# Stubs for random # Ron Murawski # Updated by Jukka Lehtosalo # based on http://docs.python.org/3.2/library/random.html # ----- random classes ----- import _random import sys from typing import AbstractSet, Any, Callable, Iterable, List, MutableSequence, Optional, Sequence, Tuple, TypeVar, Union _T = TypeVar("_T") class Random(_random.Random): def __init__(self, x: Any = ...) -> None: ... def seed(self, a: Any = ..., version: int = ...) -> None: ... def getstate(self) -> Tuple[Any, ...]: ... def setstate(self, state: Tuple[Any, ...]) -> None: ... def getrandbits(self, __k: int) -> int: ... def randrange(self, start: int, stop: Union[int, None] = ..., step: int = ...) -> int: ... def randint(self, a: int, b: int) -> int: ... if sys.version_info >= (3, 9): def randbytes(self, n: int) -> bytes: ... def choice(self, seq: Sequence[_T]) -> _T: ... if sys.version_info >= (3, 6): def choices( self, population: Sequence[_T], weights: Optional[Sequence[float]] = ..., *, cum_weights: Optional[Sequence[float]] = ..., k: int = ..., ) -> List[_T]: ... def shuffle(self, x: MutableSequence[Any], random: Union[Callable[[], float], None] = ...) -> None: ... if sys.version_info >= (3, 9): def sample( self, population: Union[Sequence[_T], AbstractSet[_T]], k: int, *, counts: Optional[Iterable[_T]] = ... ) -> List[_T]: ... else: def sample(self, population: Union[Sequence[_T], AbstractSet[_T]], k: int) -> List[_T]: ... def random(self) -> float: ... def uniform(self, a: float, b: float) -> float: ... def triangular(self, low: float = ..., high: float = ..., mode: Optional[float] = ...) -> float: ... def betavariate(self, alpha: float, beta: float) -> float: ... def expovariate(self, lambd: float) -> float: ... def gammavariate(self, alpha: float, beta: float) -> float: ... def gauss(self, mu: float, sigma: float) -> float: ... def lognormvariate(self, mu: float, sigma: float) -> float: ... def normalvariate(self, mu: float, sigma: float) -> float: ... def vonmisesvariate(self, mu: float, kappa: float) -> float: ... def paretovariate(self, alpha: float) -> float: ... def weibullvariate(self, alpha: float, beta: float) -> float: ... # SystemRandom is not implemented for all OS's; good on Windows & Linux class SystemRandom(Random): ... # ----- random function stubs ----- def seed(a: Any = ..., version: int = ...) -> None: ... def getstate() -> object: ... def setstate(state: object) -> None: ... def getrandbits(__k: int) -> int: ... def randrange(start: int, stop: Union[None, int] = ..., step: int = ...) -> int: ... def randint(a: int, b: int) -> int: ... if sys.version_info >= (3, 9): def randbytes(n: int) -> bytes: ... def choice(seq: Sequence[_T]) -> _T: ... if sys.version_info >= (3, 6): def choices( population: Sequence[_T], weights: Optional[Sequence[float]] = ..., *, cum_weights: Optional[Sequence[float]] = ..., k: int = ..., ) -> List[_T]: ... def shuffle(x: MutableSequence[Any], random: Union[Callable[[], float], None] = ...) -> None: ... if sys.version_info >= (3, 9): def sample(population: Union[Sequence[_T], AbstractSet[_T]], k: int, *, counts: Optional[Iterable[_T]] = ...) -> List[_T]: ... else: def sample(population: Union[Sequence[_T], AbstractSet[_T]], k: int) -> List[_T]: ... def random() -> float: ... def uniform(a: float, b: float) -> float: ... def triangular(low: float = ..., high: float = ..., mode: Optional[float] = ...) -> float: ... def betavariate(alpha: float, beta: float) -> float: ... def expovariate(lambd: float) -> float: ... def gammavariate(alpha: float, beta: float) -> float: ... def gauss(mu: float, sigma: float) -> float: ... def lognormvariate(mu: float, sigma: float) -> float: ... def normalvariate(mu: float, sigma: float) -> float: ... def vonmisesvariate(mu: float, kappa: float) -> float: ... def paretovariate(alpha: float) -> float: ... def weibullvariate(alpha: float, beta: float) -> float: ...