b"bf16s", "c128s", b"c128s", "c64s", b"c64s", "f16s", b"f16s", "f32s", b"f32s", "f64s", b"f64s", "f8e4m3fns", b"f8e4m3fns", "f8e5m2s", b"f8e5m2s", "preds", b"preds", "s16s", b"s16s", "s32s", b"s32s", "s64s", b"s64s", "s8s", b"s8s", "shape", b"shape", "sparse_indices", b"sparse_indices", "tuple_literals", b"tuple_literals", "u16s", b"u16s", "u32s", b"u32s", "u64s", b"u64s", "u8s", b"u8s"]) -> None: ...
|
||||
|
||||
global___LiteralProto = LiteralProto
|
||||
|
||||
@@ -1307,7 +1370,7 @@ class TriangularSolveOptions(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _TransposeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TriangularSolveOptions._Transpose.ValueType], builtins.type): # noqa: F821
|
||||
class _TransposeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TriangularSolveOptions._Transpose.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
TRANSPOSE_INVALID: TriangularSolveOptions._Transpose.ValueType # 0
|
||||
NO_TRANSPOSE: TriangularSolveOptions._Transpose.ValueType # 1
|
||||
@@ -1415,7 +1478,7 @@ class OpSharding(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _TypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[OpSharding._Type.ValueType], builtins.type): # noqa: F821
|
||||
class _TypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[OpSharding._Type.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
REPLICATED: OpSharding._Type.ValueType # 0
|
||||
"""This sharding is replicated across all devices (implies maximal,
|
||||
@@ -1573,7 +1636,7 @@ class PrecisionConfig(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _PrecisionEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[PrecisionConfig._Precision.ValueType], builtins.type): # noqa: F821
|
||||
class _PrecisionEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[PrecisionConfig._Precision.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DEFAULT: PrecisionConfig._Precision.ValueType # 0
|
||||
HIGH: PrecisionConfig._Precision.ValueType # 1
|
||||
@@ -1671,9 +1734,9 @@ class WhileLoopBackendConfig(google.protobuf.message.Message):
|
||||
global___WhileLoopBackendConfig = WhileLoopBackendConfig
|
||||
|
||||
@typing_extensions.final
|
||||
class CustomCallOutputOperandAliasing(google.protobuf.message.Message):
|
||||
"""Specifies a pair of output/operand buffers for kCustomCall that alias each
|
||||
other.
|
||||
class OutputOperandAliasing(google.protobuf.message.Message):
|
||||
"""Specifies a pair of output/operand buffers that alias each other for
|
||||
kCustomCall and kFusion
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
@@ -1695,4 +1758,4 @@ class CustomCallOutputOperandAliasing(google.protobuf.message.Message):
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["operand_index", b"operand_index", "operand_shape_index", b"operand_shape_index", "output_shape_index", b"output_shape_index"]) -> None: ...
|
||||
|
||||
global___CustomCallOutputOperandAliasing = CustomCallOutputOperandAliasing
|
||||
global___OutputOperandAliasing = OutputOperandAliasing
|
||||
|
||||
@@ -47,7 +47,7 @@ class ApiDef(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _VisibilityEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ApiDef._Visibility.ValueType], builtins.type): # noqa: F821
|
||||
class _VisibilityEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ApiDef._Visibility.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DEFAULT_VISIBILITY: ApiDef._Visibility.ValueType # 0
|
||||
"""Normally this is "VISIBLE" unless you are inheriting a
|
||||
|
||||
@@ -132,7 +132,7 @@ class CardinalityOptions(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ComputeLevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[CardinalityOptions._ComputeLevel.ValueType], builtins.type): # noqa: F821
|
||||
class _ComputeLevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[CardinalityOptions._ComputeLevel.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
CARDINALITY_COMPUTE_UNSPECIFIED: CardinalityOptions._ComputeLevel.ValueType # 0
|
||||
CARDINALITY_COMPUTE_LOW: CardinalityOptions._ComputeLevel.ValueType # 1
|
||||
@@ -294,7 +294,7 @@ class Options(google.protobuf.message.Message):
|
||||
"""Message stored with Dataset objects to control how datasets are processed and
|
||||
optimized.
|
||||
|
||||
next: 8
|
||||
next: 9
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
@@ -306,6 +306,7 @@ class Options(google.protobuf.message.Message):
|
||||
SLACK_FIELD_NUMBER: builtins.int
|
||||
THREADING_OPTIONS_FIELD_NUMBER: builtins.int
|
||||
EXTERNAL_STATE_POLICY_FIELD_NUMBER: builtins.int
|
||||
SYMBOLIC_CHECKPOINT_FIELD_NUMBER: builtins.int
|
||||
deterministic: builtins.bool
|
||||
@property
|
||||
def autotune_options(self) -> global___AutotuneOptions:
|
||||
@@ -321,6 +322,7 @@ class Options(google.protobuf.message.Message):
|
||||
def threading_options(self) -> global___ThreadingOptions:
|
||||
"""The threading options associated with the dataset."""
|
||||
external_state_policy: global___ExternalStatePolicy.ValueType
|
||||
symbolic_checkpoint: builtins.bool
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
@@ -331,14 +333,17 @@ class Options(google.protobuf.message.Message):
|
||||
slack: builtins.bool | None = ...,
|
||||
threading_options: global___ThreadingOptions | None = ...,
|
||||
external_state_policy: global___ExternalStatePolicy.ValueType | None = ...,
|
||||
symbolic_checkpoint: builtins.bool | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["autotune_options", b"autotune_options", "deterministic", b"deterministic", "distribute_options", b"distribute_options", "external_state_policy", b"external_state_policy", "optimization_options", b"optimization_options", "optional_deterministic", b"optional_deterministic", "optional_external_state_policy", b"optional_external_state_policy", "optional_slack", b"optional_slack", "slack", b"slack", "threading_options", b"threading_options"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["autotune_options", b"autotune_options", "deterministic", b"deterministic", "distribute_options", b"distribute_options", "external_state_policy", b"external_state_policy", "optimization_options", b"optimization_options", "optional_deterministic", b"optional_deterministic", "optional_external_state_policy", b"optional_external_state_policy", "optional_slack", b"optional_slack", "slack", b"slack", "threading_options", b"threading_options"]) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["autotune_options", b"autotune_options", "deterministic", b"deterministic", "distribute_options", b"distribute_options", "external_state_policy", b"external_state_policy", "optimization_options", b"optimization_options", "optional_deterministic", b"optional_deterministic", "optional_external_state_policy", b"optional_external_state_policy", "optional_slack", b"optional_slack", "optional_symbolic_checkpoint", b"optional_symbolic_checkpoint", "slack", b"slack", "symbolic_checkpoint", b"symbolic_checkpoint", "threading_options", b"threading_options"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["autotune_options", b"autotune_options", "deterministic", b"deterministic", "distribute_options", b"distribute_options", "external_state_policy", b"external_state_policy", "optimization_options", b"optimization_options", "optional_deterministic", b"optional_deterministic", "optional_external_state_policy", b"optional_external_state_policy", "optional_slack", b"optional_slack", "optional_symbolic_checkpoint", b"optional_symbolic_checkpoint", "slack", b"slack", "symbolic_checkpoint", b"symbolic_checkpoint", "threading_options", b"threading_options"]) -> None: ...
|
||||
@typing.overload
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["optional_deterministic", b"optional_deterministic"]) -> typing_extensions.Literal["deterministic"] | None: ...
|
||||
@typing.overload
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["optional_external_state_policy", b"optional_external_state_policy"]) -> typing_extensions.Literal["external_state_policy"] | None: ...
|
||||
@typing.overload
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["optional_slack", b"optional_slack"]) -> typing_extensions.Literal["slack"] | None: ...
|
||||
@typing.overload
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["optional_symbolic_checkpoint", b"optional_symbolic_checkpoint"]) -> typing_extensions.Literal["symbolic_checkpoint"] | None: ...
|
||||
|
||||
global___Options = Options
|
||||
|
||||
105
stubs/tensorflow/tensorflow/core/framework/dataset_pb2.pyi
Normal file
105
stubs/tensorflow/tensorflow/core/framework/dataset_pb2.pyi
Normal file
@@ -0,0 +1,105 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
import tensorflow.core.framework.tensor_pb2
|
||||
import tensorflow.core.framework.tensor_shape_pb2
|
||||
import tensorflow.core.framework.types_pb2
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class CompressedComponentMetadata(google.protobuf.message.Message):
|
||||
"""This file contains protocol buffers for working with tf.data Datasets.
|
||||
|
||||
Metadata describing a compressed component of a dataset element.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DTYPE_FIELD_NUMBER: builtins.int
|
||||
TENSOR_SHAPE_FIELD_NUMBER: builtins.int
|
||||
UNCOMPRESSED_BYTES_FIELD_NUMBER: builtins.int
|
||||
dtype: tensorflow.core.framework.types_pb2.DataType.ValueType
|
||||
"""The dtype of the component tensor."""
|
||||
@property
|
||||
def tensor_shape(self) -> tensorflow.core.framework.tensor_shape_pb2.TensorShapeProto:
|
||||
"""The shape of the component tensor."""
|
||||
@property
|
||||
def uncompressed_bytes(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]:
|
||||
"""The amount of uncompressed tensor data.
|
||||
- For string tensors, there is an element for each string indicating the
|
||||
size of the string.
|
||||
- For all other tensors, there is a single element indicating the size of
|
||||
the tensor.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dtype: tensorflow.core.framework.types_pb2.DataType.ValueType | None = ...,
|
||||
tensor_shape: tensorflow.core.framework.tensor_shape_pb2.TensorShapeProto | None = ...,
|
||||
uncompressed_bytes: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["tensor_shape", b"tensor_shape"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["dtype", b"dtype", "tensor_shape", b"tensor_shape", "uncompressed_bytes", b"uncompressed_bytes"]) -> None: ...
|
||||
|
||||
global___CompressedComponentMetadata = CompressedComponentMetadata
|
||||
|
||||
@typing_extensions.final
|
||||
class CompressedElement(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DATA_FIELD_NUMBER: builtins.int
|
||||
COMPONENT_METADATA_FIELD_NUMBER: builtins.int
|
||||
VERSION_FIELD_NUMBER: builtins.int
|
||||
data: builtins.bytes
|
||||
"""Compressed tensor bytes for all components of the element."""
|
||||
@property
|
||||
def component_metadata(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___CompressedComponentMetadata]:
|
||||
"""Metadata for the components of the element."""
|
||||
version: builtins.int
|
||||
"""Version of the CompressedElement. CompressedElements may be stored on disk
|
||||
and read back by later versions of code, so we store a version number to
|
||||
help readers understand which version they are reading. When you add a new
|
||||
field to this proto, you need to increment kCompressedElementVersion in
|
||||
tensorflow/core/data/compression_utils.cc.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
data: builtins.bytes | None = ...,
|
||||
component_metadata: collections.abc.Iterable[global___CompressedComponentMetadata] | None = ...,
|
||||
version: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["component_metadata", b"component_metadata", "data", b"data", "version", b"version"]) -> None: ...
|
||||
|
||||
global___CompressedElement = CompressedElement
|
||||
|
||||
@typing_extensions.final
|
||||
class UncompressedElement(google.protobuf.message.Message):
|
||||
"""An uncompressed dataset element."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
COMPONENTS_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def components(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[tensorflow.core.framework.tensor_pb2.TensorProto]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
components: collections.abc.Iterable[tensorflow.core.framework.tensor_pb2.TensorProto] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["components", b"components"]) -> None: ...
|
||||
|
||||
global___UncompressedElement = UncompressedElement
|
||||
@@ -195,6 +195,17 @@ class _FullTypeIdEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._Enu
|
||||
Examples:
|
||||
TFT_ENCODING[TFT_INT32, TFT_STRING] is an integer encoded as string.
|
||||
"""
|
||||
TFT_SHAPE_TENSOR: _FullTypeId.ValueType # 1005
|
||||
"""The type of "shape tensors" where the runtime value is the shape of
|
||||
some tensor(s), i.e. the output of tf.shape.
|
||||
Shape tensors have special, host-only placement, in contrast to
|
||||
TFT_TENSOR[TFT_INT32] which is the type of a normal numeric tensor
|
||||
with no special placement.
|
||||
|
||||
Examples:
|
||||
TFT_SHAPE_TENSOR[TFT_INT32] is the most common
|
||||
TFT_SHAPE_TENSOR[TFT_INT64] is also allowed
|
||||
"""
|
||||
TFT_BOOL: _FullTypeId.ValueType # 200
|
||||
"""Type attributes. These always appear in the parametrization of a type,
|
||||
never alone. For example, there is no such thing as a "bool" TensorFlow
|
||||
@@ -460,6 +471,17 @@ Parametrization:
|
||||
Examples:
|
||||
TFT_ENCODING[TFT_INT32, TFT_STRING] is an integer encoded as string.
|
||||
"""
|
||||
TFT_SHAPE_TENSOR: FullTypeId.ValueType # 1005
|
||||
"""The type of "shape tensors" where the runtime value is the shape of
|
||||
some tensor(s), i.e. the output of tf.shape.
|
||||
Shape tensors have special, host-only placement, in contrast to
|
||||
TFT_TENSOR[TFT_INT32] which is the type of a normal numeric tensor
|
||||
with no special placement.
|
||||
|
||||
Examples:
|
||||
TFT_SHAPE_TENSOR[TFT_INT32] is the most common
|
||||
TFT_SHAPE_TENSOR[TFT_INT64] is also allowed
|
||||
"""
|
||||
TFT_BOOL: FullTypeId.ValueType # 200
|
||||
"""Type attributes. These always appear in the parametrization of a type,
|
||||
never alone. For example, there is no such thing as a "bool" TensorFlow
|
||||
|
||||
@@ -193,7 +193,7 @@ class GraphTransferInfo(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _DestinationEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[GraphTransferInfo._Destination.ValueType], builtins.type): # noqa: F821
|
||||
class _DestinationEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[GraphTransferInfo._Destination.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
NOP: GraphTransferInfo._Destination.ValueType # 0
|
||||
HEXAGON: GraphTransferInfo._Destination.ValueType # 1
|
||||
|
||||
@@ -0,0 +1,83 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
import tensorflow.core.framework.graph_pb2
|
||||
import tensorflow.core.framework.types_pb2
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class OptimizedFunctionGraph(google.protobuf.message.Message):
|
||||
"""Optimized function graph after instantiation-related graph optimization
|
||||
passes (up till before graph partitioning). The first half of the proto is
|
||||
representing a GraphDef and the rest of the fields are extra information from
|
||||
graph optimizations.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class NodeNameToControlRetEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
value: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
value: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
FUNCTION_GRAPH_FIELD_NUMBER: builtins.int
|
||||
NODE_NAME_TO_CONTROL_RET_FIELD_NUMBER: builtins.int
|
||||
RET_TYPES_FIELD_NUMBER: builtins.int
|
||||
NUM_RETURN_NODES_FIELD_NUMBER: builtins.int
|
||||
name: builtins.str
|
||||
"""Function name. It can be a human-readable SignatureDef's method name, or a
|
||||
FunctionDef name.
|
||||
"""
|
||||
@property
|
||||
def function_graph(self) -> tensorflow.core.framework.graph_pb2.GraphDef:
|
||||
"""Optimized function graph."""
|
||||
@property
|
||||
def node_name_to_control_ret(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]:
|
||||
"""Maps from node name to control ret. This is an output from running TF/XLA
|
||||
bridge.
|
||||
"""
|
||||
@property
|
||||
def ret_types(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[tensorflow.core.framework.types_pb2.DataType.ValueType]:
|
||||
"""Return node types of the function. This is an output of graph
|
||||
preprocessing.
|
||||
"""
|
||||
num_return_nodes: builtins.int
|
||||
"""Number of return nodes. This is an output of graph preprocessing."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
name: builtins.str | None = ...,
|
||||
function_graph: tensorflow.core.framework.graph_pb2.GraphDef | None = ...,
|
||||
node_name_to_control_ret: collections.abc.Mapping[builtins.str, builtins.str] | None = ...,
|
||||
ret_types: collections.abc.Iterable[tensorflow.core.framework.types_pb2.DataType.ValueType] | None = ...,
|
||||
num_return_nodes: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["function_graph", b"function_graph"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["function_graph", b"function_graph", "name", b"name", "node_name_to_control_ret", b"node_name_to_control_ret", "num_return_nodes", b"num_return_nodes", "ret_types", b"ret_types"]) -> None: ...
|
||||
|
||||
global___OptimizedFunctionGraph = OptimizedFunctionGraph
|
||||
@@ -42,6 +42,7 @@ class TensorProto(google.protobuf.message.Message):
|
||||
VARIANT_VAL_FIELD_NUMBER: builtins.int
|
||||
UINT32_VAL_FIELD_NUMBER: builtins.int
|
||||
UINT64_VAL_FIELD_NUMBER: builtins.int
|
||||
FLOAT8_VAL_FIELD_NUMBER: builtins.int
|
||||
dtype: tensorflow.core.framework.types_pb2.DataType.ValueType
|
||||
@property
|
||||
def tensor_shape(self) -> tensorflow.core.framework.tensor_shape_pb2.TensorShapeProto:
|
||||
@@ -114,6 +115,10 @@ class TensorProto(google.protobuf.message.Message):
|
||||
@property
|
||||
def uint64_val(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]:
|
||||
"""DT_UINT64"""
|
||||
float8_val: builtins.bytes
|
||||
"""DT_FLOAT8_*, use variable-sized set of bytes
|
||||
(i.e. the equivalent of repeated uint8, if such a thing existed).
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
@@ -134,9 +139,10 @@ class TensorProto(google.protobuf.message.Message):
|
||||
variant_val: collections.abc.Iterable[global___VariantTensorDataProto] | None = ...,
|
||||
uint32_val: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
uint64_val: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
float8_val: builtins.bytes | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["tensor_shape", b"tensor_shape"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bool_val", b"bool_val", "dcomplex_val", b"dcomplex_val", "double_val", b"double_val", "dtype", b"dtype", "float_val", b"float_val", "half_val", b"half_val", "int64_val", b"int64_val", "int_val", b"int_val", "resource_handle_val", b"resource_handle_val", "scomplex_val", b"scomplex_val", "string_val", b"string_val", "tensor_content", b"tensor_content", "tensor_shape", b"tensor_shape", "uint32_val", b"uint32_val", "uint64_val", b"uint64_val", "variant_val", b"variant_val", "version_number", b"version_number"]) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bool_val", b"bool_val", "dcomplex_val", b"dcomplex_val", "double_val", b"double_val", "dtype", b"dtype", "float8_val", b"float8_val", "float_val", b"float_val", "half_val", b"half_val", "int64_val", b"int64_val", "int_val", b"int_val", "resource_handle_val", b"resource_handle_val", "scomplex_val", b"scomplex_val", "string_val", b"string_val", "tensor_content", b"tensor_content", "tensor_shape", b"tensor_shape", "uint32_val", b"uint32_val", "uint64_val", b"uint64_val", "variant_val", b"variant_val", "version_number", b"version_number"]) -> None: ...
|
||||
|
||||
global___TensorProto = TensorProto
|
||||
|
||||
|
||||
@@ -47,7 +47,7 @@ class _DataTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumT
|
||||
DT_QINT32: _DataType.ValueType # 13
|
||||
"""Quantized int32"""
|
||||
DT_BFLOAT16: _DataType.ValueType # 14
|
||||
"""Float32 truncated to 16 bits. Only for cast ops."""
|
||||
"""Float32 truncated to 16 bits."""
|
||||
DT_QINT16: _DataType.ValueType # 15
|
||||
"""Quantized int16"""
|
||||
DT_QUINT16: _DataType.ValueType # 16
|
||||
@@ -61,8 +61,14 @@ class _DataTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumT
|
||||
"""Arbitrary C++ data types"""
|
||||
DT_UINT32: _DataType.ValueType # 22
|
||||
DT_UINT64: _DataType.ValueType # 23
|
||||
DT_FLOAT8_E5M2: _DataType.ValueType # 24
|
||||
"""5 exponent bits, 2 mantissa bits."""
|
||||
DT_FLOAT8_E4M3FN: _DataType.ValueType # 25
|
||||
"""4 exponent bits, 3 mantissa bits, finite-only, with"""
|
||||
DT_FLOAT_REF: _DataType.ValueType # 101
|
||||
"""Do not use! These are only for parameters. Every enum above
|
||||
"""2 NaNs (0bS1111111).
|
||||
|
||||
Do not use! These are only for parameters. Every enum above
|
||||
should have a corresponding value below (verified by types_test).
|
||||
"""
|
||||
DT_DOUBLE_REF: _DataType.ValueType # 102
|
||||
@@ -87,6 +93,8 @@ class _DataTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumT
|
||||
DT_VARIANT_REF: _DataType.ValueType # 121
|
||||
DT_UINT32_REF: _DataType.ValueType # 122
|
||||
DT_UINT64_REF: _DataType.ValueType # 123
|
||||
DT_FLOAT8_E5M2_REF: _DataType.ValueType # 124
|
||||
DT_FLOAT8_E4M3FN_REF: _DataType.ValueType # 125
|
||||
|
||||
class DataType(_DataType, metaclass=_DataTypeEnumTypeWrapper):
|
||||
"""(== suppress_warning documentation-presence ==)
|
||||
@@ -118,7 +126,7 @@ DT_QUINT8: DataType.ValueType # 12
|
||||
DT_QINT32: DataType.ValueType # 13
|
||||
"""Quantized int32"""
|
||||
DT_BFLOAT16: DataType.ValueType # 14
|
||||
"""Float32 truncated to 16 bits. Only for cast ops."""
|
||||
"""Float32 truncated to 16 bits."""
|
||||
DT_QINT16: DataType.ValueType # 15
|
||||
"""Quantized int16"""
|
||||
DT_QUINT16: DataType.ValueType # 16
|
||||
@@ -132,8 +140,14 @@ DT_VARIANT: DataType.ValueType # 21
|
||||
"""Arbitrary C++ data types"""
|
||||
DT_UINT32: DataType.ValueType # 22
|
||||
DT_UINT64: DataType.ValueType # 23
|
||||
DT_FLOAT8_E5M2: DataType.ValueType # 24
|
||||
"""5 exponent bits, 2 mantissa bits."""
|
||||
DT_FLOAT8_E4M3FN: DataType.ValueType # 25
|
||||
"""4 exponent bits, 3 mantissa bits, finite-only, with"""
|
||||
DT_FLOAT_REF: DataType.ValueType # 101
|
||||
"""Do not use! These are only for parameters. Every enum above
|
||||
"""2 NaNs (0bS1111111).
|
||||
|
||||
Do not use! These are only for parameters. Every enum above
|
||||
should have a corresponding value below (verified by types_test).
|
||||
"""
|
||||
DT_DOUBLE_REF: DataType.ValueType # 102
|
||||
@@ -158,6 +172,8 @@ DT_RESOURCE_REF: DataType.ValueType # 120
|
||||
DT_VARIANT_REF: DataType.ValueType # 121
|
||||
DT_UINT32_REF: DataType.ValueType # 122
|
||||
DT_UINT64_REF: DataType.ValueType # 123
|
||||
DT_FLOAT8_E5M2_REF: DataType.ValueType # 124
|
||||
DT_FLOAT8_E4M3FN_REF: DataType.ValueType # 125
|
||||
global___DataType = DataType
|
||||
|
||||
@typing_extensions.final
|
||||
|
||||
@@ -2,161 +2,13 @@
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
from tensorflow.tsl.protobuf.bfc_memory_map_pb2 import (
|
||||
BinSummary as BinSummary,
|
||||
MemAllocatorStats as MemAllocatorStats,
|
||||
MemChunk as MemChunk,
|
||||
MemoryDump as MemoryDump,
|
||||
SnapShot as SnapShot,
|
||||
)
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class MemAllocatorStats(google.protobuf.message.Message):
|
||||
"""Some of the data from AllocatorStats"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
NUM_ALLOCS_FIELD_NUMBER: builtins.int
|
||||
BYTES_IN_USE_FIELD_NUMBER: builtins.int
|
||||
PEAK_BYTES_IN_USE_FIELD_NUMBER: builtins.int
|
||||
LARGEST_ALLOC_SIZE_FIELD_NUMBER: builtins.int
|
||||
FRAGMENTATION_METRIC_FIELD_NUMBER: builtins.int
|
||||
num_allocs: builtins.int
|
||||
bytes_in_use: builtins.int
|
||||
peak_bytes_in_use: builtins.int
|
||||
largest_alloc_size: builtins.int
|
||||
fragmentation_metric: builtins.float
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
num_allocs: builtins.int | None = ...,
|
||||
bytes_in_use: builtins.int | None = ...,
|
||||
peak_bytes_in_use: builtins.int | None = ...,
|
||||
largest_alloc_size: builtins.int | None = ...,
|
||||
fragmentation_metric: builtins.float | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bytes_in_use", b"bytes_in_use", "fragmentation_metric", b"fragmentation_metric", "largest_alloc_size", b"largest_alloc_size", "num_allocs", b"num_allocs", "peak_bytes_in_use", b"peak_bytes_in_use"]) -> None: ...
|
||||
|
||||
global___MemAllocatorStats = MemAllocatorStats
|
||||
|
||||
@typing_extensions.final
|
||||
class MemChunk(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ADDRESS_FIELD_NUMBER: builtins.int
|
||||
SIZE_FIELD_NUMBER: builtins.int
|
||||
REQUESTED_SIZE_FIELD_NUMBER: builtins.int
|
||||
BIN_FIELD_NUMBER: builtins.int
|
||||
OP_NAME_FIELD_NUMBER: builtins.int
|
||||
FREED_AT_COUNT_FIELD_NUMBER: builtins.int
|
||||
ACTION_COUNT_FIELD_NUMBER: builtins.int
|
||||
IN_USE_FIELD_NUMBER: builtins.int
|
||||
STEP_ID_FIELD_NUMBER: builtins.int
|
||||
address: builtins.int
|
||||
size: builtins.int
|
||||
requested_size: builtins.int
|
||||
bin: builtins.int
|
||||
op_name: builtins.str
|
||||
freed_at_count: builtins.int
|
||||
action_count: builtins.int
|
||||
in_use: builtins.bool
|
||||
step_id: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
address: builtins.int | None = ...,
|
||||
size: builtins.int | None = ...,
|
||||
requested_size: builtins.int | None = ...,
|
||||
bin: builtins.int | None = ...,
|
||||
op_name: builtins.str | None = ...,
|
||||
freed_at_count: builtins.int | None = ...,
|
||||
action_count: builtins.int | None = ...,
|
||||
in_use: builtins.bool | None = ...,
|
||||
step_id: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["action_count", b"action_count", "address", b"address", "bin", b"bin", "freed_at_count", b"freed_at_count", "in_use", b"in_use", "op_name", b"op_name", "requested_size", b"requested_size", "size", b"size", "step_id", b"step_id"]) -> None: ...
|
||||
|
||||
global___MemChunk = MemChunk
|
||||
|
||||
@typing_extensions.final
|
||||
class BinSummary(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
BIN_FIELD_NUMBER: builtins.int
|
||||
TOTAL_BYTES_IN_USE_FIELD_NUMBER: builtins.int
|
||||
TOTAL_BYTES_IN_BIN_FIELD_NUMBER: builtins.int
|
||||
TOTAL_CHUNKS_IN_USE_FIELD_NUMBER: builtins.int
|
||||
TOTAL_CHUNKS_IN_BIN_FIELD_NUMBER: builtins.int
|
||||
bin: builtins.int
|
||||
total_bytes_in_use: builtins.int
|
||||
total_bytes_in_bin: builtins.int
|
||||
total_chunks_in_use: builtins.int
|
||||
total_chunks_in_bin: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
bin: builtins.int | None = ...,
|
||||
total_bytes_in_use: builtins.int | None = ...,
|
||||
total_bytes_in_bin: builtins.int | None = ...,
|
||||
total_chunks_in_use: builtins.int | None = ...,
|
||||
total_chunks_in_bin: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bin", b"bin", "total_bytes_in_bin", b"total_bytes_in_bin", "total_bytes_in_use", b"total_bytes_in_use", "total_chunks_in_bin", b"total_chunks_in_bin", "total_chunks_in_use", b"total_chunks_in_use"]) -> None: ...
|
||||
|
||||
global___BinSummary = BinSummary
|
||||
|
||||
@typing_extensions.final
|
||||
class SnapShot(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ACTION_COUNT_FIELD_NUMBER: builtins.int
|
||||
SIZE_FIELD_NUMBER: builtins.int
|
||||
action_count: builtins.int
|
||||
size: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
action_count: builtins.int | None = ...,
|
||||
size: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["action_count", b"action_count", "size", b"size"]) -> None: ...
|
||||
|
||||
global___SnapShot = SnapShot
|
||||
|
||||
@typing_extensions.final
|
||||
class MemoryDump(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ALLOCATOR_NAME_FIELD_NUMBER: builtins.int
|
||||
BIN_SUMMARY_FIELD_NUMBER: builtins.int
|
||||
CHUNK_FIELD_NUMBER: builtins.int
|
||||
SNAP_SHOT_FIELD_NUMBER: builtins.int
|
||||
STATS_FIELD_NUMBER: builtins.int
|
||||
allocator_name: builtins.str
|
||||
@property
|
||||
def bin_summary(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___BinSummary]: ...
|
||||
@property
|
||||
def chunk(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___MemChunk]: ...
|
||||
@property
|
||||
def snap_shot(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___SnapShot]: ...
|
||||
@property
|
||||
def stats(self) -> global___MemAllocatorStats: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
allocator_name: builtins.str | None = ...,
|
||||
bin_summary: collections.abc.Iterable[global___BinSummary] | None = ...,
|
||||
chunk: collections.abc.Iterable[global___MemChunk] | None = ...,
|
||||
snap_shot: collections.abc.Iterable[global___SnapShot] | None = ...,
|
||||
stats: global___MemAllocatorStats | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["stats", b"stats"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["allocator_name", b"allocator_name", "bin_summary", b"bin_summary", "chunk", b"chunk", "snap_shot", b"snap_shot", "stats", b"stats"]) -> None: ...
|
||||
|
||||
global___MemoryDump = MemoryDump
|
||||
|
||||
@@ -13,9 +13,10 @@ import tensorflow.core.framework.cost_graph_pb2
|
||||
import tensorflow.core.framework.graph_pb2
|
||||
import tensorflow.core.framework.step_stats_pb2
|
||||
import tensorflow.core.protobuf.cluster_pb2
|
||||
import tensorflow.core.protobuf.coordination_config_pb2
|
||||
import tensorflow.core.protobuf.debug_pb2
|
||||
import tensorflow.core.protobuf.rewriter_config_pb2
|
||||
import tensorflow.tsl.protobuf.coordination_config_pb2
|
||||
import tensorflow.tsl.protobuf.rpc_options_pb2
|
||||
import typing
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
@@ -95,6 +96,8 @@ class GPUOptions(google.protobuf.message.Message):
|
||||
INTERNAL_FRAGMENTATION_FRACTION_FIELD_NUMBER: builtins.int
|
||||
USE_CUDA_MALLOC_ASYNC_FIELD_NUMBER: builtins.int
|
||||
DISALLOW_RETRY_ON_ALLOCATION_FAILURE_FIELD_NUMBER: builtins.int
|
||||
GPU_HOST_MEM_LIMIT_IN_MB_FIELD_NUMBER: builtins.int
|
||||
GPU_HOST_MEM_DISALLOW_GROWTH_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def virtual_devices(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___GPUOptions.Experimental.VirtualDevices]:
|
||||
"""The multi virtual device settings. If empty (not set), it will create
|
||||
@@ -205,6 +208,19 @@ class GPUOptions(google.protobuf.message.Message):
|
||||
hopes that another thread will free up memory in the meantime. Setting
|
||||
this to true disables the sleep; instead we'll OOM immediately.
|
||||
"""
|
||||
gpu_host_mem_limit_in_mb: builtins.float
|
||||
"""Memory limit for "GPU host allocator", aka pinned memory allocator. This
|
||||
can also be set via the envvar TF_GPU_HOST_MEM_LIMIT_IN_MB.
|
||||
"""
|
||||
gpu_host_mem_disallow_growth: builtins.bool
|
||||
"""If true, then the host allocator allocates its max memory all upfront and
|
||||
never grows. This can be useful for latency-sensitive systems, because
|
||||
growing the GPU host memory pool can be expensive.
|
||||
|
||||
You probably only want to use this in combination with
|
||||
gpu_host_mem_limit_in_mb, because the default GPU host memory limit is
|
||||
quite high.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
@@ -219,8 +235,10 @@ class GPUOptions(google.protobuf.message.Message):
|
||||
internal_fragmentation_fraction: builtins.float | None = ...,
|
||||
use_cuda_malloc_async: builtins.bool | None = ...,
|
||||
disallow_retry_on_allocation_failure: builtins.bool | None = ...,
|
||||
gpu_host_mem_limit_in_mb: builtins.float | None = ...,
|
||||
gpu_host_mem_disallow_growth: builtins.bool | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["collective_ring_order", b"collective_ring_order", "disallow_retry_on_allocation_failure", b"disallow_retry_on_allocation_failure", "internal_fragmentation_fraction", b"internal_fragmentation_fraction", "kernel_tracker_max_bytes", b"kernel_tracker_max_bytes", "kernel_tracker_max_interval", b"kernel_tracker_max_interval", "kernel_tracker_max_pending", b"kernel_tracker_max_pending", "num_dev_to_dev_copy_streams", b"num_dev_to_dev_copy_streams", "timestamped_allocator", b"timestamped_allocator", "use_cuda_malloc_async", b"use_cuda_malloc_async", "use_unified_memory", b"use_unified_memory", "virtual_devices", b"virtual_devices"]) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["collective_ring_order", b"collective_ring_order", "disallow_retry_on_allocation_failure", b"disallow_retry_on_allocation_failure", "gpu_host_mem_disallow_growth", b"gpu_host_mem_disallow_growth", "gpu_host_mem_limit_in_mb", b"gpu_host_mem_limit_in_mb", "internal_fragmentation_fraction", b"internal_fragmentation_fraction", "kernel_tracker_max_bytes", b"kernel_tracker_max_bytes", "kernel_tracker_max_interval", b"kernel_tracker_max_interval", "kernel_tracker_max_pending", b"kernel_tracker_max_pending", "num_dev_to_dev_copy_streams", b"num_dev_to_dev_copy_streams", "timestamped_allocator", b"timestamped_allocator", "use_cuda_malloc_async", b"use_cuda_malloc_async", "use_unified_memory", b"use_unified_memory", "virtual_devices", b"virtual_devices"]) -> None: ...
|
||||
|
||||
PER_PROCESS_GPU_MEMORY_FRACTION_FIELD_NUMBER: builtins.int
|
||||
ALLOW_GROWTH_FIELD_NUMBER: builtins.int
|
||||
@@ -232,9 +250,9 @@ class GPUOptions(google.protobuf.message.Message):
|
||||
FORCE_GPU_COMPATIBLE_FIELD_NUMBER: builtins.int
|
||||
EXPERIMENTAL_FIELD_NUMBER: builtins.int
|
||||
per_process_gpu_memory_fraction: builtins.float
|
||||
"""Fraction of the available GPU memory to allocate for each process.
|
||||
"""Fraction of the total GPU memory to allocate for each process.
|
||||
1 means to allocate all of the GPU memory, 0.5 means the process
|
||||
allocates up to ~50% of the available GPU memory.
|
||||
allocates up to ~50% of the total GPU memory.
|
||||
|
||||
GPU memory is pre-allocated unless the allow_growth option is enabled.
|
||||
|
||||
@@ -345,7 +363,7 @@ class OptimizerOptions(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _LevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[OptimizerOptions._Level.ValueType], builtins.type): # noqa: F821
|
||||
class _LevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[OptimizerOptions._Level.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
L1: OptimizerOptions._Level.ValueType # 0
|
||||
"""L1 is the default level.
|
||||
@@ -372,7 +390,7 @@ class OptimizerOptions(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _GlobalJitLevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[OptimizerOptions._GlobalJitLevel.ValueType], builtins.type): # noqa: F821
|
||||
class _GlobalJitLevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[OptimizerOptions._GlobalJitLevel.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DEFAULT: OptimizerOptions._GlobalJitLevel.ValueType # 0
|
||||
"""Default setting ("off" now, but later expected to be "on")"""
|
||||
@@ -562,61 +580,6 @@ class ThreadPoolOptionProto(google.protobuf.message.Message):
|
||||
|
||||
global___ThreadPoolOptionProto = ThreadPoolOptionProto
|
||||
|
||||
@typing_extensions.final
|
||||
class RPCOptions(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
USE_RPC_FOR_INPROCESS_MASTER_FIELD_NUMBER: builtins.int
|
||||
COMPRESSION_ALGORITHM_FIELD_NUMBER: builtins.int
|
||||
COMPRESSION_LEVEL_FIELD_NUMBER: builtins.int
|
||||
CACHE_RPC_RESPONSE_FIELD_NUMBER: builtins.int
|
||||
DISABLE_SESSION_CONNECTION_SHARING_FIELD_NUMBER: builtins.int
|
||||
NUM_CHANNELS_PER_TARGET_FIELD_NUMBER: builtins.int
|
||||
use_rpc_for_inprocess_master: builtins.bool
|
||||
"""If true, always use RPC to contact the session target.
|
||||
|
||||
If false (the default option), TensorFlow may use an optimized
|
||||
transport for client-master communication that avoids the RPC
|
||||
stack. This option is primarily for used testing the RPC stack.
|
||||
"""
|
||||
compression_algorithm: builtins.str
|
||||
"""The compression algorithm to be used. One of "deflate", "gzip"."""
|
||||
compression_level: builtins.int
|
||||
"""If compression_algorithm is set, the compression level to be used.
|
||||
From 0 (no compression), up to 3.
|
||||
"""
|
||||
cache_rpc_response: builtins.bool
|
||||
"""Setting cache_rpc_response to true will enable sender side caching of
|
||||
response for RecvTensorAsync and RecvBufAsync to allow receiver to retry
|
||||
requests . This is only necessary when the network fabric is experiencing a
|
||||
significant error rate. Without it we'll fail a step on an network error,
|
||||
while with it we'll be able to complete long steps (like complex
|
||||
initializations) in the face of some network errors during RecvTensor.
|
||||
"""
|
||||
disable_session_connection_sharing: builtins.bool
|
||||
"""Disables TCP connection sharing when opening a new RPC channel."""
|
||||
num_channels_per_target: builtins.int
|
||||
"""Setting num_channels_per_target > 0 allows uses of multiple channels to
|
||||
communicate to the same target. This can be used to improve the aggregate
|
||||
throughput on high speed links (e.g 100G) where single connection is not
|
||||
sufficient to maximize link utilization. Note that a single RPC only goes
|
||||
on a single channel, this only helps in situations where there are multiple
|
||||
transfers to the same target overlapping in time.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
use_rpc_for_inprocess_master: builtins.bool | None = ...,
|
||||
compression_algorithm: builtins.str | None = ...,
|
||||
compression_level: builtins.int | None = ...,
|
||||
cache_rpc_response: builtins.bool | None = ...,
|
||||
disable_session_connection_sharing: builtins.bool | None = ...,
|
||||
num_channels_per_target: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["cache_rpc_response", b"cache_rpc_response", "compression_algorithm", b"compression_algorithm", "compression_level", b"compression_level", "disable_session_connection_sharing", b"disable_session_connection_sharing", "num_channels_per_target", b"num_channels_per_target", "use_rpc_for_inprocess_master", b"use_rpc_for_inprocess_master"]) -> None: ...
|
||||
|
||||
global___RPCOptions = RPCOptions
|
||||
|
||||
@typing_extensions.final
|
||||
class SessionMetadata(google.protobuf.message.Message):
|
||||
"""Metadata about the session.
|
||||
@@ -683,7 +646,7 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _MlirBridgeRolloutEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ConfigProto.Experimental._MlirBridgeRollout.ValueType], builtins.type): # noqa: F821
|
||||
class _MlirBridgeRolloutEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ConfigProto.Experimental._MlirBridgeRollout.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
MLIR_BRIDGE_ROLLOUT_UNSPECIFIED: ConfigProto.Experimental._MlirBridgeRollout.ValueType # 0
|
||||
"""If this field is left unspecified, the MLIR bridge may be selectively
|
||||
@@ -693,20 +656,6 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
"""Enabling the MLIR bridge enables it for all graphs in this session."""
|
||||
MLIR_BRIDGE_ROLLOUT_DISABLED: ConfigProto.Experimental._MlirBridgeRollout.ValueType # 2
|
||||
"""Disabling the MLIR bridge disables it for all graphs in this session."""
|
||||
MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLED: ConfigProto.Experimental._MlirBridgeRollout.ValueType # 3
|
||||
"""Enable the MLIR bridge on a per graph basis based on an analysis of
|
||||
the features used in the graph. If the features used by the graph are
|
||||
supported by the MLIR bridge, the MLIR bridge will be used to run the
|
||||
graph.
|
||||
"""
|
||||
MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED: ConfigProto.Experimental._MlirBridgeRollout.ValueType # 4
|
||||
"""Enable the MLIR bridge in a fallback mode on a per graph basis based
|
||||
on an analysis of the features used in the graph.
|
||||
Running the MLIR bridge in the fallback mode means that it is
|
||||
executed and it commits all the changes to the TF graph in case
|
||||
of success. And it does not in case of failures and let the old bridge
|
||||
to process the TF graph.
|
||||
"""
|
||||
|
||||
class MlirBridgeRollout(_MlirBridgeRollout, metaclass=_MlirBridgeRolloutEnumTypeWrapper):
|
||||
"""An enum that describes the state of the MLIR bridge rollout."""
|
||||
@@ -719,20 +668,6 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
"""Enabling the MLIR bridge enables it for all graphs in this session."""
|
||||
MLIR_BRIDGE_ROLLOUT_DISABLED: ConfigProto.Experimental.MlirBridgeRollout.ValueType # 2
|
||||
"""Disabling the MLIR bridge disables it for all graphs in this session."""
|
||||
MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLED: ConfigProto.Experimental.MlirBridgeRollout.ValueType # 3
|
||||
"""Enable the MLIR bridge on a per graph basis based on an analysis of
|
||||
the features used in the graph. If the features used by the graph are
|
||||
supported by the MLIR bridge, the MLIR bridge will be used to run the
|
||||
graph.
|
||||
"""
|
||||
MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED: ConfigProto.Experimental.MlirBridgeRollout.ValueType # 4
|
||||
"""Enable the MLIR bridge in a fallback mode on a per graph basis based
|
||||
on an analysis of the features used in the graph.
|
||||
Running the MLIR bridge in the fallback mode means that it is
|
||||
executed and it commits all the changes to the TF graph in case
|
||||
of success. And it does not in case of failures and let the old bridge
|
||||
to process the TF graph.
|
||||
"""
|
||||
|
||||
COLLECTIVE_GROUP_LEADER_FIELD_NUMBER: builtins.int
|
||||
EXECUTOR_TYPE_FIELD_NUMBER: builtins.int
|
||||
@@ -754,6 +689,7 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
DISABLE_FUNCTIONAL_OPS_LOWERING_FIELD_NUMBER: builtins.int
|
||||
XLA_PREFER_SINGLE_GRAPH_CLUSTER_FIELD_NUMBER: builtins.int
|
||||
COORDINATION_CONFIG_FIELD_NUMBER: builtins.int
|
||||
DISABLE_OPTIMIZE_FOR_STATIC_GRAPH_FIELD_NUMBER: builtins.int
|
||||
collective_group_leader: builtins.str
|
||||
"""Task name for group resolution."""
|
||||
executor_type: builtins.str
|
||||
@@ -817,7 +753,8 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
If set, this can be used by the runtime and the Ops for debugging,
|
||||
monitoring, etc.
|
||||
|
||||
NOTE: This is currently used and propagated only by the direct session.
|
||||
NOTE: This is currently used and propagated only by the direct session
|
||||
and EagerContext.
|
||||
"""
|
||||
optimize_for_static_graph: builtins.bool
|
||||
"""If true, the session may treat the graph as being static for optimization
|
||||
@@ -828,13 +765,10 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
Session::Extend() may not be supported.
|
||||
"""
|
||||
enable_mlir_bridge: builtins.bool
|
||||
"""This field will eventually be deprecated and replaced by
|
||||
mlir_bridge_rollout (b/166038521).
|
||||
"""Whether to enable the MLIR-based TF->XLA bridge. This is only used if set
|
||||
to true. Default value or false is ignored. Use mlir_bridge_rollout for
|
||||
finer control.
|
||||
|
||||
Whether to enable the MLIR-based TF->XLA bridge.
|
||||
|
||||
This is a replacement to the existing bridge, and not ready for
|
||||
production usage yet.
|
||||
If this option is set to true when a session is created, MLIR is used to
|
||||
perform the set of graph transformations to put the graph in a form that
|
||||
can be executed with delegation of some computations to an accelerator.
|
||||
@@ -844,11 +778,7 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
to lower the encapsulated graph to a particular device.
|
||||
"""
|
||||
mlir_bridge_rollout: global___ConfigProto.Experimental.MlirBridgeRollout.ValueType
|
||||
"""This field is underdevelopment, for now use enable_mlir_bridge
|
||||
(b/166038521).
|
||||
|
||||
Whether to enable the MLIR-based TF->XLA bridge.
|
||||
"""
|
||||
"""Whether to enable the MLIR-based TF->XLA bridge."""
|
||||
enable_mlir_graph_optimization: builtins.bool
|
||||
"""Whether to enable the MLIR-based Graph optimizations.
|
||||
|
||||
@@ -882,8 +812,19 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
cluster that encompases most of the graph.
|
||||
"""
|
||||
@property
|
||||
def coordination_config(self) -> tensorflow.core.protobuf.coordination_config_pb2.CoordinationServiceConfig:
|
||||
def coordination_config(self) -> tensorflow.tsl.protobuf.coordination_config_pb2.CoordinationServiceConfig:
|
||||
"""Distributed coordination service configurations."""
|
||||
disable_optimize_for_static_graph: builtins.bool
|
||||
"""If true, the session will treat the graph as being non-static for
|
||||
optimization purposes.
|
||||
|
||||
If this option is set to true when a session is created, the full
|
||||
GraphDef will be retained to enable calls to Session::Extend().
|
||||
Calling Extend() without setting this flag will result in errors.
|
||||
|
||||
This option is meant to replace `optimize_for_static_graph` and it
|
||||
aims to negate its value.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
@@ -906,10 +847,11 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
use_tfrt: builtins.bool | None = ...,
|
||||
disable_functional_ops_lowering: builtins.bool | None = ...,
|
||||
xla_prefer_single_graph_cluster: builtins.bool | None = ...,
|
||||
coordination_config: tensorflow.core.protobuf.coordination_config_pb2.CoordinationServiceConfig | None = ...,
|
||||
coordination_config: tensorflow.tsl.protobuf.coordination_config_pb2.CoordinationServiceConfig | None = ...,
|
||||
disable_optimize_for_static_graph: builtins.bool | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["coordination_config", b"coordination_config", "session_metadata", b"session_metadata"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["collective_deterministic_sequential_execution", b"collective_deterministic_sequential_execution", "collective_group_leader", b"collective_group_leader", "collective_nccl", b"collective_nccl", "coordination_config", b"coordination_config", "disable_functional_ops_lowering", b"disable_functional_ops_lowering", "disable_output_partition_graphs", b"disable_output_partition_graphs", "disable_thread_spinning", b"disable_thread_spinning", "enable_mlir_bridge", b"enable_mlir_bridge", "enable_mlir_graph_optimization", b"enable_mlir_graph_optimization", "executor_type", b"executor_type", "mlir_bridge_rollout", b"mlir_bridge_rollout", "optimize_for_static_graph", b"optimize_for_static_graph", "recv_buf_max_chunk", b"recv_buf_max_chunk", "session_metadata", b"session_metadata", "share_cluster_devices_in_session", b"share_cluster_devices_in_session", "share_session_state_in_clusterspec_propagation", b"share_session_state_in_clusterspec_propagation", "use_numa_affinity", b"use_numa_affinity", "use_tfrt", b"use_tfrt", "xla_fusion_autotuner_thresh", b"xla_fusion_autotuner_thresh", "xla_prefer_single_graph_cluster", b"xla_prefer_single_graph_cluster"]) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["collective_deterministic_sequential_execution", b"collective_deterministic_sequential_execution", "collective_group_leader", b"collective_group_leader", "collective_nccl", b"collective_nccl", "coordination_config", b"coordination_config", "disable_functional_ops_lowering", b"disable_functional_ops_lowering", "disable_optimize_for_static_graph", b"disable_optimize_for_static_graph", "disable_output_partition_graphs", b"disable_output_partition_graphs", "disable_thread_spinning", b"disable_thread_spinning", "enable_mlir_bridge", b"enable_mlir_bridge", "enable_mlir_graph_optimization", b"enable_mlir_graph_optimization", "executor_type", b"executor_type", "mlir_bridge_rollout", b"mlir_bridge_rollout", "optimize_for_static_graph", b"optimize_for_static_graph", "recv_buf_max_chunk", b"recv_buf_max_chunk", "session_metadata", b"session_metadata", "share_cluster_devices_in_session", b"share_cluster_devices_in_session", "share_session_state_in_clusterspec_propagation", b"share_session_state_in_clusterspec_propagation", "use_numa_affinity", b"use_numa_affinity", "use_tfrt", b"use_tfrt", "xla_fusion_autotuner_thresh", b"xla_fusion_autotuner_thresh", "xla_prefer_single_graph_cluster", b"xla_prefer_single_graph_cluster"]) -> None: ...
|
||||
|
||||
DEVICE_COUNT_FIELD_NUMBER: builtins.int
|
||||
INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER: builtins.int
|
||||
@@ -1029,7 +971,7 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
deadline for all blocking operations.
|
||||
"""
|
||||
@property
|
||||
def rpc_options(self) -> global___RPCOptions:
|
||||
def rpc_options(self) -> tensorflow.tsl.protobuf.rpc_options_pb2.RPCOptions:
|
||||
"""Options that apply when this session uses the distributed runtime."""
|
||||
@property
|
||||
def cluster_def(self) -> tensorflow.core.protobuf.cluster_pb2.ClusterDef:
|
||||
@@ -1062,7 +1004,7 @@ class ConfigProto(google.protobuf.message.Message):
|
||||
log_device_placement: builtins.bool | None = ...,
|
||||
graph_options: global___GraphOptions | None = ...,
|
||||
operation_timeout_in_ms: builtins.int | None = ...,
|
||||
rpc_options: global___RPCOptions | None = ...,
|
||||
rpc_options: tensorflow.tsl.protobuf.rpc_options_pb2.RPCOptions | None = ...,
|
||||
cluster_def: tensorflow.core.protobuf.cluster_pb2.ClusterDef | None = ...,
|
||||
isolate_session_state: builtins.bool | None = ...,
|
||||
share_cluster_devices_in_session: builtins.bool | None = ...,
|
||||
@@ -1083,7 +1025,7 @@ class RunOptions(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _TraceLevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RunOptions._TraceLevel.ValueType], builtins.type): # noqa: F821
|
||||
class _TraceLevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RunOptions._TraceLevel.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
NO_TRACE: RunOptions._TraceLevel.ValueType # 0
|
||||
SOFTWARE_TRACE: RunOptions._TraceLevel.ValueType # 1
|
||||
|
||||
@@ -29,7 +29,7 @@ class ErrorSourceProto(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ErrorSourceEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ErrorSourceProto._ErrorSource.ValueType], builtins.type): # noqa: F821
|
||||
class _ErrorSourceEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ErrorSourceProto._ErrorSource.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNKNOWN: ErrorSourceProto._ErrorSource.ValueType # 0
|
||||
TPU_COMPILE_OP: ErrorSourceProto._ErrorSource.ValueType # 1
|
||||
|
||||
@@ -56,7 +56,7 @@ class ProcessingModeDef(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ShardingPolicyEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ProcessingModeDef._ShardingPolicy.ValueType], builtins.type): # noqa: F821
|
||||
class _ShardingPolicyEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[ProcessingModeDef._ShardingPolicy.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
OFF: ProcessingModeDef._ShardingPolicy.ValueType # 0
|
||||
"""No sharding will be performed. Each worker produces the entire dataset
|
||||
@@ -160,7 +160,7 @@ class DataServiceMetadata(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _CompressionEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[DataServiceMetadata._Compression.ValueType], builtins.type): # noqa: F821
|
||||
class _CompressionEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[DataServiceMetadata._Compression.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
COMPRESSION_UNSPECIFIED: DataServiceMetadata._Compression.ValueType # 0
|
||||
COMPRESSION_OFF: DataServiceMetadata._Compression.ValueType # 1
|
||||
|
||||
@@ -25,14 +25,14 @@ class FingerprintDef(google.protobuf.message.Message):
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
GRAPH_DEF_CHECKSUM_FIELD_NUMBER: builtins.int
|
||||
SAVED_MODEL_CHECKSUM_FIELD_NUMBER: builtins.int
|
||||
GRAPH_DEF_PROGRAM_HASH_FIELD_NUMBER: builtins.int
|
||||
SIGNATURE_DEF_HASH_FIELD_NUMBER: builtins.int
|
||||
SAVED_OBJECT_GRAPH_HASH_FIELD_NUMBER: builtins.int
|
||||
CHECKPOINT_HASH_FIELD_NUMBER: builtins.int
|
||||
VERSION_FIELD_NUMBER: builtins.int
|
||||
graph_def_checksum: builtins.int
|
||||
"""Hash of the graph_def, referred to as a "checksum"."""
|
||||
saved_model_checksum: builtins.int
|
||||
"""Hash of the saved_model.pb, referred to as a "checksum"."""
|
||||
graph_def_program_hash: builtins.int
|
||||
"""Hash of regularized graph_def."""
|
||||
signature_def_hash: builtins.int
|
||||
@@ -47,7 +47,7 @@ class FingerprintDef(google.protobuf.message.Message):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
graph_def_checksum: builtins.int | None = ...,
|
||||
saved_model_checksum: builtins.int | None = ...,
|
||||
graph_def_program_hash: builtins.int | None = ...,
|
||||
signature_def_hash: builtins.int | None = ...,
|
||||
saved_object_graph_hash: builtins.int | None = ...,
|
||||
@@ -55,6 +55,6 @@ class FingerprintDef(google.protobuf.message.Message):
|
||||
version: tensorflow.core.framework.versions_pb2.VersionDef | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["version", b"version"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["checkpoint_hash", b"checkpoint_hash", "graph_def_checksum", b"graph_def_checksum", "graph_def_program_hash", b"graph_def_program_hash", "saved_object_graph_hash", b"saved_object_graph_hash", "signature_def_hash", b"signature_def_hash", "version", b"version"]) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["checkpoint_hash", b"checkpoint_hash", "graph_def_program_hash", b"graph_def_program_hash", "saved_model_checksum", b"saved_model_checksum", "saved_object_graph_hash", b"saved_object_graph_hash", "signature_def_hash", b"signature_def_hash", "version", b"version"]) -> None: ...
|
||||
|
||||
global___FingerprintDef = FingerprintDef
|
||||
|
||||
@@ -67,7 +67,7 @@ class RewriterConfig(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ToggleEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RewriterConfig._Toggle.ValueType], builtins.type): # noqa: F821
|
||||
class _ToggleEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RewriterConfig._Toggle.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DEFAULT: RewriterConfig._Toggle.ValueType # 0
|
||||
ON: RewriterConfig._Toggle.ValueType # 1
|
||||
@@ -115,7 +115,7 @@ class RewriterConfig(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _CpuLayoutEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RewriterConfig._CpuLayout.ValueType], builtins.type): # noqa: F821
|
||||
class _CpuLayoutEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RewriterConfig._CpuLayout.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
NO_CONVERSION_ON_CPU: RewriterConfig._CpuLayout.ValueType # 0
|
||||
NCHW_TO_NHWC: RewriterConfig._CpuLayout.ValueType # 1
|
||||
@@ -132,7 +132,7 @@ class RewriterConfig(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _NumIterationsTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RewriterConfig._NumIterationsType.ValueType], builtins.type): # noqa: F821
|
||||
class _NumIterationsTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RewriterConfig._NumIterationsType.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DEFAULT_NUM_ITERS: RewriterConfig._NumIterationsType.ValueType # 0
|
||||
ONE: RewriterConfig._NumIterationsType.ValueType # 1
|
||||
@@ -151,7 +151,7 @@ class RewriterConfig(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _MemOptTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RewriterConfig._MemOptType.ValueType], builtins.type): # noqa: F821
|
||||
class _MemOptTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[RewriterConfig._MemOptType.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DEFAULT_MEM_OPT: RewriterConfig._MemOptType.ValueType # 0
|
||||
"""The default setting (SCHEDULING and SWAPPING HEURISTICS only)"""
|
||||
|
||||
@@ -0,0 +1,10 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import google.protobuf.descriptor
|
||||
from tensorflow.tsl.protobuf.rpc_options_pb2 import (
|
||||
RPCOptions as RPCOptions,
|
||||
)
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
@@ -472,7 +472,7 @@ class FunctionSpec(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _JitCompileEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[FunctionSpec._JitCompile.ValueType], builtins.type): # noqa: F821
|
||||
class _JitCompileEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[FunctionSpec._JitCompile.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DEFAULT: FunctionSpec._JitCompile.ValueType # 0
|
||||
ON: FunctionSpec._JitCompile.ValueType # 1
|
||||
|
||||
@@ -26,7 +26,7 @@ class SaverDef(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _CheckpointFormatVersionEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[SaverDef._CheckpointFormatVersion.ValueType], builtins.type): # noqa: F821
|
||||
class _CheckpointFormatVersionEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[SaverDef._CheckpointFormatVersion.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
LEGACY: SaverDef._CheckpointFormatVersion.ValueType # 0
|
||||
"""Internal legacy format."""
|
||||
|
||||
@@ -20,7 +20,7 @@ DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
@typing_extensions.final
|
||||
class DispatcherConfig(google.protobuf.message.Message):
|
||||
"""Configuration for a tf.data service DispatchServer.
|
||||
Next id: 10
|
||||
Next id: 11
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
@@ -34,6 +34,7 @@ class DispatcherConfig(google.protobuf.message.Message):
|
||||
JOB_GC_CHECK_INTERVAL_MS_FIELD_NUMBER: builtins.int
|
||||
JOB_GC_TIMEOUT_MS_FIELD_NUMBER: builtins.int
|
||||
CLIENT_TIMEOUT_MS_FIELD_NUMBER: builtins.int
|
||||
WORKER_TIMEOUT_MS_FIELD_NUMBER: builtins.int
|
||||
port: builtins.int
|
||||
"""The port for the dispatcher to bind to. A value of 0 indicates that the
|
||||
dispatcher may bind to any available port.
|
||||
@@ -75,6 +76,10 @@ class DispatcherConfig(google.protobuf.message.Message):
|
||||
heartbeated to the dispatcher. A value of 0 indicates that the timeout
|
||||
should be left to the runtime.
|
||||
"""
|
||||
worker_timeout_ms: builtins.int
|
||||
"""How long to wait for a worker to heartbeat before considering it missing.
|
||||
A value of 0 indicates that the timeout should be left to the runtime.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
@@ -87,8 +92,9 @@ class DispatcherConfig(google.protobuf.message.Message):
|
||||
job_gc_check_interval_ms: builtins.int | None = ...,
|
||||
job_gc_timeout_ms: builtins.int | None = ...,
|
||||
client_timeout_ms: builtins.int | None = ...,
|
||||
worker_timeout_ms: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["client_timeout_ms", b"client_timeout_ms", "deployment_mode", b"deployment_mode", "fault_tolerant_mode", b"fault_tolerant_mode", "job_gc_check_interval_ms", b"job_gc_check_interval_ms", "job_gc_timeout_ms", b"job_gc_timeout_ms", "port", b"port", "protocol", b"protocol", "work_dir", b"work_dir", "worker_addresses", b"worker_addresses"]) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["client_timeout_ms", b"client_timeout_ms", "deployment_mode", b"deployment_mode", "fault_tolerant_mode", b"fault_tolerant_mode", "job_gc_check_interval_ms", b"job_gc_check_interval_ms", "job_gc_timeout_ms", b"job_gc_timeout_ms", "port", b"port", "protocol", b"protocol", "work_dir", b"work_dir", "worker_addresses", b"worker_addresses", "worker_timeout_ms", b"worker_timeout_ms"]) -> None: ...
|
||||
|
||||
global___DispatcherConfig = DispatcherConfig
|
||||
|
||||
|
||||
@@ -124,3 +124,28 @@ class SnapshotTensorMetadata(google.protobuf.message.Message):
|
||||
def ClearField(self, field_name: typing_extensions.Literal["tensor_metadata", b"tensor_metadata"]) -> None: ...
|
||||
|
||||
global___SnapshotTensorMetadata = SnapshotTensorMetadata
|
||||
|
||||
@typing_extensions.final
|
||||
class DistributedSnapshotMetadata(google.protobuf.message.Message):
|
||||
"""Metadata for a `tf.data.Dataset` distributed snapshot."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ELEMENT_SPEC_FIELD_NUMBER: builtins.int
|
||||
COMPRESSION_FIELD_NUMBER: builtins.int
|
||||
element_spec: builtins.bytes
|
||||
"""The element spec of the snapshotted dataset."""
|
||||
compression: builtins.str
|
||||
"""Whether and how to compress the snapshot. Supported values are defined in
|
||||
`tsl::io::compression`. In particular, an empty string specifies not to
|
||||
compress.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
element_spec: builtins.bytes | None = ...,
|
||||
compression: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["compression", b"compression", "element_spec", b"element_spec"]) -> None: ...
|
||||
|
||||
global___DistributedSnapshotMetadata = DistributedSnapshotMetadata
|
||||
|
||||
@@ -331,7 +331,7 @@ class TypeSpecProto(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _TypeSpecClassEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TypeSpecProto._TypeSpecClass.ValueType], builtins.type): # noqa: F821
|
||||
class _TypeSpecClassEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TypeSpecProto._TypeSpecClass.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNKNOWN: TypeSpecProto._TypeSpecClass.ValueType # 0
|
||||
SPARSE_TENSOR_SPEC: TypeSpecProto._TypeSpecClass.ValueType # 1
|
||||
|
||||
@@ -41,7 +41,7 @@ class BundleHeaderProto(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _EndiannessEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[BundleHeaderProto._Endianness.ValueType], builtins.type): # noqa: F821
|
||||
class _EndiannessEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[BundleHeaderProto._Endianness.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
LITTLE: BundleHeaderProto._Endianness.ValueType # 0
|
||||
BIG: BundleHeaderProto._Endianness.ValueType # 1
|
||||
|
||||
@@ -33,7 +33,7 @@ class CompilationResultProto(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ErrorCodeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[CompilationResultProto._ErrorCode.ValueType], builtins.type): # noqa: F821
|
||||
class _ErrorCodeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[CompilationResultProto._ErrorCode.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNKNOWN: CompilationResultProto._ErrorCode.ValueType # 0
|
||||
OUT_OF_MEMORY: CompilationResultProto._ErrorCode.ValueType # 1
|
||||
|
||||
@@ -735,7 +735,7 @@ class GradientAccumulationStatus(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _StatusEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[GradientAccumulationStatus._Status.ValueType], builtins.type): # noqa: F821
|
||||
class _StatusEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[GradientAccumulationStatus._Status.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNSPECIFIED: GradientAccumulationStatus._Status.ValueType # 0
|
||||
ENABLED: GradientAccumulationStatus._Status.ValueType # 1
|
||||
@@ -802,7 +802,7 @@ class LowDimensionalPackingStatus(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _StatusEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[LowDimensionalPackingStatus._Status.ValueType], builtins.type): # noqa: F821
|
||||
class _StatusEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[LowDimensionalPackingStatus._Status.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNSPECIFIED: LowDimensionalPackingStatus._Status.ValueType # 0
|
||||
ENABLED: LowDimensionalPackingStatus._Status.ValueType # 1
|
||||
@@ -843,20 +843,24 @@ class HotIdReplicationConfiguration(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _StatusEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[HotIdReplicationConfiguration._Status.ValueType], builtins.type): # noqa: F821
|
||||
class _StatusEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[HotIdReplicationConfiguration._Status.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNSPECIFIED: HotIdReplicationConfiguration._Status.ValueType # 0
|
||||
ENABLED: HotIdReplicationConfiguration._Status.ValueType # 1
|
||||
DISABLED: HotIdReplicationConfiguration._Status.ValueType # 2
|
||||
MIGRATION_ONLY: HotIdReplicationConfiguration._Status.ValueType # 3
|
||||
|
||||
class Status(_Status, metaclass=_StatusEnumTypeWrapper):
|
||||
"""Whether to enable or disable hot ID optimization.
|
||||
If UNSPECIFIED (default), hot ID optimization is DISABLED.
|
||||
If set to UNSPECIFIED (default), hot ID optimization is DISABLED.
|
||||
If set to ENABLED, hot ID replication is turned ON.
|
||||
If set to MIGRATION_ONLY, hot ID migration is turned ON.
|
||||
"""
|
||||
|
||||
UNSPECIFIED: HotIdReplicationConfiguration.Status.ValueType # 0
|
||||
ENABLED: HotIdReplicationConfiguration.Status.ValueType # 1
|
||||
DISABLED: HotIdReplicationConfiguration.Status.ValueType # 2
|
||||
MIGRATION_ONLY: HotIdReplicationConfiguration.Status.ValueType # 3
|
||||
|
||||
STATUS_FIELD_NUMBER: builtins.int
|
||||
status: global___HotIdReplicationConfiguration.Status.ValueType
|
||||
|
||||
@@ -28,7 +28,7 @@ class TPUHardwareFeature(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _EmbeddingFeatureEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TPUHardwareFeature._EmbeddingFeature.ValueType], builtins.type): # noqa: F821
|
||||
class _EmbeddingFeatureEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TPUHardwareFeature._EmbeddingFeature.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNSUPPORTED: TPUHardwareFeature._EmbeddingFeature.ValueType # 0
|
||||
"""No embedding lookup accelerator available on the tpu."""
|
||||
|
||||
@@ -27,7 +27,7 @@ class TPUEmbeddingConfiguration(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ModeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TPUEmbeddingConfiguration._Mode.ValueType], builtins.type): # noqa: F821
|
||||
class _ModeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TPUEmbeddingConfiguration._Mode.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNSPECIFIED: TPUEmbeddingConfiguration._Mode.ValueType # 0
|
||||
INFERENCE: TPUEmbeddingConfiguration._Mode.ValueType # 1
|
||||
@@ -48,7 +48,7 @@ class TPUEmbeddingConfiguration(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ShardingStrategyEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TPUEmbeddingConfiguration._ShardingStrategy.ValueType], builtins.type): # noqa: F821
|
||||
class _ShardingStrategyEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TPUEmbeddingConfiguration._ShardingStrategy.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DIV_DEFAULT: TPUEmbeddingConfiguration._ShardingStrategy.ValueType # 0
|
||||
MOD: TPUEmbeddingConfiguration._ShardingStrategy.ValueType # 1
|
||||
|
||||
@@ -26,7 +26,7 @@ class VerifierConfig(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ToggleEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[VerifierConfig._Toggle.ValueType], builtins.type): # noqa: F821
|
||||
class _ToggleEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[VerifierConfig._Toggle.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DEFAULT: VerifierConfig._Toggle.ValueType # 0
|
||||
ON: VerifierConfig._Toggle.ValueType # 1
|
||||
|
||||
@@ -86,6 +86,7 @@ class Event(google.protobuf.message.Message):
|
||||
SESSION_LOG_FIELD_NUMBER: builtins.int
|
||||
TAGGED_RUN_METADATA_FIELD_NUMBER: builtins.int
|
||||
META_GRAPH_DEF_FIELD_NUMBER: builtins.int
|
||||
SOURCE_METADATA_FIELD_NUMBER: builtins.int
|
||||
wall_time: builtins.float
|
||||
"""Timestamp of the event."""
|
||||
step: builtins.int
|
||||
@@ -115,6 +116,11 @@ class Event(google.protobuf.message.Message):
|
||||
"""The metadata returned by running a session.run() call."""
|
||||
meta_graph_def: builtins.bytes
|
||||
"""An encoded version of a MetaGraphDef."""
|
||||
@property
|
||||
def source_metadata(self) -> global___SourceMetadata:
|
||||
"""Information of the source that writes the events, this is only logged in
|
||||
the very first event along with the `file_version` field.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
@@ -127,13 +133,34 @@ class Event(google.protobuf.message.Message):
|
||||
session_log: global___SessionLog | None = ...,
|
||||
tagged_run_metadata: global___TaggedRunMetadata | None = ...,
|
||||
meta_graph_def: builtins.bytes | None = ...,
|
||||
source_metadata: global___SourceMetadata | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["file_version", b"file_version", "graph_def", b"graph_def", "log_message", b"log_message", "meta_graph_def", b"meta_graph_def", "session_log", b"session_log", "summary", b"summary", "tagged_run_metadata", b"tagged_run_metadata", "what", b"what"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["file_version", b"file_version", "graph_def", b"graph_def", "log_message", b"log_message", "meta_graph_def", b"meta_graph_def", "session_log", b"session_log", "step", b"step", "summary", b"summary", "tagged_run_metadata", b"tagged_run_metadata", "wall_time", b"wall_time", "what", b"what"]) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["file_version", b"file_version", "graph_def", b"graph_def", "log_message", b"log_message", "meta_graph_def", b"meta_graph_def", "session_log", b"session_log", "source_metadata", b"source_metadata", "summary", b"summary", "tagged_run_metadata", b"tagged_run_metadata", "what", b"what"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["file_version", b"file_version", "graph_def", b"graph_def", "log_message", b"log_message", "meta_graph_def", b"meta_graph_def", "session_log", b"session_log", "source_metadata", b"source_metadata", "step", b"step", "summary", b"summary", "tagged_run_metadata", b"tagged_run_metadata", "wall_time", b"wall_time", "what", b"what"]) -> None: ...
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["what", b"what"]) -> typing_extensions.Literal["file_version", "graph_def", "summary", "log_message", "session_log", "tagged_run_metadata", "meta_graph_def"] | None: ...
|
||||
|
||||
global___Event = Event
|
||||
|
||||
@typing_extensions.final
|
||||
class SourceMetadata(google.protobuf.message.Message):
|
||||
"""Holds the information of the source that writes the events."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
WRITER_FIELD_NUMBER: builtins.int
|
||||
writer: builtins.str
|
||||
"""Low level name of the summary writer, such as
|
||||
`tensorflow.core.util.events_writer`.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
writer: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["writer", b"writer"]) -> None: ...
|
||||
|
||||
global___SourceMetadata = SourceMetadata
|
||||
|
||||
@typing_extensions.final
|
||||
class LogMessage(google.protobuf.message.Message):
|
||||
"""Protocol buffer used for logging messages to the events file.
|
||||
@@ -148,7 +175,7 @@ class LogMessage(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _LevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[LogMessage._Level.ValueType], builtins.type): # noqa: F821
|
||||
class _LevelEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[LogMessage._Level.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNKNOWN: LogMessage._Level.ValueType # 0
|
||||
DEBUGGING: LogMessage._Level.ValueType # 10
|
||||
@@ -199,7 +226,7 @@ class SessionLog(google.protobuf.message.Message):
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _SessionStatusEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[SessionLog._SessionStatus.ValueType], builtins.type): # noqa: F821
|
||||
class _SessionStatusEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[SessionLog._SessionStatus.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
STATUS_UNSPECIFIED: SessionLog._SessionStatus.ValueType # 0
|
||||
START: SessionLog._SessionStatus.ValueType # 1
|
||||
|
||||
@@ -2,574 +2,22 @@
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
Protocol messages for describing the results of benchmarks and unit tests."""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.any_pb2
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.internal.enum_type_wrapper
|
||||
import google.protobuf.message
|
||||
import google.protobuf.wrappers_pb2
|
||||
import sys
|
||||
import typing
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
from tensorflow.tsl.protobuf.test_log_pb2 import (
|
||||
AvailableDeviceInfo as AvailableDeviceInfo,
|
||||
BenchmarkEntries as BenchmarkEntries,
|
||||
BenchmarkEntry as BenchmarkEntry,
|
||||
BuildConfiguration as BuildConfiguration,
|
||||
CPUInfo as CPUInfo,
|
||||
CommitId as CommitId,
|
||||
EntryValue as EntryValue,
|
||||
GPUInfo as GPUInfo,
|
||||
MachineConfiguration as MachineConfiguration,
|
||||
MemoryInfo as MemoryInfo,
|
||||
MetricEntry as MetricEntry,
|
||||
PlatformInfo as PlatformInfo,
|
||||
RunConfiguration as RunConfiguration,
|
||||
TestResults as TestResults,
|
||||
)
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class EntryValue(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DOUBLE_VALUE_FIELD_NUMBER: builtins.int
|
||||
STRING_VALUE_FIELD_NUMBER: builtins.int
|
||||
double_value: builtins.float
|
||||
string_value: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
double_value: builtins.float | None = ...,
|
||||
string_value: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["double_value", b"double_value", "kind", b"kind", "string_value", b"string_value"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["double_value", b"double_value", "kind", b"kind", "string_value", b"string_value"]) -> None: ...
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["kind", b"kind"]) -> typing_extensions.Literal["double_value", "string_value"] | None: ...
|
||||
|
||||
global___EntryValue = EntryValue
|
||||
|
||||
@typing_extensions.final
|
||||
class MetricEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
MIN_VALUE_FIELD_NUMBER: builtins.int
|
||||
MAX_VALUE_FIELD_NUMBER: builtins.int
|
||||
name: builtins.str
|
||||
"""Metric name"""
|
||||
value: builtins.float
|
||||
"""Metric value"""
|
||||
@property
|
||||
def min_value(self) -> google.protobuf.wrappers_pb2.DoubleValue:
|
||||
"""The minimum acceptable value for the metric if specified"""
|
||||
@property
|
||||
def max_value(self) -> google.protobuf.wrappers_pb2.DoubleValue:
|
||||
"""The maximum acceptable value for the metric if specified"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
name: builtins.str | None = ...,
|
||||
value: builtins.float | None = ...,
|
||||
min_value: google.protobuf.wrappers_pb2.DoubleValue | None = ...,
|
||||
max_value: google.protobuf.wrappers_pb2.DoubleValue | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["max_value", b"max_value", "min_value", b"min_value"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["max_value", b"max_value", "min_value", b"min_value", "name", b"name", "value", b"value"]) -> None: ...
|
||||
|
||||
global___MetricEntry = MetricEntry
|
||||
|
||||
@typing_extensions.final
|
||||
class BenchmarkEntry(google.protobuf.message.Message):
|
||||
"""Each unit test or benchmark in a test or benchmark run provides
|
||||
some set of information. Here we provide some reasonable keys
|
||||
one would expect to see, with optional key/value pairs for things
|
||||
we haven't considered.
|
||||
|
||||
This BenchmarkEntry should be emitted by each unit test or benchmark
|
||||
reporter.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class ExtrasEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
@property
|
||||
def value(self) -> global___EntryValue: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
value: global___EntryValue | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["value", b"value"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
ITERS_FIELD_NUMBER: builtins.int
|
||||
CPU_TIME_FIELD_NUMBER: builtins.int
|
||||
WALL_TIME_FIELD_NUMBER: builtins.int
|
||||
THROUGHPUT_FIELD_NUMBER: builtins.int
|
||||
EXTRAS_FIELD_NUMBER: builtins.int
|
||||
METRICS_FIELD_NUMBER: builtins.int
|
||||
name: builtins.str
|
||||
"""The name of the specific benchmark or test
|
||||
(e.g. BM_AdjustContrast_gpu_B_W_H)
|
||||
"""
|
||||
iters: builtins.int
|
||||
"""If a benchmark, how many iterations it was run for"""
|
||||
cpu_time: builtins.float
|
||||
"""Total cpu time used for all iterations (in seconds)"""
|
||||
wall_time: builtins.float
|
||||
"""Total wall time used for all iterations (in seconds)"""
|
||||
throughput: builtins.float
|
||||
"""Throughput (in MB/s)"""
|
||||
@property
|
||||
def extras(self) -> google.protobuf.internal.containers.MessageMap[builtins.str, global___EntryValue]:
|
||||
"""Generic map from result key to value."""
|
||||
@property
|
||||
def metrics(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___MetricEntry]:
|
||||
"""Metric name, value and expected range. This can include accuracy metrics
|
||||
typically used to determine whether the accuracy test has passed
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
name: builtins.str | None = ...,
|
||||
iters: builtins.int | None = ...,
|
||||
cpu_time: builtins.float | None = ...,
|
||||
wall_time: builtins.float | None = ...,
|
||||
throughput: builtins.float | None = ...,
|
||||
extras: collections.abc.Mapping[builtins.str, global___EntryValue] | None = ...,
|
||||
metrics: collections.abc.Iterable[global___MetricEntry] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["cpu_time", b"cpu_time", "extras", b"extras", "iters", b"iters", "metrics", b"metrics", "name", b"name", "throughput", b"throughput", "wall_time", b"wall_time"]) -> None: ...
|
||||
|
||||
global___BenchmarkEntry = BenchmarkEntry
|
||||
|
||||
@typing_extensions.final
|
||||
class BenchmarkEntries(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ENTRY_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def entry(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___BenchmarkEntry]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
entry: collections.abc.Iterable[global___BenchmarkEntry] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["entry", b"entry"]) -> None: ...
|
||||
|
||||
global___BenchmarkEntries = BenchmarkEntries
|
||||
|
||||
@typing_extensions.final
|
||||
class BuildConfiguration(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
MODE_FIELD_NUMBER: builtins.int
|
||||
CC_FLAGS_FIELD_NUMBER: builtins.int
|
||||
OPTS_FIELD_NUMBER: builtins.int
|
||||
mode: builtins.str
|
||||
"""opt, dbg, etc"""
|
||||
@property
|
||||
def cc_flags(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
||||
"""CC compiler flags, if known"""
|
||||
@property
|
||||
def opts(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
||||
"""Bazel compilation options, if known"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
mode: builtins.str | None = ...,
|
||||
cc_flags: collections.abc.Iterable[builtins.str] | None = ...,
|
||||
opts: collections.abc.Iterable[builtins.str] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["cc_flags", b"cc_flags", "mode", b"mode", "opts", b"opts"]) -> None: ...
|
||||
|
||||
global___BuildConfiguration = BuildConfiguration
|
||||
|
||||
@typing_extensions.final
|
||||
class CommitId(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
CHANGELIST_FIELD_NUMBER: builtins.int
|
||||
HASH_FIELD_NUMBER: builtins.int
|
||||
SNAPSHOT_FIELD_NUMBER: builtins.int
|
||||
PENDING_CHANGELIST_FIELD_NUMBER: builtins.int
|
||||
changelist: builtins.int
|
||||
"""Submitted changelist."""
|
||||
hash: builtins.str
|
||||
snapshot: builtins.str
|
||||
"""Hash of intermediate change between hash/changelist and what was tested.
|
||||
Not used if the build is from a commit without modifications.
|
||||
"""
|
||||
pending_changelist: builtins.int
|
||||
"""Changelist tested if the change list is not already submitted."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
changelist: builtins.int | None = ...,
|
||||
hash: builtins.str | None = ...,
|
||||
snapshot: builtins.str | None = ...,
|
||||
pending_changelist: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["changelist", b"changelist", "hash", b"hash", "kind", b"kind"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["changelist", b"changelist", "hash", b"hash", "kind", b"kind", "pending_changelist", b"pending_changelist", "snapshot", b"snapshot"]) -> None: ...
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["kind", b"kind"]) -> typing_extensions.Literal["changelist", "hash"] | None: ...
|
||||
|
||||
global___CommitId = CommitId
|
||||
|
||||
@typing_extensions.final
|
||||
class CPUInfo(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class CacheSizeEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
value: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
value: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
NUM_CORES_FIELD_NUMBER: builtins.int
|
||||
NUM_CORES_ALLOWED_FIELD_NUMBER: builtins.int
|
||||
MHZ_PER_CPU_FIELD_NUMBER: builtins.int
|
||||
CPU_INFO_FIELD_NUMBER: builtins.int
|
||||
CPU_GOVERNOR_FIELD_NUMBER: builtins.int
|
||||
CACHE_SIZE_FIELD_NUMBER: builtins.int
|
||||
num_cores: builtins.int
|
||||
num_cores_allowed: builtins.int
|
||||
mhz_per_cpu: builtins.float
|
||||
"""How fast are these cpus?"""
|
||||
cpu_info: builtins.str
|
||||
"""Additional cpu information. For example,
|
||||
Intel Ivybridge with HyperThreading (24 cores) dL1:32KB dL2:256KB dL3:30MB
|
||||
"""
|
||||
cpu_governor: builtins.str
|
||||
"""What kind of cpu scaling is enabled on the host.
|
||||
Examples include "performance", "ondemand", "conservative", "mixed".
|
||||
"""
|
||||
@property
|
||||
def cache_size(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.int]:
|
||||
"""Cache sizes (in bytes), e.g. "L2": 262144 (for 256KB)"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
num_cores: builtins.int | None = ...,
|
||||
num_cores_allowed: builtins.int | None = ...,
|
||||
mhz_per_cpu: builtins.float | None = ...,
|
||||
cpu_info: builtins.str | None = ...,
|
||||
cpu_governor: builtins.str | None = ...,
|
||||
cache_size: collections.abc.Mapping[builtins.str, builtins.int] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["cache_size", b"cache_size", "cpu_governor", b"cpu_governor", "cpu_info", b"cpu_info", "mhz_per_cpu", b"mhz_per_cpu", "num_cores", b"num_cores", "num_cores_allowed", b"num_cores_allowed"]) -> None: ...
|
||||
|
||||
global___CPUInfo = CPUInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class MemoryInfo(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
TOTAL_FIELD_NUMBER: builtins.int
|
||||
AVAILABLE_FIELD_NUMBER: builtins.int
|
||||
total: builtins.int
|
||||
"""Total virtual memory in bytes"""
|
||||
available: builtins.int
|
||||
"""Immediately available memory in bytes"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
total: builtins.int | None = ...,
|
||||
available: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["available", b"available", "total", b"total"]) -> None: ...
|
||||
|
||||
global___MemoryInfo = MemoryInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class GPUInfo(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
MODEL_FIELD_NUMBER: builtins.int
|
||||
UUID_FIELD_NUMBER: builtins.int
|
||||
BUS_ID_FIELD_NUMBER: builtins.int
|
||||
model: builtins.str
|
||||
"""e.g. "Tesla K40c" """
|
||||
uuid: builtins.str
|
||||
"""Final entry in output of "nvidia-smi -L" """
|
||||
bus_id: builtins.str
|
||||
"""e.g. "0000:04:00.0" """
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
model: builtins.str | None = ...,
|
||||
uuid: builtins.str | None = ...,
|
||||
bus_id: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bus_id", b"bus_id", "model", b"model", "uuid", b"uuid"]) -> None: ...
|
||||
|
||||
global___GPUInfo = GPUInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class PlatformInfo(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
BITS_FIELD_NUMBER: builtins.int
|
||||
LINKAGE_FIELD_NUMBER: builtins.int
|
||||
MACHINE_FIELD_NUMBER: builtins.int
|
||||
RELEASE_FIELD_NUMBER: builtins.int
|
||||
SYSTEM_FIELD_NUMBER: builtins.int
|
||||
VERSION_FIELD_NUMBER: builtins.int
|
||||
bits: builtins.str
|
||||
"""e.g. '64bit'"""
|
||||
linkage: builtins.str
|
||||
"""e.g. 'ELF'"""
|
||||
machine: builtins.str
|
||||
"""e.g. 'i386'"""
|
||||
release: builtins.str
|
||||
"""e.g. '3.13.0-76-generic'"""
|
||||
system: builtins.str
|
||||
"""e.g. 'Linux'"""
|
||||
version: builtins.str
|
||||
"""e.g. '#120-Ubuntu SMP Mon Jan 18 15:59:10 UTC 2016'"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
bits: builtins.str | None = ...,
|
||||
linkage: builtins.str | None = ...,
|
||||
machine: builtins.str | None = ...,
|
||||
release: builtins.str | None = ...,
|
||||
system: builtins.str | None = ...,
|
||||
version: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bits", b"bits", "linkage", b"linkage", "machine", b"machine", "release", b"release", "system", b"system", "version", b"version"]) -> None: ...
|
||||
|
||||
global___PlatformInfo = PlatformInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class AvailableDeviceInfo(google.protobuf.message.Message):
|
||||
"""Matches DeviceAttributes"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
TYPE_FIELD_NUMBER: builtins.int
|
||||
MEMORY_LIMIT_FIELD_NUMBER: builtins.int
|
||||
PHYSICAL_DESCRIPTION_FIELD_NUMBER: builtins.int
|
||||
name: builtins.str
|
||||
"""Device name."""
|
||||
type: builtins.str
|
||||
"""Device type, e.g. 'CPU' or 'GPU'."""
|
||||
memory_limit: builtins.int
|
||||
"""Memory capacity in bytes."""
|
||||
physical_description: builtins.str
|
||||
"""The physical description of this device."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
name: builtins.str | None = ...,
|
||||
type: builtins.str | None = ...,
|
||||
memory_limit: builtins.int | None = ...,
|
||||
physical_description: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["memory_limit", b"memory_limit", "name", b"name", "physical_description", b"physical_description", "type", b"type"]) -> None: ...
|
||||
|
||||
global___AvailableDeviceInfo = AvailableDeviceInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class MachineConfiguration(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
HOSTNAME_FIELD_NUMBER: builtins.int
|
||||
SERIAL_IDENTIFIER_FIELD_NUMBER: builtins.int
|
||||
PLATFORM_INFO_FIELD_NUMBER: builtins.int
|
||||
CPU_INFO_FIELD_NUMBER: builtins.int
|
||||
DEVICE_INFO_FIELD_NUMBER: builtins.int
|
||||
AVAILABLE_DEVICE_INFO_FIELD_NUMBER: builtins.int
|
||||
MEMORY_INFO_FIELD_NUMBER: builtins.int
|
||||
hostname: builtins.str
|
||||
"""Host name of machine that ran the benchmark."""
|
||||
serial_identifier: builtins.str
|
||||
"""Unique serial number of the machine."""
|
||||
@property
|
||||
def platform_info(self) -> global___PlatformInfo:
|
||||
"""Additional platform information."""
|
||||
@property
|
||||
def cpu_info(self) -> global___CPUInfo:
|
||||
"""CPU Information."""
|
||||
@property
|
||||
def device_info(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[google.protobuf.any_pb2.Any]:
|
||||
"""Other devices that are attached and relevant (e.g. GPUInfo)."""
|
||||
@property
|
||||
def available_device_info(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___AvailableDeviceInfo]:
|
||||
"""Devices accessible to the test (e.g. as given by list_local_devices)."""
|
||||
@property
|
||||
def memory_info(self) -> global___MemoryInfo: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
hostname: builtins.str | None = ...,
|
||||
serial_identifier: builtins.str | None = ...,
|
||||
platform_info: global___PlatformInfo | None = ...,
|
||||
cpu_info: global___CPUInfo | None = ...,
|
||||
device_info: collections.abc.Iterable[google.protobuf.any_pb2.Any] | None = ...,
|
||||
available_device_info: collections.abc.Iterable[global___AvailableDeviceInfo] | None = ...,
|
||||
memory_info: global___MemoryInfo | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["cpu_info", b"cpu_info", "memory_info", b"memory_info", "platform_info", b"platform_info"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["available_device_info", b"available_device_info", "cpu_info", b"cpu_info", "device_info", b"device_info", "hostname", b"hostname", "memory_info", b"memory_info", "platform_info", b"platform_info", "serial_identifier", b"serial_identifier"]) -> None: ...
|
||||
|
||||
global___MachineConfiguration = MachineConfiguration
|
||||
|
||||
@typing_extensions.final
|
||||
class RunConfiguration(google.protobuf.message.Message):
|
||||
"""Run-specific items such as arguments to the test / benchmark."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class EnvVarsEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
value: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
value: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
ARGUMENT_FIELD_NUMBER: builtins.int
|
||||
ENV_VARS_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def argument(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]: ...
|
||||
@property
|
||||
def env_vars(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]:
|
||||
"""Environment variables used to run the test/benchmark."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
argument: collections.abc.Iterable[builtins.str] | None = ...,
|
||||
env_vars: collections.abc.Mapping[builtins.str, builtins.str] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["argument", b"argument", "env_vars", b"env_vars"]) -> None: ...
|
||||
|
||||
global___RunConfiguration = RunConfiguration
|
||||
|
||||
@typing_extensions.final
|
||||
class TestResults(google.protobuf.message.Message):
|
||||
"""The output of one benchmark / test run. Each run contains a list of
|
||||
tests or benchmarks, stored as BenchmarkEntry messages.
|
||||
|
||||
This message should be emitted by the reporter (which runs the
|
||||
test / BM in a subprocess and then reads the emitted BenchmarkEntry messages;
|
||||
usually from a serialized json file, finally collecting them along
|
||||
with additional information about the test run.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
class _BenchmarkType:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _BenchmarkTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TestResults._BenchmarkType.ValueType], builtins.type): # noqa: F821
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNKNOWN: TestResults._BenchmarkType.ValueType # 0
|
||||
"""Fallback for protos written before Type was introduced."""
|
||||
CPP_MICROBENCHMARK: TestResults._BenchmarkType.ValueType # 1
|
||||
PYTHON_BENCHMARK: TestResults._BenchmarkType.ValueType # 2
|
||||
ANDROID_BENCHMARK: TestResults._BenchmarkType.ValueType # 3
|
||||
EDGE_BENCHMARK: TestResults._BenchmarkType.ValueType # 4
|
||||
IOS_BENCHMARK: TestResults._BenchmarkType.ValueType # 5
|
||||
|
||||
class BenchmarkType(_BenchmarkType, metaclass=_BenchmarkTypeEnumTypeWrapper):
|
||||
"""The type of benchmark."""
|
||||
|
||||
UNKNOWN: TestResults.BenchmarkType.ValueType # 0
|
||||
"""Fallback for protos written before Type was introduced."""
|
||||
CPP_MICROBENCHMARK: TestResults.BenchmarkType.ValueType # 1
|
||||
PYTHON_BENCHMARK: TestResults.BenchmarkType.ValueType # 2
|
||||
ANDROID_BENCHMARK: TestResults.BenchmarkType.ValueType # 3
|
||||
EDGE_BENCHMARK: TestResults.BenchmarkType.ValueType # 4
|
||||
IOS_BENCHMARK: TestResults.BenchmarkType.ValueType # 5
|
||||
|
||||
TARGET_FIELD_NUMBER: builtins.int
|
||||
ENTRIES_FIELD_NUMBER: builtins.int
|
||||
BUILD_CONFIGURATION_FIELD_NUMBER: builtins.int
|
||||
COMMIT_ID_FIELD_NUMBER: builtins.int
|
||||
START_TIME_FIELD_NUMBER: builtins.int
|
||||
RUN_TIME_FIELD_NUMBER: builtins.int
|
||||
MACHINE_CONFIGURATION_FIELD_NUMBER: builtins.int
|
||||
RUN_CONFIGURATION_FIELD_NUMBER: builtins.int
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
BENCHMARK_TYPE_FIELD_NUMBER: builtins.int
|
||||
RUN_MODE_FIELD_NUMBER: builtins.int
|
||||
TF_VERSION_FIELD_NUMBER: builtins.int
|
||||
target: builtins.str
|
||||
"""The target of the run, e.g.:
|
||||
//tensorflow/core:kernels_adjust_contrast_op_benchmark_test
|
||||
"""
|
||||
@property
|
||||
def entries(self) -> global___BenchmarkEntries:
|
||||
"""The list of tests or benchmarks in this run."""
|
||||
@property
|
||||
def build_configuration(self) -> global___BuildConfiguration:
|
||||
"""The configuration of the build (compiled opt? with cuda? any copts?)"""
|
||||
@property
|
||||
def commit_id(self) -> global___CommitId:
|
||||
"""The commit id (git hash or changelist)"""
|
||||
start_time: builtins.int
|
||||
"""The time the run started (in seconds of UTC time since Unix epoch)"""
|
||||
run_time: builtins.float
|
||||
"""The amount of time the total run took (wall time in seconds)"""
|
||||
@property
|
||||
def machine_configuration(self) -> global___MachineConfiguration:
|
||||
"""Machine-specific parameters (Platform and CPU info)"""
|
||||
@property
|
||||
def run_configuration(self) -> global___RunConfiguration:
|
||||
"""Run-specific parameters (arguments, etc)"""
|
||||
name: builtins.str
|
||||
"""Benchmark target identifier."""
|
||||
benchmark_type: global___TestResults.BenchmarkType.ValueType
|
||||
run_mode: builtins.str
|
||||
"""Used for differentiating between continuous and debug builds.
|
||||
Must be one of:
|
||||
* cbuild: results from continuous build.
|
||||
* presubmit: results from oneshot requests.
|
||||
* culprit: results from culprit finder rerun.
|
||||
"""
|
||||
tf_version: builtins.str
|
||||
"""TensorFlow version this benchmark runs against.
|
||||
This can be either set to full version or just the major version.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
target: builtins.str | None = ...,
|
||||
entries: global___BenchmarkEntries | None = ...,
|
||||
build_configuration: global___BuildConfiguration | None = ...,
|
||||
commit_id: global___CommitId | None = ...,
|
||||
start_time: builtins.int | None = ...,
|
||||
run_time: builtins.float | None = ...,
|
||||
machine_configuration: global___MachineConfiguration | None = ...,
|
||||
run_configuration: global___RunConfiguration | None = ...,
|
||||
name: builtins.str | None = ...,
|
||||
benchmark_type: global___TestResults.BenchmarkType.ValueType | None = ...,
|
||||
run_mode: builtins.str | None = ...,
|
||||
tf_version: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["build_configuration", b"build_configuration", "commit_id", b"commit_id", "entries", b"entries", "machine_configuration", b"machine_configuration", "run_configuration", b"run_configuration"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["benchmark_type", b"benchmark_type", "build_configuration", b"build_configuration", "commit_id", b"commit_id", "entries", b"entries", "machine_configuration", b"machine_configuration", "name", b"name", "run_configuration", b"run_configuration", "run_mode", b"run_mode", "run_time", b"run_time", "start_time", b"start_time", "target", b"target", "tf_version", b"tf_version"]) -> None: ...
|
||||
|
||||
global___TestResults = TestResults
|
||||
|
||||
250
stubs/tensorflow/tensorflow/tsl/protobuf/autotuning_pb2.pyi
Normal file
250
stubs/tensorflow/tensorflow/tsl/protobuf/autotuning_pb2.pyi
Normal file
@@ -0,0 +1,250 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
This file defines protos that store the results of autotuning various
|
||||
operations.
|
||||
|
||||
They are in proto format because we want to log them structured. They offer
|
||||
tremendous statistical, testing, and debugging value.
|
||||
"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.any_pb2
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.duration_pb2
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.internal.enum_type_wrapper
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
import tensorflow.tsl.protobuf.dnn_pb2
|
||||
import typing
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class CudnnVersion(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
MAJOR_FIELD_NUMBER: builtins.int
|
||||
MINOR_FIELD_NUMBER: builtins.int
|
||||
PATCH_FIELD_NUMBER: builtins.int
|
||||
major: builtins.int
|
||||
minor: builtins.int
|
||||
patch: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
major: builtins.int | None = ...,
|
||||
minor: builtins.int | None = ...,
|
||||
patch: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["major", b"major", "minor", b"minor", "patch", b"patch"]) -> None: ...
|
||||
|
||||
global___CudnnVersion = CudnnVersion
|
||||
|
||||
@typing_extensions.final
|
||||
class ComputeCapability(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
MAJOR_FIELD_NUMBER: builtins.int
|
||||
MINOR_FIELD_NUMBER: builtins.int
|
||||
major: builtins.int
|
||||
minor: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
major: builtins.int | None = ...,
|
||||
minor: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["major", b"major", "minor", b"minor"]) -> None: ...
|
||||
|
||||
global___ComputeCapability = ComputeCapability
|
||||
|
||||
@typing_extensions.final
|
||||
class AutotuneResult(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
class _FailureKind:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _FailureKindEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[AutotuneResult._FailureKind.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNKNOWN: AutotuneResult._FailureKind.ValueType # 0
|
||||
REDZONE_MODIFIED: AutotuneResult._FailureKind.ValueType # 1
|
||||
"""Algorithm wrote memory outside its output buffers."""
|
||||
WRONG_RESULT: AutotuneResult._FailureKind.ValueType # 2
|
||||
"""Algorithm gave a different result from a reference algorithm."""
|
||||
DISQUALIFIED: AutotuneResult._FailureKind.ValueType # 3
|
||||
"""Algorithm was rejected for failing to run or for known bugs."""
|
||||
|
||||
class FailureKind(_FailureKind, metaclass=_FailureKindEnumTypeWrapper): ...
|
||||
UNKNOWN: AutotuneResult.FailureKind.ValueType # 0
|
||||
REDZONE_MODIFIED: AutotuneResult.FailureKind.ValueType # 1
|
||||
"""Algorithm wrote memory outside its output buffers."""
|
||||
WRONG_RESULT: AutotuneResult.FailureKind.ValueType # 2
|
||||
"""Algorithm gave a different result from a reference algorithm."""
|
||||
DISQUALIFIED: AutotuneResult.FailureKind.ValueType # 3
|
||||
"""Algorithm was rejected for failing to run or for known bugs."""
|
||||
|
||||
@typing_extensions.final
|
||||
class FailureResult(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KIND_FIELD_NUMBER: builtins.int
|
||||
MSG_FIELD_NUMBER: builtins.int
|
||||
REFERENCE_CONV_FIELD_NUMBER: builtins.int
|
||||
REFERENCE_GEMM_FIELD_NUMBER: builtins.int
|
||||
REFERENCE_CUDA_CONV_PLAN_FIELD_NUMBER: builtins.int
|
||||
REFERENCE_ALGORITHM_FIELD_NUMBER: builtins.int
|
||||
BUFFER_ADDRESS_FIELD_NUMBER: builtins.int
|
||||
kind: global___AutotuneResult.FailureKind.ValueType
|
||||
msg: builtins.str
|
||||
@property
|
||||
def reference_conv(self) -> global___AutotuneResult.ConvKey: ...
|
||||
@property
|
||||
def reference_gemm(self) -> global___AutotuneResult.GemmKey: ...
|
||||
@property
|
||||
def reference_cuda_conv_plan(self) -> global___AutotuneResult.CudaConvPlanKey: ...
|
||||
@property
|
||||
def reference_algorithm(self) -> tensorflow.tsl.protobuf.dnn_pb2.AlgorithmProto: ...
|
||||
buffer_address: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
kind: global___AutotuneResult.FailureKind.ValueType | None = ...,
|
||||
msg: builtins.str | None = ...,
|
||||
reference_conv: global___AutotuneResult.ConvKey | None = ...,
|
||||
reference_gemm: global___AutotuneResult.GemmKey | None = ...,
|
||||
reference_cuda_conv_plan: global___AutotuneResult.CudaConvPlanKey | None = ...,
|
||||
reference_algorithm: tensorflow.tsl.protobuf.dnn_pb2.AlgorithmProto | None = ...,
|
||||
buffer_address: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["key", b"key", "reference_algorithm", b"reference_algorithm", "reference_conv", b"reference_conv", "reference_cuda_conv_plan", b"reference_cuda_conv_plan", "reference_gemm", b"reference_gemm"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["buffer_address", b"buffer_address", "key", b"key", "kind", b"kind", "msg", b"msg", "reference_algorithm", b"reference_algorithm", "reference_conv", b"reference_conv", "reference_cuda_conv_plan", b"reference_cuda_conv_plan", "reference_gemm", b"reference_gemm"]) -> None: ...
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["key", b"key"]) -> typing_extensions.Literal["reference_conv", "reference_gemm", "reference_cuda_conv_plan", "reference_algorithm"] | None: ...
|
||||
|
||||
@typing_extensions.final
|
||||
class ConvKey(google.protobuf.message.Message):
|
||||
"""Legacy and unused in new data; superseded by AlgorithmProto."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ALGORITHM_FIELD_NUMBER: builtins.int
|
||||
TENSOR_OPS_ENABLED_FIELD_NUMBER: builtins.int
|
||||
algorithm: builtins.int
|
||||
tensor_ops_enabled: builtins.bool
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
algorithm: builtins.int | None = ...,
|
||||
tensor_ops_enabled: builtins.bool | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["algorithm", b"algorithm", "tensor_ops_enabled", b"tensor_ops_enabled"]) -> None: ...
|
||||
|
||||
@typing_extensions.final
|
||||
class GemmKey(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ALGORITHM_FIELD_NUMBER: builtins.int
|
||||
algorithm: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
algorithm: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["algorithm", b"algorithm"]) -> None: ...
|
||||
|
||||
@typing_extensions.final
|
||||
class CudaConvPlanKey(google.protobuf.message.Message):
|
||||
"""Legacy and unused in new data; superseded by AlgorithmProto."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
EXEC_PLAN_ID_FIELD_NUMBER: builtins.int
|
||||
exec_plan_id: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
exec_plan_id: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["exec_plan_id", b"exec_plan_id"]) -> None: ...
|
||||
|
||||
SCRATCH_BYTES_FIELD_NUMBER: builtins.int
|
||||
RUN_TIME_FIELD_NUMBER: builtins.int
|
||||
FAILURE_FIELD_NUMBER: builtins.int
|
||||
CONV_FIELD_NUMBER: builtins.int
|
||||
GEMM_FIELD_NUMBER: builtins.int
|
||||
CUDA_CONV_PLAN_FIELD_NUMBER: builtins.int
|
||||
ALGORITHM_FIELD_NUMBER: builtins.int
|
||||
scratch_bytes: builtins.int
|
||||
@property
|
||||
def run_time(self) -> google.protobuf.duration_pb2.Duration: ...
|
||||
@property
|
||||
def failure(self) -> global___AutotuneResult.FailureResult: ...
|
||||
@property
|
||||
def conv(self) -> global___AutotuneResult.ConvKey: ...
|
||||
@property
|
||||
def gemm(self) -> global___AutotuneResult.GemmKey: ...
|
||||
@property
|
||||
def cuda_conv_plan(self) -> global___AutotuneResult.CudaConvPlanKey: ...
|
||||
@property
|
||||
def algorithm(self) -> tensorflow.tsl.protobuf.dnn_pb2.AlgorithmProto: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
scratch_bytes: builtins.int | None = ...,
|
||||
run_time: google.protobuf.duration_pb2.Duration | None = ...,
|
||||
failure: global___AutotuneResult.FailureResult | None = ...,
|
||||
conv: global___AutotuneResult.ConvKey | None = ...,
|
||||
gemm: global___AutotuneResult.GemmKey | None = ...,
|
||||
cuda_conv_plan: global___AutotuneResult.CudaConvPlanKey | None = ...,
|
||||
algorithm: tensorflow.tsl.protobuf.dnn_pb2.AlgorithmProto | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["algorithm", b"algorithm", "conv", b"conv", "cuda_conv_plan", b"cuda_conv_plan", "failure", b"failure", "gemm", b"gemm", "key", b"key", "run_time", b"run_time"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["algorithm", b"algorithm", "conv", b"conv", "cuda_conv_plan", b"cuda_conv_plan", "failure", b"failure", "gemm", b"gemm", "key", b"key", "run_time", b"run_time", "scratch_bytes", b"scratch_bytes"]) -> None: ...
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["key", b"key"]) -> typing_extensions.Literal["conv", "gemm", "cuda_conv_plan", "algorithm"] | None: ...
|
||||
|
||||
global___AutotuneResult = AutotuneResult
|
||||
|
||||
@typing_extensions.final
|
||||
class AutotuningLog(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
INSTR_FIELD_NUMBER: builtins.int
|
||||
RESULTS_FIELD_NUMBER: builtins.int
|
||||
CUDNN_VERSION_FIELD_NUMBER: builtins.int
|
||||
COMPUTE_CAPABILITY_FIELD_NUMBER: builtins.int
|
||||
DEVICE_PCI_BUS_ID_FIELD_NUMBER: builtins.int
|
||||
BLAS_VERSION_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def instr(self) -> google.protobuf.any_pb2.Any: ...
|
||||
@property
|
||||
def results(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___AutotuneResult]:
|
||||
"""Records all auto-tuning results per algorithm."""
|
||||
@property
|
||||
def cudnn_version(self) -> global___CudnnVersion: ...
|
||||
@property
|
||||
def compute_capability(self) -> global___ComputeCapability: ...
|
||||
device_pci_bus_id: builtins.str
|
||||
"""stream_executor::DeviceDescription::pci_bus_id."""
|
||||
blas_version: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
instr: google.protobuf.any_pb2.Any | None = ...,
|
||||
results: collections.abc.Iterable[global___AutotuneResult] | None = ...,
|
||||
cudnn_version: global___CudnnVersion | None = ...,
|
||||
compute_capability: global___ComputeCapability | None = ...,
|
||||
device_pci_bus_id: builtins.str | None = ...,
|
||||
blas_version: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["compute_capability", b"compute_capability", "cudnn_version", b"cudnn_version", "instr", b"instr"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["blas_version", b"blas_version", "compute_capability", b"compute_capability", "cudnn_version", b"cudnn_version", "device_pci_bus_id", b"device_pci_bus_id", "instr", b"instr", "results", b"results"]) -> None: ...
|
||||
|
||||
global___AutotuningLog = AutotuningLog
|
||||
162
stubs/tensorflow/tensorflow/tsl/protobuf/bfc_memory_map_pb2.pyi
Normal file
162
stubs/tensorflow/tensorflow/tsl/protobuf/bfc_memory_map_pb2.pyi
Normal file
@@ -0,0 +1,162 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class MemAllocatorStats(google.protobuf.message.Message):
|
||||
"""Some of the data from AllocatorStats"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
NUM_ALLOCS_FIELD_NUMBER: builtins.int
|
||||
BYTES_IN_USE_FIELD_NUMBER: builtins.int
|
||||
PEAK_BYTES_IN_USE_FIELD_NUMBER: builtins.int
|
||||
LARGEST_ALLOC_SIZE_FIELD_NUMBER: builtins.int
|
||||
FRAGMENTATION_METRIC_FIELD_NUMBER: builtins.int
|
||||
num_allocs: builtins.int
|
||||
bytes_in_use: builtins.int
|
||||
peak_bytes_in_use: builtins.int
|
||||
largest_alloc_size: builtins.int
|
||||
fragmentation_metric: builtins.float
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
num_allocs: builtins.int | None = ...,
|
||||
bytes_in_use: builtins.int | None = ...,
|
||||
peak_bytes_in_use: builtins.int | None = ...,
|
||||
largest_alloc_size: builtins.int | None = ...,
|
||||
fragmentation_metric: builtins.float | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bytes_in_use", b"bytes_in_use", "fragmentation_metric", b"fragmentation_metric", "largest_alloc_size", b"largest_alloc_size", "num_allocs", b"num_allocs", "peak_bytes_in_use", b"peak_bytes_in_use"]) -> None: ...
|
||||
|
||||
global___MemAllocatorStats = MemAllocatorStats
|
||||
|
||||
@typing_extensions.final
|
||||
class MemChunk(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ADDRESS_FIELD_NUMBER: builtins.int
|
||||
SIZE_FIELD_NUMBER: builtins.int
|
||||
REQUESTED_SIZE_FIELD_NUMBER: builtins.int
|
||||
BIN_FIELD_NUMBER: builtins.int
|
||||
OP_NAME_FIELD_NUMBER: builtins.int
|
||||
FREED_AT_COUNT_FIELD_NUMBER: builtins.int
|
||||
ACTION_COUNT_FIELD_NUMBER: builtins.int
|
||||
IN_USE_FIELD_NUMBER: builtins.int
|
||||
STEP_ID_FIELD_NUMBER: builtins.int
|
||||
address: builtins.int
|
||||
size: builtins.int
|
||||
requested_size: builtins.int
|
||||
bin: builtins.int
|
||||
op_name: builtins.str
|
||||
freed_at_count: builtins.int
|
||||
action_count: builtins.int
|
||||
in_use: builtins.bool
|
||||
step_id: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
address: builtins.int | None = ...,
|
||||
size: builtins.int | None = ...,
|
||||
requested_size: builtins.int | None = ...,
|
||||
bin: builtins.int | None = ...,
|
||||
op_name: builtins.str | None = ...,
|
||||
freed_at_count: builtins.int | None = ...,
|
||||
action_count: builtins.int | None = ...,
|
||||
in_use: builtins.bool | None = ...,
|
||||
step_id: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["action_count", b"action_count", "address", b"address", "bin", b"bin", "freed_at_count", b"freed_at_count", "in_use", b"in_use", "op_name", b"op_name", "requested_size", b"requested_size", "size", b"size", "step_id", b"step_id"]) -> None: ...
|
||||
|
||||
global___MemChunk = MemChunk
|
||||
|
||||
@typing_extensions.final
|
||||
class BinSummary(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
BIN_FIELD_NUMBER: builtins.int
|
||||
TOTAL_BYTES_IN_USE_FIELD_NUMBER: builtins.int
|
||||
TOTAL_BYTES_IN_BIN_FIELD_NUMBER: builtins.int
|
||||
TOTAL_CHUNKS_IN_USE_FIELD_NUMBER: builtins.int
|
||||
TOTAL_CHUNKS_IN_BIN_FIELD_NUMBER: builtins.int
|
||||
bin: builtins.int
|
||||
total_bytes_in_use: builtins.int
|
||||
total_bytes_in_bin: builtins.int
|
||||
total_chunks_in_use: builtins.int
|
||||
total_chunks_in_bin: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
bin: builtins.int | None = ...,
|
||||
total_bytes_in_use: builtins.int | None = ...,
|
||||
total_bytes_in_bin: builtins.int | None = ...,
|
||||
total_chunks_in_use: builtins.int | None = ...,
|
||||
total_chunks_in_bin: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bin", b"bin", "total_bytes_in_bin", b"total_bytes_in_bin", "total_bytes_in_use", b"total_bytes_in_use", "total_chunks_in_bin", b"total_chunks_in_bin", "total_chunks_in_use", b"total_chunks_in_use"]) -> None: ...
|
||||
|
||||
global___BinSummary = BinSummary
|
||||
|
||||
@typing_extensions.final
|
||||
class SnapShot(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ACTION_COUNT_FIELD_NUMBER: builtins.int
|
||||
SIZE_FIELD_NUMBER: builtins.int
|
||||
action_count: builtins.int
|
||||
size: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
action_count: builtins.int | None = ...,
|
||||
size: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["action_count", b"action_count", "size", b"size"]) -> None: ...
|
||||
|
||||
global___SnapShot = SnapShot
|
||||
|
||||
@typing_extensions.final
|
||||
class MemoryDump(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ALLOCATOR_NAME_FIELD_NUMBER: builtins.int
|
||||
BIN_SUMMARY_FIELD_NUMBER: builtins.int
|
||||
CHUNK_FIELD_NUMBER: builtins.int
|
||||
SNAP_SHOT_FIELD_NUMBER: builtins.int
|
||||
STATS_FIELD_NUMBER: builtins.int
|
||||
allocator_name: builtins.str
|
||||
@property
|
||||
def bin_summary(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___BinSummary]: ...
|
||||
@property
|
||||
def chunk(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___MemChunk]: ...
|
||||
@property
|
||||
def snap_shot(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___SnapShot]: ...
|
||||
@property
|
||||
def stats(self) -> global___MemAllocatorStats: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
allocator_name: builtins.str | None = ...,
|
||||
bin_summary: collections.abc.Iterable[global___BinSummary] | None = ...,
|
||||
chunk: collections.abc.Iterable[global___MemChunk] | None = ...,
|
||||
snap_shot: collections.abc.Iterable[global___SnapShot] | None = ...,
|
||||
stats: global___MemAllocatorStats | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["stats", b"stats"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["allocator_name", b"allocator_name", "bin_summary", b"bin_summary", "chunk", b"chunk", "snap_shot", b"snap_shot", "stats", b"stats"]) -> None: ...
|
||||
|
||||
global___MemoryDump = MemoryDump
|
||||
@@ -0,0 +1,112 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class CoordinatedJob(google.protobuf.message.Message):
|
||||
"""Represents a job type and the number of tasks under this job.
|
||||
For example, ("worker", 20) implies that there will be 20 worker tasks.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
NUM_TASKS_FIELD_NUMBER: builtins.int
|
||||
name: builtins.str
|
||||
num_tasks: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
name: builtins.str | None = ...,
|
||||
num_tasks: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["name", b"name", "num_tasks", b"num_tasks"]) -> None: ...
|
||||
|
||||
global___CoordinatedJob = CoordinatedJob
|
||||
|
||||
@typing_extensions.final
|
||||
class CoordinationServiceConfig(google.protobuf.message.Message):
|
||||
"""Coordination service configuration parameters.
|
||||
The system picks appropriate values for fields that are not set.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
SERVICE_TYPE_FIELD_NUMBER: builtins.int
|
||||
SERVICE_LEADER_FIELD_NUMBER: builtins.int
|
||||
ENABLE_HEALTH_CHECK_FIELD_NUMBER: builtins.int
|
||||
CLUSTER_REGISTER_TIMEOUT_IN_MS_FIELD_NUMBER: builtins.int
|
||||
HEARTBEAT_TIMEOUT_IN_MS_FIELD_NUMBER: builtins.int
|
||||
COORDINATED_JOB_LIST_FIELD_NUMBER: builtins.int
|
||||
SHUTDOWN_BARRIER_TIMEOUT_IN_MS_FIELD_NUMBER: builtins.int
|
||||
AGENT_DESTRUCTION_WITHOUT_SHUTDOWN_FIELD_NUMBER: builtins.int
|
||||
RECOVERABLE_JOBS_FIELD_NUMBER: builtins.int
|
||||
service_type: builtins.str
|
||||
"""Type of coordination service implementation to enable.
|
||||
For example, setting the service type as "standalone" starts a service
|
||||
instance on the leader task to provide the coordination services such as
|
||||
heartbeats and consistent key-value store.
|
||||
"""
|
||||
service_leader: builtins.str
|
||||
"""Address where the coordination service instance is hosted."""
|
||||
enable_health_check: builtins.bool
|
||||
"""Whether to enable the health check mechanism."""
|
||||
cluster_register_timeout_in_ms: builtins.int
|
||||
"""Maximum wait time for all members in the cluster to be registered."""
|
||||
heartbeat_timeout_in_ms: builtins.int
|
||||
"""Heartbeat timeout, if a task does not record heartbeat in this time
|
||||
window, it will be considered disconnected.
|
||||
Note: This is also used as a grace period to accept any heartbeats after
|
||||
the agent has disconnected, to account for the lag time between the service
|
||||
recording the state change and the agent stopping heartbeats.
|
||||
"""
|
||||
@property
|
||||
def coordinated_job_list(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___CoordinatedJob]: ...
|
||||
shutdown_barrier_timeout_in_ms: builtins.int
|
||||
"""Denotes how long to wait for all coordination agents to reach the barriers
|
||||
(after the first shutdown request) before disconnecting together. If
|
||||
set to 0, no barrier is imposed upon shutdown and each worker can
|
||||
disconnect individually.
|
||||
"""
|
||||
agent_destruction_without_shutdown: builtins.bool
|
||||
"""If set, agents do not make an explicit Shutdown() call. Service will only
|
||||
find out about the disconnecte agent via stale heartbeats. Used for
|
||||
testing.
|
||||
"""
|
||||
@property
|
||||
def recoverable_jobs(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
||||
"""The list of jobs which are recoverable. If a task in this list fails,
|
||||
it will not propagate error to other tasks.
|
||||
If empty, no jobs will be recoverable and every task failure will cause
|
||||
error propagation to other tasks.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
service_type: builtins.str | None = ...,
|
||||
service_leader: builtins.str | None = ...,
|
||||
enable_health_check: builtins.bool | None = ...,
|
||||
cluster_register_timeout_in_ms: builtins.int | None = ...,
|
||||
heartbeat_timeout_in_ms: builtins.int | None = ...,
|
||||
coordinated_job_list: collections.abc.Iterable[global___CoordinatedJob] | None = ...,
|
||||
shutdown_barrier_timeout_in_ms: builtins.int | None = ...,
|
||||
agent_destruction_without_shutdown: builtins.bool | None = ...,
|
||||
recoverable_jobs: collections.abc.Iterable[builtins.str] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["agent_destruction_without_shutdown", b"agent_destruction_without_shutdown", "cluster_register_timeout_in_ms", b"cluster_register_timeout_in_ms", "coordinated_job_list", b"coordinated_job_list", "enable_health_check", b"enable_health_check", "heartbeat_timeout_in_ms", b"heartbeat_timeout_in_ms", "recoverable_jobs", b"recoverable_jobs", "service_leader", b"service_leader", "service_type", b"service_type", "shutdown_barrier_timeout_in_ms", b"shutdown_barrier_timeout_in_ms"]) -> None: ...
|
||||
|
||||
global___CoordinationServiceConfig = CoordinationServiceConfig
|
||||
@@ -0,0 +1,699 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.any_pb2
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.internal.enum_type_wrapper
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
import typing
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
class _CoordinatedTaskState:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _CoordinatedTaskStateEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_CoordinatedTaskState.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
TASKSTATE_UNSPECIFIED: _CoordinatedTaskState.ValueType # 0
|
||||
"""TASKSTATE_UNSPECIFIED is an invalid state such that indicates a bug."""
|
||||
TASKSTATE_UNINITIALIZED: _CoordinatedTaskState.ValueType # 1
|
||||
"""TASKSTATE_UNINITIALIZED is an agent-only state. While the agent is
|
||||
disconnected, the service has no way of knowing if the task is
|
||||
initialized/uninitialized.
|
||||
"""
|
||||
TASKSTATE_DISCONNECTED: _CoordinatedTaskState.ValueType # 2
|
||||
TASKSTATE_CONNECTED: _CoordinatedTaskState.ValueType # 3
|
||||
TASKSTATE_ERROR: _CoordinatedTaskState.ValueType # 4
|
||||
|
||||
class CoordinatedTaskState(_CoordinatedTaskState, metaclass=_CoordinatedTaskStateEnumTypeWrapper):
|
||||
"""Represents the state of a remote worker"""
|
||||
|
||||
TASKSTATE_UNSPECIFIED: CoordinatedTaskState.ValueType # 0
|
||||
"""TASKSTATE_UNSPECIFIED is an invalid state such that indicates a bug."""
|
||||
TASKSTATE_UNINITIALIZED: CoordinatedTaskState.ValueType # 1
|
||||
"""TASKSTATE_UNINITIALIZED is an agent-only state. While the agent is
|
||||
disconnected, the service has no way of knowing if the task is
|
||||
initialized/uninitialized.
|
||||
"""
|
||||
TASKSTATE_DISCONNECTED: CoordinatedTaskState.ValueType # 2
|
||||
TASKSTATE_CONNECTED: CoordinatedTaskState.ValueType # 3
|
||||
TASKSTATE_ERROR: CoordinatedTaskState.ValueType # 4
|
||||
global___CoordinatedTaskState = CoordinatedTaskState
|
||||
|
||||
@typing_extensions.final
|
||||
class CoordinatedTask(google.protobuf.message.Message):
|
||||
"""Represents a remote worker task, specified by job name and task id."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
JOB_NAME_FIELD_NUMBER: builtins.int
|
||||
TASK_ID_FIELD_NUMBER: builtins.int
|
||||
job_name: builtins.str
|
||||
task_id: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
job_name: builtins.str | None = ...,
|
||||
task_id: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["job_name", b"job_name", "task_id", b"task_id"]) -> None: ...
|
||||
|
||||
global___CoordinatedTask = CoordinatedTask
|
||||
|
||||
@typing_extensions.final
|
||||
class CoordinationServiceError(google.protobuf.message.Message):
|
||||
"""Status payload for all coordination service errors.
|
||||
Note: an empty proto may be set if the error is triggered by the task's own
|
||||
agent calls (i.e. not propagated by the service from another remote task).
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
IS_REPORTED_ERROR_FIELD_NUMBER: builtins.int
|
||||
SOURCE_TASK_FIELD_NUMBER: builtins.int
|
||||
is_reported_error: builtins.bool
|
||||
"""If true, error is reported via the agent API by the user (and not an
|
||||
internal service error).
|
||||
"""
|
||||
@property
|
||||
def source_task(self) -> global___CoordinatedTask:
|
||||
"""Denotes which task hit the error. If unset, the error originated from the
|
||||
same task that is processing this error.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
is_reported_error: builtins.bool | None = ...,
|
||||
source_task: global___CoordinatedTask | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["is_reported_error", b"is_reported_error", "source_task", b"source_task"]) -> None: ...
|
||||
|
||||
global___CoordinationServiceError = CoordinationServiceError
|
||||
|
||||
@typing_extensions.final
|
||||
class CoordinatedTaskStateInfo(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
TASK_FIELD_NUMBER: builtins.int
|
||||
STATE_FIELD_NUMBER: builtins.int
|
||||
ERROR_CODE_FIELD_NUMBER: builtins.int
|
||||
ERROR_MESSAGE_FIELD_NUMBER: builtins.int
|
||||
ERROR_PAYLOAD_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def task(self) -> global___CoordinatedTask: ...
|
||||
state: global___CoordinatedTaskState.ValueType
|
||||
error_code: builtins.int
|
||||
error_message: builtins.str
|
||||
@property
|
||||
def error_payload(self) -> global___CoordinationServiceError: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
task: global___CoordinatedTask | None = ...,
|
||||
state: global___CoordinatedTaskState.ValueType | None = ...,
|
||||
error_code: builtins.int | None = ...,
|
||||
error_message: builtins.str | None = ...,
|
||||
error_payload: global___CoordinationServiceError | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["error_payload", b"error_payload", "task", b"task"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["error_code", b"error_code", "error_message", b"error_message", "error_payload", b"error_payload", "state", b"state", "task", b"task"]) -> None: ...
|
||||
|
||||
global___CoordinatedTaskStateInfo = CoordinatedTaskStateInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class DeviceInfo(google.protobuf.message.Message):
|
||||
"""Placeholder message to be extended by other runtimes' device representations."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DEVICE_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def device(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[google.protobuf.any_pb2.Any]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
device: collections.abc.Iterable[google.protobuf.any_pb2.Any] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["device", b"device"]) -> None: ...
|
||||
|
||||
global___DeviceInfo = DeviceInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class RegisterTaskRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for registering a task to the cluster leader.
|
||||
A task is uniquely represented by its `job_name`, `task_id` and
|
||||
`incarnation`. Leader responds with its `incarnation` to identify a leader
|
||||
process.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
INCARNATION_FIELD_NUMBER: builtins.int
|
||||
SOURCE_TASK_FIELD_NUMBER: builtins.int
|
||||
incarnation: builtins.int
|
||||
@property
|
||||
def source_task(self) -> global___CoordinatedTask: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
incarnation: builtins.int | None = ...,
|
||||
source_task: global___CoordinatedTask | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["incarnation", b"incarnation", "source_task", b"source_task"]) -> None: ...
|
||||
|
||||
global___RegisterTaskRequest = RegisterTaskRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class RegisterTaskResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
LEADER_INCARNATION_FIELD_NUMBER: builtins.int
|
||||
leader_incarnation: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
leader_incarnation: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["leader_incarnation", b"leader_incarnation"]) -> None: ...
|
||||
|
||||
global___RegisterTaskResponse = RegisterTaskResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class HeartbeatRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for sending heartbeats."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
INCARNATION_FIELD_NUMBER: builtins.int
|
||||
SOURCE_TASK_FIELD_NUMBER: builtins.int
|
||||
incarnation: builtins.int
|
||||
@property
|
||||
def source_task(self) -> global___CoordinatedTask: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
incarnation: builtins.int | None = ...,
|
||||
source_task: global___CoordinatedTask | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["incarnation", b"incarnation", "source_task", b"source_task"]) -> None: ...
|
||||
|
||||
global___HeartbeatRequest = HeartbeatRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class HeartbeatResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
LEADER_INCARNATION_FIELD_NUMBER: builtins.int
|
||||
leader_incarnation: builtins.int
|
||||
"""If there are failures in cluster, use additional metadata in response to
|
||||
broadcast error code and message to other tasks.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
leader_incarnation: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["leader_incarnation", b"leader_incarnation"]) -> None: ...
|
||||
|
||||
global___HeartbeatResponse = HeartbeatResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class WaitForAllTasksRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for waiting for all tasks."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
SOURCE_TASK_FIELD_NUMBER: builtins.int
|
||||
DEVICE_INFO_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def source_task(self) -> global___CoordinatedTask: ...
|
||||
@property
|
||||
def device_info(self) -> global___DeviceInfo:
|
||||
"""All local device attributes on the request sender;"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
source_task: global___CoordinatedTask | None = ...,
|
||||
device_info: global___DeviceInfo | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["device_info", b"device_info", "source_task", b"source_task"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["device_info", b"device_info", "source_task", b"source_task"]) -> None: ...
|
||||
|
||||
global___WaitForAllTasksRequest = WaitForAllTasksRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class WaitForAllTasksResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
LEADER_INCARNATION_FIELD_NUMBER: builtins.int
|
||||
DEVICE_INFO_FIELD_NUMBER: builtins.int
|
||||
leader_incarnation: builtins.int
|
||||
@property
|
||||
def device_info(self) -> global___DeviceInfo:
|
||||
"""All devices in the cluster."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
leader_incarnation: builtins.int | None = ...,
|
||||
device_info: global___DeviceInfo | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["device_info", b"device_info"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["device_info", b"device_info", "leader_incarnation", b"leader_incarnation"]) -> None: ...
|
||||
|
||||
global___WaitForAllTasksResponse = WaitForAllTasksResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class ShutdownTaskRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for disconnecting a task from the service."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
SOURCE_TASK_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def source_task(self) -> global___CoordinatedTask: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
source_task: global___CoordinatedTask | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> None: ...
|
||||
|
||||
global___ShutdownTaskRequest = ShutdownTaskRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class ShutdownTaskResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___ShutdownTaskResponse = ShutdownTaskResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class ResetTaskRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for resetting a task state in the service."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
SOURCE_TASK_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def source_task(self) -> global___CoordinatedTask: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
source_task: global___CoordinatedTask | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> None: ...
|
||||
|
||||
global___ResetTaskRequest = ResetTaskRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class ResetTaskResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___ResetTaskResponse = ResetTaskResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class ReportErrorToTaskRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for reporting errors to task."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ERROR_CODE_FIELD_NUMBER: builtins.int
|
||||
ERROR_MESSAGE_FIELD_NUMBER: builtins.int
|
||||
ERROR_PAYLOAD_FIELD_NUMBER: builtins.int
|
||||
error_code: builtins.int
|
||||
error_message: builtins.str
|
||||
@property
|
||||
def error_payload(self) -> global___CoordinationServiceError: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
error_code: builtins.int | None = ...,
|
||||
error_message: builtins.str | None = ...,
|
||||
error_payload: global___CoordinationServiceError | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["error_payload", b"error_payload"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["error_code", b"error_code", "error_message", b"error_message", "error_payload", b"error_payload"]) -> None: ...
|
||||
|
||||
global___ReportErrorToTaskRequest = ReportErrorToTaskRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class ReportErrorToTaskResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___ReportErrorToTaskResponse = ReportErrorToTaskResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class ReportErrorToServiceRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for reporting errors to service instance."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ERROR_CODE_FIELD_NUMBER: builtins.int
|
||||
ERROR_MESSAGE_FIELD_NUMBER: builtins.int
|
||||
ERROR_ORIGIN_FIELD_NUMBER: builtins.int
|
||||
error_code: builtins.int
|
||||
error_message: builtins.str
|
||||
@property
|
||||
def error_origin(self) -> global___CoordinatedTask: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
error_code: builtins.int | None = ...,
|
||||
error_message: builtins.str | None = ...,
|
||||
error_origin: global___CoordinatedTask | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["error_origin", b"error_origin"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["error_code", b"error_code", "error_message", b"error_message", "error_origin", b"error_origin"]) -> None: ...
|
||||
|
||||
global___ReportErrorToServiceRequest = ReportErrorToServiceRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class ReportErrorToServiceResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___ReportErrorToServiceResponse = ReportErrorToServiceResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class GetTaskStateRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for getting state of a remote task."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
SOURCE_TASK_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def source_task(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___CoordinatedTask]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
source_task: collections.abc.Iterable[global___CoordinatedTask] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> None: ...
|
||||
|
||||
global___GetTaskStateRequest = GetTaskStateRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class GetTaskStateResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
TASK_STATE_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def task_state(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___CoordinatedTaskStateInfo]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
task_state: collections.abc.Iterable[global___CoordinatedTaskStateInfo] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["task_state", b"task_state"]) -> None: ...
|
||||
|
||||
global___GetTaskStateResponse = GetTaskStateResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class KeyValueEntry(google.protobuf.message.Message):
|
||||
"""Message for configuration key value.
|
||||
Key is structured like Unix file system, with multiple levels of directory
|
||||
names separated by the slash ('/') characters.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
value: builtins.bytes
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
value: builtins.bytes | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
global___KeyValueEntry = KeyValueEntry
|
||||
|
||||
@typing_extensions.final
|
||||
class InsertKeyValueRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for inserting configuration key-value data."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KV_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def kv(self) -> global___KeyValueEntry: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
kv: global___KeyValueEntry | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["kv", b"kv"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["kv", b"kv"]) -> None: ...
|
||||
|
||||
global___InsertKeyValueRequest = InsertKeyValueRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class InsertKeyValueResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___InsertKeyValueResponse = InsertKeyValueResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class GetKeyValueRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for getting configuration key-value data."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key"]) -> None: ...
|
||||
|
||||
global___GetKeyValueRequest = GetKeyValueRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class GetKeyValueResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KV_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def kv(self) -> global___KeyValueEntry: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
kv: global___KeyValueEntry | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["kv", b"kv"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["kv", b"kv"]) -> None: ...
|
||||
|
||||
global___GetKeyValueResponse = GetKeyValueResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class TryGetKeyValueRequest(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key"]) -> None: ...
|
||||
|
||||
global___TryGetKeyValueRequest = TryGetKeyValueRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class TryGetKeyValueResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KV_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def kv(self) -> global___KeyValueEntry: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
kv: global___KeyValueEntry | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["kv", b"kv"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["kv", b"kv"]) -> None: ...
|
||||
|
||||
global___TryGetKeyValueResponse = TryGetKeyValueResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class GetKeyValueDirRequest(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DIRECTORY_KEY_FIELD_NUMBER: builtins.int
|
||||
directory_key: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
directory_key: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["directory_key", b"directory_key"]) -> None: ...
|
||||
|
||||
global___GetKeyValueDirRequest = GetKeyValueDirRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class GetKeyValueDirResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DIRECTORY_KEY_FIELD_NUMBER: builtins.int
|
||||
KV_FIELD_NUMBER: builtins.int
|
||||
directory_key: builtins.str
|
||||
@property
|
||||
def kv(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___KeyValueEntry]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
directory_key: builtins.str | None = ...,
|
||||
kv: collections.abc.Iterable[global___KeyValueEntry] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["directory_key", b"directory_key", "kv", b"kv"]) -> None: ...
|
||||
|
||||
global___GetKeyValueDirResponse = GetKeyValueDirResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class DeleteKeyValueRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for deleting configuration key-value data.
|
||||
When is_directory is true, delete key-values recursively under `key`.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
IS_DIRECTORY_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
is_directory: builtins.bool
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
is_directory: builtins.bool | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["is_directory", b"is_directory", "key", b"key"]) -> None: ...
|
||||
|
||||
global___DeleteKeyValueRequest = DeleteKeyValueRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class DeleteKeyValueResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___DeleteKeyValueResponse = DeleteKeyValueResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class BarrierRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for generic sync barriers."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
BARRIER_ID_FIELD_NUMBER: builtins.int
|
||||
BARRIER_TIMEOUT_IN_MS_FIELD_NUMBER: builtins.int
|
||||
TASKS_FIELD_NUMBER: builtins.int
|
||||
SOURCE_TASK_FIELD_NUMBER: builtins.int
|
||||
barrier_id: builtins.str
|
||||
barrier_timeout_in_ms: builtins.int
|
||||
@property
|
||||
def tasks(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___CoordinatedTask]:
|
||||
"""Denotes list of tasks that will wait for the barrier. If unspecified, it
|
||||
implies that the entire cluster is participating in the barrier.
|
||||
"""
|
||||
@property
|
||||
def source_task(self) -> global___CoordinatedTask:
|
||||
"""Task that is making the request."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
barrier_id: builtins.str | None = ...,
|
||||
barrier_timeout_in_ms: builtins.int | None = ...,
|
||||
tasks: collections.abc.Iterable[global___CoordinatedTask] | None = ...,
|
||||
source_task: global___CoordinatedTask | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["barrier_id", b"barrier_id", "barrier_timeout_in_ms", b"barrier_timeout_in_ms", "source_task", b"source_task", "tasks", b"tasks"]) -> None: ...
|
||||
|
||||
global___BarrierRequest = BarrierRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class BarrierResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___BarrierResponse = BarrierResponse
|
||||
|
||||
@typing_extensions.final
|
||||
class CancelBarrierRequest(google.protobuf.message.Message):
|
||||
"""Request and response messages for cancelling generic sync barriers."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
BARRIER_ID_FIELD_NUMBER: builtins.int
|
||||
SOURCE_TASK_FIELD_NUMBER: builtins.int
|
||||
barrier_id: builtins.str
|
||||
@property
|
||||
def source_task(self) -> global___CoordinatedTask:
|
||||
"""Task that is making the request."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
barrier_id: builtins.str | None = ...,
|
||||
source_task: global___CoordinatedTask | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["source_task", b"source_task"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["barrier_id", b"barrier_id", "source_task", b"source_task"]) -> None: ...
|
||||
|
||||
global___CancelBarrierRequest = CancelBarrierRequest
|
||||
|
||||
@typing_extensions.final
|
||||
class CancelBarrierResponse(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___CancelBarrierResponse = CancelBarrierResponse
|
||||
@@ -0,0 +1,85 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class GrpcPayloadContainer(google.protobuf.message.Message):
|
||||
"""Used to serialize and transmit tensorflow::Status payloads through
|
||||
grpc::Status `error_details` since grpc::Status lacks payload API.
|
||||
TODO(b/204231601): Use GRPC API once supported.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class PayloadsEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
value: builtins.bytes
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
value: builtins.bytes | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
PAYLOADS_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def payloads(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.bytes]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
payloads: collections.abc.Mapping[builtins.str, builtins.bytes] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["payloads", b"payloads"]) -> None: ...
|
||||
|
||||
global___GrpcPayloadContainer = GrpcPayloadContainer
|
||||
|
||||
@typing_extensions.final
|
||||
class GrpcPayloadsLost(google.protobuf.message.Message):
|
||||
"""If included as a payload, this message flags the Status to have lost payloads
|
||||
during the GRPC transmission.
|
||||
URI: "type.googleapis.com/tensorflow.distributed_runtime.GrpcPayloadsLost"
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___GrpcPayloadsLost = GrpcPayloadsLost
|
||||
|
||||
@typing_extensions.final
|
||||
class WorkerPossiblyRestarted(google.protobuf.message.Message):
|
||||
"""If included as a payload, this message flags the Status to be a possible
|
||||
outcome of a worker restart.
|
||||
URI:
|
||||
"type.googleapis.com/tensorflow.distributed_runtime.WorkerPossiblyRestarted"
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
global___WorkerPossiblyRestarted = WorkerPossiblyRestarted
|
||||
440
stubs/tensorflow/tensorflow/tsl/protobuf/dnn_pb2.pyi
Normal file
440
stubs/tensorflow/tensorflow/tsl/protobuf/dnn_pb2.pyi
Normal file
@@ -0,0 +1,440 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
LINT: LEGACY_NAMES"""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.internal.enum_type_wrapper
|
||||
import google.protobuf.message
|
||||
import google.protobuf.wrappers_pb2
|
||||
import sys
|
||||
import typing
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
class _DataType:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _DataTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_DataType.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
kFloat: _DataType.ValueType # 0
|
||||
kDouble: _DataType.ValueType # 1
|
||||
kHalf: _DataType.ValueType # 2
|
||||
kInt8: _DataType.ValueType # 3
|
||||
kInt32: _DataType.ValueType # 4
|
||||
kComplexFloat: _DataType.ValueType # 5
|
||||
kComplexDouble: _DataType.ValueType # 6
|
||||
kBF16: _DataType.ValueType # 7
|
||||
kF8E5M2: _DataType.ValueType # 8
|
||||
kF8E4M3FN: _DataType.ValueType # 9
|
||||
|
||||
class DataType(_DataType, metaclass=_DataTypeEnumTypeWrapper):
|
||||
"""Specifies the data type used by an operation."""
|
||||
|
||||
kFloat: DataType.ValueType # 0
|
||||
kDouble: DataType.ValueType # 1
|
||||
kHalf: DataType.ValueType # 2
|
||||
kInt8: DataType.ValueType # 3
|
||||
kInt32: DataType.ValueType # 4
|
||||
kComplexFloat: DataType.ValueType # 5
|
||||
kComplexDouble: DataType.ValueType # 6
|
||||
kBF16: DataType.ValueType # 7
|
||||
kF8E5M2: DataType.ValueType # 8
|
||||
kF8E4M3FN: DataType.ValueType # 9
|
||||
global___DataType = DataType
|
||||
|
||||
class _DataLayout:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _DataLayoutEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_DataLayout.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
kYXDepthBatch: _DataLayout.ValueType # 0
|
||||
"""Naming convention:
|
||||
Y <-> row or height
|
||||
X <-> column or width
|
||||
Batch <-> batch, or N
|
||||
Depth <-> feature, or channel
|
||||
TODO(timshen): turn them into cuDNN names, e.g. kNCHW.
|
||||
|
||||
Note: In cudnn, kBatchDepthYX4 and kBatchDepthYX32 are the same layout
|
||||
(namely, NCHW_VECT_C). It differentiates between these two by using a
|
||||
different data type (int8x4 vs int8x32). In StreamExecutor we use
|
||||
different layouts for these, because we don't usually pass an explicit data
|
||||
type to StreamExecutor functions.
|
||||
"""
|
||||
kYXBatchDepth: _DataLayout.ValueType # 1
|
||||
kBatchYXDepth: _DataLayout.ValueType # 2
|
||||
"""cuDNN's NHWC layout"""
|
||||
kBatchDepthYX: _DataLayout.ValueType # 3
|
||||
"""cuDNN's NCHW layout"""
|
||||
kBatchDepthYX4: _DataLayout.ValueType # 4
|
||||
"""cuDNN's NCHW_VECT_C with 4-elem vectors (e.g. int8x4)"""
|
||||
kBatchDepthYX32: _DataLayout.ValueType # 5
|
||||
"""cuDNN's NCHW_VECT_C with 32-elem vects (e.g. int8x32)"""
|
||||
|
||||
class DataLayout(_DataLayout, metaclass=_DataLayoutEnumTypeWrapper):
|
||||
"""Describes how a convolution input or output layer's data is formatted."""
|
||||
|
||||
kYXDepthBatch: DataLayout.ValueType # 0
|
||||
"""Naming convention:
|
||||
Y <-> row or height
|
||||
X <-> column or width
|
||||
Batch <-> batch, or N
|
||||
Depth <-> feature, or channel
|
||||
TODO(timshen): turn them into cuDNN names, e.g. kNCHW.
|
||||
|
||||
Note: In cudnn, kBatchDepthYX4 and kBatchDepthYX32 are the same layout
|
||||
(namely, NCHW_VECT_C). It differentiates between these two by using a
|
||||
different data type (int8x4 vs int8x32). In StreamExecutor we use
|
||||
different layouts for these, because we don't usually pass an explicit data
|
||||
type to StreamExecutor functions.
|
||||
"""
|
||||
kYXBatchDepth: DataLayout.ValueType # 1
|
||||
kBatchYXDepth: DataLayout.ValueType # 2
|
||||
"""cuDNN's NHWC layout"""
|
||||
kBatchDepthYX: DataLayout.ValueType # 3
|
||||
"""cuDNN's NCHW layout"""
|
||||
kBatchDepthYX4: DataLayout.ValueType # 4
|
||||
"""cuDNN's NCHW_VECT_C with 4-elem vectors (e.g. int8x4)"""
|
||||
kBatchDepthYX32: DataLayout.ValueType # 5
|
||||
"""cuDNN's NCHW_VECT_C with 32-elem vects (e.g. int8x32)"""
|
||||
global___DataLayout = DataLayout
|
||||
|
||||
class _FilterLayout:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _FilterLayoutEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_FilterLayout.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
kOutputInputYX: _FilterLayout.ValueType # 0
|
||||
"""Naming convention:
|
||||
Y <-> row or height
|
||||
X <-> column or width
|
||||
Output <-> output feature, or N
|
||||
Input <-> input feature, or N
|
||||
TODO(timshen): turn them into cuDNN names, e.g. kNCHW.
|
||||
cuDNN's NCHW layout
|
||||
"""
|
||||
kOutputYXInput: _FilterLayout.ValueType # 1
|
||||
"""cuDNN's NHWC layout"""
|
||||
kOutputInputYX4: _FilterLayout.ValueType # 2
|
||||
"""cuDNN's NCHW_VECT_C layout with 4-elem vectors"""
|
||||
kOutputInputYX32: _FilterLayout.ValueType # 5
|
||||
"""cuDNN's NCHW_VECT_C layout with 32-elem vectors"""
|
||||
kInputYXOutput: _FilterLayout.ValueType # 3
|
||||
kYXInputOutput: _FilterLayout.ValueType # 4
|
||||
|
||||
class FilterLayout(_FilterLayout, metaclass=_FilterLayoutEnumTypeWrapper):
|
||||
"""Describes how a convolution filter is laid out in the memory."""
|
||||
|
||||
kOutputInputYX: FilterLayout.ValueType # 0
|
||||
"""Naming convention:
|
||||
Y <-> row or height
|
||||
X <-> column or width
|
||||
Output <-> output feature, or N
|
||||
Input <-> input feature, or N
|
||||
TODO(timshen): turn them into cuDNN names, e.g. kNCHW.
|
||||
cuDNN's NCHW layout
|
||||
"""
|
||||
kOutputYXInput: FilterLayout.ValueType # 1
|
||||
"""cuDNN's NHWC layout"""
|
||||
kOutputInputYX4: FilterLayout.ValueType # 2
|
||||
"""cuDNN's NCHW_VECT_C layout with 4-elem vectors"""
|
||||
kOutputInputYX32: FilterLayout.ValueType # 5
|
||||
"""cuDNN's NCHW_VECT_C layout with 32-elem vectors"""
|
||||
kInputYXOutput: FilterLayout.ValueType # 3
|
||||
kYXInputOutput: FilterLayout.ValueType # 4
|
||||
global___FilterLayout = FilterLayout
|
||||
|
||||
class _ActivationMode:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ActivationModeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_ActivationMode.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
kNone: _ActivationMode.ValueType # 0
|
||||
kSigmoid: _ActivationMode.ValueType # 1
|
||||
kRelu: _ActivationMode.ValueType # 2
|
||||
"""Rectified linear activation: f(x) = x < 0 ? 0 : x"""
|
||||
kRelu6: _ActivationMode.ValueType # 3
|
||||
"""Rectified linear activation; where upper maximum is 6.0."""
|
||||
kReluX: _ActivationMode.ValueType # 4
|
||||
"""Rectified linear activation; where upper maximum specified by
|
||||
BatchDescriptor::value_max().
|
||||
"""
|
||||
kTanh: _ActivationMode.ValueType # 5
|
||||
kBandPass: _ActivationMode.ValueType # 6
|
||||
"""Like ReluX; but passes all values in the range [-X,X]."""
|
||||
kElu: _ActivationMode.ValueType # 7
|
||||
"""Exponential linear activation: f(x) = x < 0 ? e^x - 1 : x"""
|
||||
kLeakyRelu: _ActivationMode.ValueType # 8
|
||||
"""Leaky Rectified linear activation: f(x) = x < 0 ? alpha * x : x"""
|
||||
kGeluExact: _ActivationMode.ValueType # 9
|
||||
"""Gaussian Error linear unit activation:
|
||||
x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2))), where P(X) ~ N(0, 1).
|
||||
"""
|
||||
|
||||
class ActivationMode(_ActivationMode, metaclass=_ActivationModeEnumTypeWrapper):
|
||||
"""Describes a kind of non-linearity (threshold-like mathematical function)."""
|
||||
|
||||
kNone: ActivationMode.ValueType # 0
|
||||
kSigmoid: ActivationMode.ValueType # 1
|
||||
kRelu: ActivationMode.ValueType # 2
|
||||
"""Rectified linear activation: f(x) = x < 0 ? 0 : x"""
|
||||
kRelu6: ActivationMode.ValueType # 3
|
||||
"""Rectified linear activation; where upper maximum is 6.0."""
|
||||
kReluX: ActivationMode.ValueType # 4
|
||||
"""Rectified linear activation; where upper maximum specified by
|
||||
BatchDescriptor::value_max().
|
||||
"""
|
||||
kTanh: ActivationMode.ValueType # 5
|
||||
kBandPass: ActivationMode.ValueType # 6
|
||||
"""Like ReluX; but passes all values in the range [-X,X]."""
|
||||
kElu: ActivationMode.ValueType # 7
|
||||
"""Exponential linear activation: f(x) = x < 0 ? e^x - 1 : x"""
|
||||
kLeakyRelu: ActivationMode.ValueType # 8
|
||||
"""Leaky Rectified linear activation: f(x) = x < 0 ? alpha * x : x"""
|
||||
kGeluExact: ActivationMode.ValueType # 9
|
||||
"""Gaussian Error linear unit activation:
|
||||
x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2))), where P(X) ~ N(0, 1).
|
||||
"""
|
||||
global___ActivationMode = ActivationMode
|
||||
|
||||
class _ConvolutionMode:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ConvolutionModeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_ConvolutionMode.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
CROSS_CORRELATION: _ConvolutionMode.ValueType # 0
|
||||
CONVOLUTION: _ConvolutionMode.ValueType # 1
|
||||
|
||||
class ConvolutionMode(_ConvolutionMode, metaclass=_ConvolutionModeEnumTypeWrapper):
|
||||
"""Describe the math definition for the conv op. The popular behavior is
|
||||
actually called cross-correlation in math, despite the operation is often
|
||||
referred as convolution. See cuDNN cudnnConvolutionMode_t.
|
||||
"""
|
||||
|
||||
CROSS_CORRELATION: ConvolutionMode.ValueType # 0
|
||||
CONVOLUTION: ConvolutionMode.ValueType # 1
|
||||
global___ConvolutionMode = ConvolutionMode
|
||||
|
||||
class _ConvolutionKind:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _ConvolutionKindEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_ConvolutionKind.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
INVALID: _ConvolutionKind.ValueType # 0
|
||||
FORWARD: _ConvolutionKind.ValueType # 1
|
||||
BACKWARD_FILTER: _ConvolutionKind.ValueType # 2
|
||||
BACKWARD_DATA: _ConvolutionKind.ValueType # 3
|
||||
FORWARD_BIAS_ACTIVATION: _ConvolutionKind.ValueType # 4
|
||||
|
||||
class ConvolutionKind(_ConvolutionKind, metaclass=_ConvolutionKindEnumTypeWrapper): ...
|
||||
|
||||
INVALID: ConvolutionKind.ValueType # 0
|
||||
FORWARD: ConvolutionKind.ValueType # 1
|
||||
BACKWARD_FILTER: ConvolutionKind.ValueType # 2
|
||||
BACKWARD_DATA: ConvolutionKind.ValueType # 3
|
||||
FORWARD_BIAS_ACTIVATION: ConvolutionKind.ValueType # 4
|
||||
global___ConvolutionKind = ConvolutionKind
|
||||
|
||||
@typing_extensions.final
|
||||
class TensorDescriptorProto(google.protobuf.message.Message):
|
||||
"""Generic tensor representation."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DIMENSIONS_FIELD_NUMBER: builtins.int
|
||||
DATA_TYPE_FIELD_NUMBER: builtins.int
|
||||
DATA_LAYOUT_FIELD_NUMBER: builtins.int
|
||||
FILTER_LAYOUT_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def dimensions(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]: ...
|
||||
data_type: global___DataType.ValueType
|
||||
data_layout: global___DataLayout.ValueType
|
||||
filter_layout: global___FilterLayout.ValueType
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dimensions: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
data_type: global___DataType.ValueType | None = ...,
|
||||
data_layout: global___DataLayout.ValueType | None = ...,
|
||||
filter_layout: global___FilterLayout.ValueType | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["data_layout", b"data_layout", "filter_layout", b"filter_layout", "layout_oneof", b"layout_oneof"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["data_layout", b"data_layout", "data_type", b"data_type", "dimensions", b"dimensions", "filter_layout", b"filter_layout", "layout_oneof", b"layout_oneof"]) -> None: ...
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["layout_oneof", b"layout_oneof"]) -> typing_extensions.Literal["data_layout", "filter_layout"] | None: ...
|
||||
|
||||
global___TensorDescriptorProto = TensorDescriptorProto
|
||||
|
||||
@typing_extensions.final
|
||||
class AlgorithmProto(google.protobuf.message.Message):
|
||||
"""Generic algorithm representation."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
class _MathType:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _MathTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[AlgorithmProto._MathType.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
DEFAULT_MATH: AlgorithmProto._MathType.ValueType # 0
|
||||
TENSOR_OP_MATH: AlgorithmProto._MathType.ValueType # 1
|
||||
"""The GPU may operate 4x4 matrix FMA.
|
||||
See cuDNN's documentation for CUDNN_TENSOR_OP_MATH.
|
||||
"""
|
||||
|
||||
class MathType(_MathType, metaclass=_MathTypeEnumTypeWrapper): ...
|
||||
DEFAULT_MATH: AlgorithmProto.MathType.ValueType # 0
|
||||
TENSOR_OP_MATH: AlgorithmProto.MathType.ValueType # 1
|
||||
"""The GPU may operate 4x4 matrix FMA.
|
||||
See cuDNN's documentation for CUDNN_TENSOR_OP_MATH.
|
||||
"""
|
||||
|
||||
@typing_extensions.final
|
||||
class TuningKnobsEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.int
|
||||
value: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.int | None = ...,
|
||||
value: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
ALGO_ID_FIELD_NUMBER: builtins.int
|
||||
MATH_TYPE_FIELD_NUMBER: builtins.int
|
||||
TUNING_KNOBS_FIELD_NUMBER: builtins.int
|
||||
IS_CUDNN_FRONTEND_FIELD_NUMBER: builtins.int
|
||||
WORKSPACE_SIZE_FIELD_NUMBER: builtins.int
|
||||
algo_id: builtins.int
|
||||
math_type: global___AlgorithmProto.MathType.ValueType
|
||||
@property
|
||||
def tuning_knobs(self) -> google.protobuf.internal.containers.ScalarMap[builtins.int, builtins.int]: ...
|
||||
is_cudnn_frontend: builtins.bool
|
||||
"""Legacy algorithm enums and cuDNN Frontend engine numbers need to coexist in
|
||||
the same proto medium-term, until we can be confident of no longer needing
|
||||
the legacy cuDNN convolution API. Once the migration is complete, we can
|
||||
stop producing legacy algorithm enums and remove this field.
|
||||
"""
|
||||
@property
|
||||
def workspace_size(self) -> google.protobuf.wrappers_pb2.UInt64Value:
|
||||
"""For ROCm only, it's impossible to re-query the required workspace size
|
||||
after running the algorithm search, so we must store the workspace size
|
||||
along with the choice of algorithm. For consistency and convenience,
|
||||
cuDNN uses this field in the same way, even though it would be possible to
|
||||
re-query the workspace size from cuDNN at each use.
|
||||
|
||||
Since this message is persisted in files, we need to be able to distinguish
|
||||
0 workspace size from unknown workspace size in an old message, so this is
|
||||
a message field.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
algo_id: builtins.int | None = ...,
|
||||
math_type: global___AlgorithmProto.MathType.ValueType | None = ...,
|
||||
tuning_knobs: collections.abc.Mapping[builtins.int, builtins.int] | None = ...,
|
||||
is_cudnn_frontend: builtins.bool | None = ...,
|
||||
workspace_size: google.protobuf.wrappers_pb2.UInt64Value | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["workspace_size", b"workspace_size"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["algo_id", b"algo_id", "is_cudnn_frontend", b"is_cudnn_frontend", "math_type", b"math_type", "tuning_knobs", b"tuning_knobs", "workspace_size", b"workspace_size"]) -> None: ...
|
||||
|
||||
global___AlgorithmProto = AlgorithmProto
|
||||
|
||||
@typing_extensions.final
|
||||
class AlgorithmConfigProto(google.protobuf.message.Message):
|
||||
"""Proto definition of AlgorithmConfig in "dnn.h".
|
||||
TODO(ruochengw): After cl/380702564 is submitted, add support for algorithm
|
||||
configs with cuDNN Frontend APIs.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ALGORITHM_FIELD_NUMBER: builtins.int
|
||||
ALGORITHM_NO_SCRATCH_FIELD_NUMBER: builtins.int
|
||||
SCRATCH_SIZE_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def algorithm(self) -> global___AlgorithmProto: ...
|
||||
@property
|
||||
def algorithm_no_scratch(self) -> global___AlgorithmProto: ...
|
||||
scratch_size: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
algorithm: global___AlgorithmProto | None = ...,
|
||||
algorithm_no_scratch: global___AlgorithmProto | None = ...,
|
||||
scratch_size: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["algorithm", b"algorithm", "algorithm_no_scratch", b"algorithm_no_scratch", "optional_algorithm", b"optional_algorithm", "optional_algorithm_no_scratch", b"optional_algorithm_no_scratch", "optional_scratch_size", b"optional_scratch_size", "scratch_size", b"scratch_size"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["algorithm", b"algorithm", "algorithm_no_scratch", b"algorithm_no_scratch", "optional_algorithm", b"optional_algorithm", "optional_algorithm_no_scratch", b"optional_algorithm_no_scratch", "optional_scratch_size", b"optional_scratch_size", "scratch_size", b"scratch_size"]) -> None: ...
|
||||
@typing.overload
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["optional_algorithm", b"optional_algorithm"]) -> typing_extensions.Literal["algorithm"] | None: ...
|
||||
@typing.overload
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["optional_algorithm_no_scratch", b"optional_algorithm_no_scratch"]) -> typing_extensions.Literal["algorithm_no_scratch"] | None: ...
|
||||
@typing.overload
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["optional_scratch_size", b"optional_scratch_size"]) -> typing_extensions.Literal["scratch_size"] | None: ...
|
||||
|
||||
global___AlgorithmConfigProto = AlgorithmConfigProto
|
||||
|
||||
@typing_extensions.final
|
||||
class ConvolutionDescriptorProto(google.protobuf.message.Message):
|
||||
"""Convolution-specific parameters."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
PADDINGS_FIELD_NUMBER: builtins.int
|
||||
STRIDES_FIELD_NUMBER: builtins.int
|
||||
DILATIONS_FIELD_NUMBER: builtins.int
|
||||
COMPUTE_MODE_FIELD_NUMBER: builtins.int
|
||||
GROUP_COUNT_FIELD_NUMBER: builtins.int
|
||||
CONVOLUTION_MODE_FIELD_NUMBER: builtins.int
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def paddings(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]: ...
|
||||
@property
|
||||
def strides(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]: ...
|
||||
@property
|
||||
def dilations(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.int]: ...
|
||||
compute_mode: global___DataType.ValueType
|
||||
"""The "accumulator" type. For example, use F32 as an accumulator for F16
|
||||
convolutions.
|
||||
See cuDNN's cudnnConvolutionMode_t.
|
||||
"""
|
||||
group_count: builtins.int
|
||||
"""See cuDNN's group count."""
|
||||
convolution_mode: global___ConvolutionMode.ValueType
|
||||
name: builtins.str
|
||||
"""Tensorflow node name, same as in NodeDef, for debugging purposes."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
paddings: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
strides: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
dilations: collections.abc.Iterable[builtins.int] | None = ...,
|
||||
compute_mode: global___DataType.ValueType | None = ...,
|
||||
group_count: builtins.int | None = ...,
|
||||
convolution_mode: global___ConvolutionMode.ValueType | None = ...,
|
||||
name: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["compute_mode", b"compute_mode", "convolution_mode", b"convolution_mode", "dilations", b"dilations", "group_count", b"group_count", "name", b"name", "paddings", b"paddings", "strides", b"strides"]) -> None: ...
|
||||
|
||||
global___ConvolutionDescriptorProto = ConvolutionDescriptorProto
|
||||
72
stubs/tensorflow/tensorflow/tsl/protobuf/rpc_options_pb2.pyi
Normal file
72
stubs/tensorflow/tensorflow/tsl/protobuf/rpc_options_pb2.pyi
Normal file
@@ -0,0 +1,72 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
"""
|
||||
import builtins
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.message
|
||||
import sys
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class RPCOptions(google.protobuf.message.Message):
|
||||
"""RPC options for distributed runtime."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
USE_RPC_FOR_INPROCESS_MASTER_FIELD_NUMBER: builtins.int
|
||||
COMPRESSION_ALGORITHM_FIELD_NUMBER: builtins.int
|
||||
COMPRESSION_LEVEL_FIELD_NUMBER: builtins.int
|
||||
CACHE_RPC_RESPONSE_FIELD_NUMBER: builtins.int
|
||||
DISABLE_SESSION_CONNECTION_SHARING_FIELD_NUMBER: builtins.int
|
||||
NUM_CHANNELS_PER_TARGET_FIELD_NUMBER: builtins.int
|
||||
use_rpc_for_inprocess_master: builtins.bool
|
||||
"""If true, always use RPC to contact the session target.
|
||||
|
||||
If false (the default option), TensorFlow may use an optimized
|
||||
transport for client-master communication that avoids the RPC
|
||||
stack. This option is primarily for used testing the RPC stack.
|
||||
"""
|
||||
compression_algorithm: builtins.str
|
||||
"""The compression algorithm to be used. One of "deflate", "gzip"."""
|
||||
compression_level: builtins.int
|
||||
"""If compression_algorithm is set, the compression level to be used.
|
||||
From 0 (no compression), up to 3.
|
||||
"""
|
||||
cache_rpc_response: builtins.bool
|
||||
"""Setting cache_rpc_response to true will enable sender side caching of
|
||||
response for RecvTensorAsync and RecvBufAsync to allow receiver to retry
|
||||
requests . This is only necessary when the network fabric is experiencing a
|
||||
significant error rate. Without it we'll fail a step on an network error,
|
||||
while with it we'll be able to complete long steps (like complex
|
||||
initializations) in the face of some network errors during RecvTensor.
|
||||
"""
|
||||
disable_session_connection_sharing: builtins.bool
|
||||
"""Disables TCP connection sharing when opening a new RPC channel."""
|
||||
num_channels_per_target: builtins.int
|
||||
"""Setting num_channels_per_target > 0 allows uses of multiple channels to
|
||||
communicate to the same target. This can be used to improve the aggregate
|
||||
throughput on high speed links (e.g 100G) where single connection is not
|
||||
sufficient to maximize link utilization. Note that a single RPC only goes
|
||||
on a single channel, this only helps in situations where there are multiple
|
||||
transfers to the same target overlapping in time.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
use_rpc_for_inprocess_master: builtins.bool | None = ...,
|
||||
compression_algorithm: builtins.str | None = ...,
|
||||
compression_level: builtins.int | None = ...,
|
||||
cache_rpc_response: builtins.bool | None = ...,
|
||||
disable_session_connection_sharing: builtins.bool | None = ...,
|
||||
num_channels_per_target: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["cache_rpc_response", b"cache_rpc_response", "compression_algorithm", b"compression_algorithm", "compression_level", b"compression_level", "disable_session_connection_sharing", b"disable_session_connection_sharing", "num_channels_per_target", b"num_channels_per_target", "use_rpc_for_inprocess_master", b"use_rpc_for_inprocess_master"]) -> None: ...
|
||||
|
||||
global___RPCOptions = RPCOptions
|
||||
575
stubs/tensorflow/tensorflow/tsl/protobuf/test_log_pb2.pyi
Normal file
575
stubs/tensorflow/tensorflow/tsl/protobuf/test_log_pb2.pyi
Normal file
@@ -0,0 +1,575 @@
|
||||
"""
|
||||
@generated by mypy-protobuf. Do not edit manually!
|
||||
isort:skip_file
|
||||
Protocol messages for describing the results of benchmarks and unit tests."""
|
||||
import builtins
|
||||
import collections.abc
|
||||
import google.protobuf.any_pb2
|
||||
import google.protobuf.descriptor
|
||||
import google.protobuf.internal.containers
|
||||
import google.protobuf.internal.enum_type_wrapper
|
||||
import google.protobuf.message
|
||||
import google.protobuf.wrappers_pb2
|
||||
import sys
|
||||
import typing
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
import typing as typing_extensions
|
||||
else:
|
||||
import typing_extensions
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class EntryValue(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
DOUBLE_VALUE_FIELD_NUMBER: builtins.int
|
||||
STRING_VALUE_FIELD_NUMBER: builtins.int
|
||||
double_value: builtins.float
|
||||
string_value: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
double_value: builtins.float | None = ...,
|
||||
string_value: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["double_value", b"double_value", "kind", b"kind", "string_value", b"string_value"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["double_value", b"double_value", "kind", b"kind", "string_value", b"string_value"]) -> None: ...
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["kind", b"kind"]) -> typing_extensions.Literal["double_value", "string_value"] | None: ...
|
||||
|
||||
global___EntryValue = EntryValue
|
||||
|
||||
@typing_extensions.final
|
||||
class MetricEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
MIN_VALUE_FIELD_NUMBER: builtins.int
|
||||
MAX_VALUE_FIELD_NUMBER: builtins.int
|
||||
name: builtins.str
|
||||
"""Metric name"""
|
||||
value: builtins.float
|
||||
"""Metric value"""
|
||||
@property
|
||||
def min_value(self) -> google.protobuf.wrappers_pb2.DoubleValue:
|
||||
"""The minimum acceptable value for the metric if specified"""
|
||||
@property
|
||||
def max_value(self) -> google.protobuf.wrappers_pb2.DoubleValue:
|
||||
"""The maximum acceptable value for the metric if specified"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
name: builtins.str | None = ...,
|
||||
value: builtins.float | None = ...,
|
||||
min_value: google.protobuf.wrappers_pb2.DoubleValue | None = ...,
|
||||
max_value: google.protobuf.wrappers_pb2.DoubleValue | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["max_value", b"max_value", "min_value", b"min_value"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["max_value", b"max_value", "min_value", b"min_value", "name", b"name", "value", b"value"]) -> None: ...
|
||||
|
||||
global___MetricEntry = MetricEntry
|
||||
|
||||
@typing_extensions.final
|
||||
class BenchmarkEntry(google.protobuf.message.Message):
|
||||
"""Each unit test or benchmark in a test or benchmark run provides
|
||||
some set of information. Here we provide some reasonable keys
|
||||
one would expect to see, with optional key/value pairs for things
|
||||
we haven't considered.
|
||||
|
||||
This BenchmarkEntry should be emitted by each unit test or benchmark
|
||||
reporter.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class ExtrasEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
@property
|
||||
def value(self) -> global___EntryValue: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
value: global___EntryValue | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["value", b"value"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
ITERS_FIELD_NUMBER: builtins.int
|
||||
CPU_TIME_FIELD_NUMBER: builtins.int
|
||||
WALL_TIME_FIELD_NUMBER: builtins.int
|
||||
THROUGHPUT_FIELD_NUMBER: builtins.int
|
||||
EXTRAS_FIELD_NUMBER: builtins.int
|
||||
METRICS_FIELD_NUMBER: builtins.int
|
||||
name: builtins.str
|
||||
"""The name of the specific benchmark or test
|
||||
(e.g. BM_AdjustContrast_gpu_B_W_H)
|
||||
"""
|
||||
iters: builtins.int
|
||||
"""If a benchmark, how many iterations it was run for"""
|
||||
cpu_time: builtins.float
|
||||
"""Total cpu time used for all iterations (in seconds)"""
|
||||
wall_time: builtins.float
|
||||
"""Total wall time used for all iterations (in seconds)"""
|
||||
throughput: builtins.float
|
||||
"""Throughput (in MB/s)"""
|
||||
@property
|
||||
def extras(self) -> google.protobuf.internal.containers.MessageMap[builtins.str, global___EntryValue]:
|
||||
"""Generic map from result key to value."""
|
||||
@property
|
||||
def metrics(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___MetricEntry]:
|
||||
"""Metric name, value and expected range. This can include accuracy metrics
|
||||
typically used to determine whether the accuracy test has passed
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
name: builtins.str | None = ...,
|
||||
iters: builtins.int | None = ...,
|
||||
cpu_time: builtins.float | None = ...,
|
||||
wall_time: builtins.float | None = ...,
|
||||
throughput: builtins.float | None = ...,
|
||||
extras: collections.abc.Mapping[builtins.str, global___EntryValue] | None = ...,
|
||||
metrics: collections.abc.Iterable[global___MetricEntry] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["cpu_time", b"cpu_time", "extras", b"extras", "iters", b"iters", "metrics", b"metrics", "name", b"name", "throughput", b"throughput", "wall_time", b"wall_time"]) -> None: ...
|
||||
|
||||
global___BenchmarkEntry = BenchmarkEntry
|
||||
|
||||
@typing_extensions.final
|
||||
class BenchmarkEntries(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
ENTRY_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def entry(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___BenchmarkEntry]: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
entry: collections.abc.Iterable[global___BenchmarkEntry] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["entry", b"entry"]) -> None: ...
|
||||
|
||||
global___BenchmarkEntries = BenchmarkEntries
|
||||
|
||||
@typing_extensions.final
|
||||
class BuildConfiguration(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
MODE_FIELD_NUMBER: builtins.int
|
||||
CC_FLAGS_FIELD_NUMBER: builtins.int
|
||||
OPTS_FIELD_NUMBER: builtins.int
|
||||
mode: builtins.str
|
||||
"""opt, dbg, etc"""
|
||||
@property
|
||||
def cc_flags(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
||||
"""CC compiler flags, if known"""
|
||||
@property
|
||||
def opts(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
||||
"""Bazel compilation options, if known"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
mode: builtins.str | None = ...,
|
||||
cc_flags: collections.abc.Iterable[builtins.str] | None = ...,
|
||||
opts: collections.abc.Iterable[builtins.str] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["cc_flags", b"cc_flags", "mode", b"mode", "opts", b"opts"]) -> None: ...
|
||||
|
||||
global___BuildConfiguration = BuildConfiguration
|
||||
|
||||
@typing_extensions.final
|
||||
class CommitId(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
CHANGELIST_FIELD_NUMBER: builtins.int
|
||||
HASH_FIELD_NUMBER: builtins.int
|
||||
SNAPSHOT_FIELD_NUMBER: builtins.int
|
||||
PENDING_CHANGELIST_FIELD_NUMBER: builtins.int
|
||||
changelist: builtins.int
|
||||
"""Submitted changelist."""
|
||||
hash: builtins.str
|
||||
snapshot: builtins.str
|
||||
"""Hash of intermediate change between hash/changelist and what was tested.
|
||||
Not used if the build is from a commit without modifications.
|
||||
"""
|
||||
pending_changelist: builtins.int
|
||||
"""Changelist tested if the change list is not already submitted."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
changelist: builtins.int | None = ...,
|
||||
hash: builtins.str | None = ...,
|
||||
snapshot: builtins.str | None = ...,
|
||||
pending_changelist: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["changelist", b"changelist", "hash", b"hash", "kind", b"kind"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["changelist", b"changelist", "hash", b"hash", "kind", b"kind", "pending_changelist", b"pending_changelist", "snapshot", b"snapshot"]) -> None: ...
|
||||
def WhichOneof(self, oneof_group: typing_extensions.Literal["kind", b"kind"]) -> typing_extensions.Literal["changelist", "hash"] | None: ...
|
||||
|
||||
global___CommitId = CommitId
|
||||
|
||||
@typing_extensions.final
|
||||
class CPUInfo(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class CacheSizeEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
value: builtins.int
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
value: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
NUM_CORES_FIELD_NUMBER: builtins.int
|
||||
NUM_CORES_ALLOWED_FIELD_NUMBER: builtins.int
|
||||
MHZ_PER_CPU_FIELD_NUMBER: builtins.int
|
||||
CPU_INFO_FIELD_NUMBER: builtins.int
|
||||
CPU_GOVERNOR_FIELD_NUMBER: builtins.int
|
||||
CACHE_SIZE_FIELD_NUMBER: builtins.int
|
||||
num_cores: builtins.int
|
||||
num_cores_allowed: builtins.int
|
||||
mhz_per_cpu: builtins.float
|
||||
"""How fast are these cpus?"""
|
||||
cpu_info: builtins.str
|
||||
"""Additional cpu information. For example,
|
||||
Intel Ivybridge with HyperThreading (24 cores) dL1:32KB dL2:256KB dL3:30MB
|
||||
"""
|
||||
cpu_governor: builtins.str
|
||||
"""What kind of cpu scaling is enabled on the host.
|
||||
Examples include "performance", "ondemand", "conservative", "mixed".
|
||||
"""
|
||||
@property
|
||||
def cache_size(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.int]:
|
||||
"""Cache sizes (in bytes), e.g. "L2": 262144 (for 256KB)"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
num_cores: builtins.int | None = ...,
|
||||
num_cores_allowed: builtins.int | None = ...,
|
||||
mhz_per_cpu: builtins.float | None = ...,
|
||||
cpu_info: builtins.str | None = ...,
|
||||
cpu_governor: builtins.str | None = ...,
|
||||
cache_size: collections.abc.Mapping[builtins.str, builtins.int] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["cache_size", b"cache_size", "cpu_governor", b"cpu_governor", "cpu_info", b"cpu_info", "mhz_per_cpu", b"mhz_per_cpu", "num_cores", b"num_cores", "num_cores_allowed", b"num_cores_allowed"]) -> None: ...
|
||||
|
||||
global___CPUInfo = CPUInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class MemoryInfo(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
TOTAL_FIELD_NUMBER: builtins.int
|
||||
AVAILABLE_FIELD_NUMBER: builtins.int
|
||||
total: builtins.int
|
||||
"""Total virtual memory in bytes"""
|
||||
available: builtins.int
|
||||
"""Immediately available memory in bytes"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
total: builtins.int | None = ...,
|
||||
available: builtins.int | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["available", b"available", "total", b"total"]) -> None: ...
|
||||
|
||||
global___MemoryInfo = MemoryInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class GPUInfo(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
MODEL_FIELD_NUMBER: builtins.int
|
||||
UUID_FIELD_NUMBER: builtins.int
|
||||
BUS_ID_FIELD_NUMBER: builtins.int
|
||||
model: builtins.str
|
||||
"""e.g. "Tesla K40c" """
|
||||
uuid: builtins.str
|
||||
"""Final entry in output of "nvidia-smi -L" """
|
||||
bus_id: builtins.str
|
||||
"""e.g. "0000:04:00.0" """
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
model: builtins.str | None = ...,
|
||||
uuid: builtins.str | None = ...,
|
||||
bus_id: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bus_id", b"bus_id", "model", b"model", "uuid", b"uuid"]) -> None: ...
|
||||
|
||||
global___GPUInfo = GPUInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class PlatformInfo(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
BITS_FIELD_NUMBER: builtins.int
|
||||
LINKAGE_FIELD_NUMBER: builtins.int
|
||||
MACHINE_FIELD_NUMBER: builtins.int
|
||||
RELEASE_FIELD_NUMBER: builtins.int
|
||||
SYSTEM_FIELD_NUMBER: builtins.int
|
||||
VERSION_FIELD_NUMBER: builtins.int
|
||||
bits: builtins.str
|
||||
"""e.g. '64bit'"""
|
||||
linkage: builtins.str
|
||||
"""e.g. 'ELF'"""
|
||||
machine: builtins.str
|
||||
"""e.g. 'i386'"""
|
||||
release: builtins.str
|
||||
"""e.g. '3.13.0-76-generic'"""
|
||||
system: builtins.str
|
||||
"""e.g. 'Linux'"""
|
||||
version: builtins.str
|
||||
"""e.g. '#120-Ubuntu SMP Mon Jan 18 15:59:10 UTC 2016'"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
bits: builtins.str | None = ...,
|
||||
linkage: builtins.str | None = ...,
|
||||
machine: builtins.str | None = ...,
|
||||
release: builtins.str | None = ...,
|
||||
system: builtins.str | None = ...,
|
||||
version: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["bits", b"bits", "linkage", b"linkage", "machine", b"machine", "release", b"release", "system", b"system", "version", b"version"]) -> None: ...
|
||||
|
||||
global___PlatformInfo = PlatformInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class AvailableDeviceInfo(google.protobuf.message.Message):
|
||||
"""Matches DeviceAttributes"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
TYPE_FIELD_NUMBER: builtins.int
|
||||
MEMORY_LIMIT_FIELD_NUMBER: builtins.int
|
||||
PHYSICAL_DESCRIPTION_FIELD_NUMBER: builtins.int
|
||||
name: builtins.str
|
||||
"""Device name."""
|
||||
type: builtins.str
|
||||
"""Device type, e.g. 'CPU' or 'GPU'."""
|
||||
memory_limit: builtins.int
|
||||
"""Memory capacity in bytes."""
|
||||
physical_description: builtins.str
|
||||
"""The physical description of this device."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
name: builtins.str | None = ...,
|
||||
type: builtins.str | None = ...,
|
||||
memory_limit: builtins.int | None = ...,
|
||||
physical_description: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["memory_limit", b"memory_limit", "name", b"name", "physical_description", b"physical_description", "type", b"type"]) -> None: ...
|
||||
|
||||
global___AvailableDeviceInfo = AvailableDeviceInfo
|
||||
|
||||
@typing_extensions.final
|
||||
class MachineConfiguration(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
HOSTNAME_FIELD_NUMBER: builtins.int
|
||||
SERIAL_IDENTIFIER_FIELD_NUMBER: builtins.int
|
||||
PLATFORM_INFO_FIELD_NUMBER: builtins.int
|
||||
CPU_INFO_FIELD_NUMBER: builtins.int
|
||||
DEVICE_INFO_FIELD_NUMBER: builtins.int
|
||||
AVAILABLE_DEVICE_INFO_FIELD_NUMBER: builtins.int
|
||||
MEMORY_INFO_FIELD_NUMBER: builtins.int
|
||||
hostname: builtins.str
|
||||
"""Host name of machine that ran the benchmark."""
|
||||
serial_identifier: builtins.str
|
||||
"""Unique serial number of the machine."""
|
||||
@property
|
||||
def platform_info(self) -> global___PlatformInfo:
|
||||
"""Additional platform information."""
|
||||
@property
|
||||
def cpu_info(self) -> global___CPUInfo:
|
||||
"""CPU Information."""
|
||||
@property
|
||||
def device_info(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[google.protobuf.any_pb2.Any]:
|
||||
"""Other devices that are attached and relevant (e.g. GPUInfo)."""
|
||||
@property
|
||||
def available_device_info(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___AvailableDeviceInfo]:
|
||||
"""Devices accessible to the test (e.g. as given by list_local_devices)."""
|
||||
@property
|
||||
def memory_info(self) -> global___MemoryInfo: ...
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
hostname: builtins.str | None = ...,
|
||||
serial_identifier: builtins.str | None = ...,
|
||||
platform_info: global___PlatformInfo | None = ...,
|
||||
cpu_info: global___CPUInfo | None = ...,
|
||||
device_info: collections.abc.Iterable[google.protobuf.any_pb2.Any] | None = ...,
|
||||
available_device_info: collections.abc.Iterable[global___AvailableDeviceInfo] | None = ...,
|
||||
memory_info: global___MemoryInfo | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["cpu_info", b"cpu_info", "memory_info", b"memory_info", "platform_info", b"platform_info"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["available_device_info", b"available_device_info", "cpu_info", b"cpu_info", "device_info", b"device_info", "hostname", b"hostname", "memory_info", b"memory_info", "platform_info", b"platform_info", "serial_identifier", b"serial_identifier"]) -> None: ...
|
||||
|
||||
global___MachineConfiguration = MachineConfiguration
|
||||
|
||||
@typing_extensions.final
|
||||
class RunConfiguration(google.protobuf.message.Message):
|
||||
"""Run-specific items such as arguments to the test / benchmark."""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
@typing_extensions.final
|
||||
class EnvVarsEntry(google.protobuf.message.Message):
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
KEY_FIELD_NUMBER: builtins.int
|
||||
VALUE_FIELD_NUMBER: builtins.int
|
||||
key: builtins.str
|
||||
value: builtins.str
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
key: builtins.str | None = ...,
|
||||
value: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
|
||||
|
||||
ARGUMENT_FIELD_NUMBER: builtins.int
|
||||
ENV_VARS_FIELD_NUMBER: builtins.int
|
||||
@property
|
||||
def argument(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]: ...
|
||||
@property
|
||||
def env_vars(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]:
|
||||
"""Environment variables used to run the test/benchmark."""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
argument: collections.abc.Iterable[builtins.str] | None = ...,
|
||||
env_vars: collections.abc.Mapping[builtins.str, builtins.str] | None = ...,
|
||||
) -> None: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["argument", b"argument", "env_vars", b"env_vars"]) -> None: ...
|
||||
|
||||
global___RunConfiguration = RunConfiguration
|
||||
|
||||
@typing_extensions.final
|
||||
class TestResults(google.protobuf.message.Message):
|
||||
"""The output of one benchmark / test run. Each run contains a list of
|
||||
tests or benchmarks, stored as BenchmarkEntry messages.
|
||||
|
||||
This message should be emitted by the reporter (which runs the
|
||||
test / BM in a subprocess and then reads the emitted BenchmarkEntry messages;
|
||||
usually from a serialized json file, finally collecting them along
|
||||
with additional information about the test run.
|
||||
"""
|
||||
|
||||
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
||||
|
||||
class _BenchmarkType:
|
||||
ValueType = typing.NewType("ValueType", builtins.int)
|
||||
V: typing_extensions.TypeAlias = ValueType
|
||||
|
||||
class _BenchmarkTypeEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[TestResults._BenchmarkType.ValueType], builtins.type):
|
||||
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
||||
UNKNOWN: TestResults._BenchmarkType.ValueType # 0
|
||||
"""Fallback for protos written before Type was introduced."""
|
||||
CPP_MICROBENCHMARK: TestResults._BenchmarkType.ValueType # 1
|
||||
PYTHON_BENCHMARK: TestResults._BenchmarkType.ValueType # 2
|
||||
ANDROID_BENCHMARK: TestResults._BenchmarkType.ValueType # 3
|
||||
EDGE_BENCHMARK: TestResults._BenchmarkType.ValueType # 4
|
||||
IOS_BENCHMARK: TestResults._BenchmarkType.ValueType # 5
|
||||
|
||||
class BenchmarkType(_BenchmarkType, metaclass=_BenchmarkTypeEnumTypeWrapper):
|
||||
"""The type of benchmark."""
|
||||
|
||||
UNKNOWN: TestResults.BenchmarkType.ValueType # 0
|
||||
"""Fallback for protos written before Type was introduced."""
|
||||
CPP_MICROBENCHMARK: TestResults.BenchmarkType.ValueType # 1
|
||||
PYTHON_BENCHMARK: TestResults.BenchmarkType.ValueType # 2
|
||||
ANDROID_BENCHMARK: TestResults.BenchmarkType.ValueType # 3
|
||||
EDGE_BENCHMARK: TestResults.BenchmarkType.ValueType # 4
|
||||
IOS_BENCHMARK: TestResults.BenchmarkType.ValueType # 5
|
||||
|
||||
TARGET_FIELD_NUMBER: builtins.int
|
||||
ENTRIES_FIELD_NUMBER: builtins.int
|
||||
BUILD_CONFIGURATION_FIELD_NUMBER: builtins.int
|
||||
COMMIT_ID_FIELD_NUMBER: builtins.int
|
||||
START_TIME_FIELD_NUMBER: builtins.int
|
||||
RUN_TIME_FIELD_NUMBER: builtins.int
|
||||
MACHINE_CONFIGURATION_FIELD_NUMBER: builtins.int
|
||||
RUN_CONFIGURATION_FIELD_NUMBER: builtins.int
|
||||
NAME_FIELD_NUMBER: builtins.int
|
||||
BENCHMARK_TYPE_FIELD_NUMBER: builtins.int
|
||||
RUN_MODE_FIELD_NUMBER: builtins.int
|
||||
TF_VERSION_FIELD_NUMBER: builtins.int
|
||||
target: builtins.str
|
||||
"""The target of the run, e.g.:
|
||||
//tensorflow/core:kernels_adjust_contrast_op_benchmark_test
|
||||
"""
|
||||
@property
|
||||
def entries(self) -> global___BenchmarkEntries:
|
||||
"""The list of tests or benchmarks in this run."""
|
||||
@property
|
||||
def build_configuration(self) -> global___BuildConfiguration:
|
||||
"""The configuration of the build (compiled opt? with cuda? any copts?)"""
|
||||
@property
|
||||
def commit_id(self) -> global___CommitId:
|
||||
"""The commit id (git hash or changelist)"""
|
||||
start_time: builtins.int
|
||||
"""The time the run started (in seconds of UTC time since Unix epoch)"""
|
||||
run_time: builtins.float
|
||||
"""The amount of time the total run took (wall time in seconds)"""
|
||||
@property
|
||||
def machine_configuration(self) -> global___MachineConfiguration:
|
||||
"""Machine-specific parameters (Platform and CPU info)"""
|
||||
@property
|
||||
def run_configuration(self) -> global___RunConfiguration:
|
||||
"""Run-specific parameters (arguments, etc)"""
|
||||
name: builtins.str
|
||||
"""Benchmark target identifier."""
|
||||
benchmark_type: global___TestResults.BenchmarkType.ValueType
|
||||
run_mode: builtins.str
|
||||
"""Used for differentiating between continuous and debug builds.
|
||||
Must be one of:
|
||||
* cbuild: results from continuous build.
|
||||
* presubmit: results from oneshot requests.
|
||||
* culprit: results from culprit finder rerun.
|
||||
"""
|
||||
tf_version: builtins.str
|
||||
"""TensorFlow version this benchmark runs against.
|
||||
This can be either set to full version or just the major version.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
target: builtins.str | None = ...,
|
||||
entries: global___BenchmarkEntries | None = ...,
|
||||
build_configuration: global___BuildConfiguration | None = ...,
|
||||
commit_id: global___CommitId | None = ...,
|
||||
start_time: builtins.int | None = ...,
|
||||
run_time: builtins.float | None = ...,
|
||||
machine_configuration: global___MachineConfiguration | None = ...,
|
||||
run_configuration: global___RunConfiguration | None = ...,
|
||||
name: builtins.str | None = ...,
|
||||
benchmark_type: global___TestResults.BenchmarkType.ValueType | None = ...,
|
||||
run_mode: builtins.str | None = ...,
|
||||
tf_version: builtins.str | None = ...,
|
||||
) -> None: ...
|
||||
def HasField(self, field_name: typing_extensions.Literal["build_configuration", b"build_configuration", "commit_id", b"commit_id", "entries", b"entries", "machine_configuration", b"machine_configuration", "run_configuration", b"run_configuration"]) -> builtins.bool: ...
|
||||
def ClearField(self, field_name: typing_extensions.Literal["benchmark_type", b"benchmark_type", "build_configuration", b"build_configuration", "commit_id", b"commit_id", "entries", b"entries", "machine_configuration", b"machine_configuration", "name", b"name", "run_configuration", b"run_configuration", "run_mode", b"run_mode", "run_time", b"run_time", "start_time", b"start_time", "target", b"target", "tf_version", b"tf_version"]) -> None: ...
|
||||
|
||||
global___TestResults = TestResults
|
||||
Reference in New Issue
Block a user