Files
typeshed/stdlib/2/typing.pyi
2019-11-25 19:46:57 -08:00

495 lines
17 KiB
Python

# Stubs for typing (Python 2.7)
from abc import abstractmethod, ABCMeta
from types import CodeType, FrameType, TracebackType
import collections # Needed by aliases like DefaultDict, see mypy issue 2986
# Definitions of special type checking related constructs. Their definitions
# are not used, so their value does not matter.
overload = object()
Any = object()
TypeVar = object()
_promote = object()
class _SpecialForm(object):
def __getitem__(self, typeargs: Any) -> object: ...
Tuple: _SpecialForm = ...
Generic: _SpecialForm = ...
Protocol: _SpecialForm = ...
Callable: _SpecialForm = ...
Type: _SpecialForm = ...
ClassVar: _SpecialForm = ...
Final: _SpecialForm = ...
_F = TypeVar('_F', bound=Callable[..., Any])
def final(f: _F) -> _F: ...
Literal: _SpecialForm = ...
# TypedDict is a (non-subscriptable) special form.
TypedDict: object = ...
class GenericMeta(type): ...
# Return type that indicates a function does not return.
# This type is equivalent to the None type, but the no-op Union is necessary to
# distinguish the None type from the None value.
NoReturn = Union[None]
# These type variables are used by the container types.
_T = TypeVar('_T')
_S = TypeVar('_S')
_KT = TypeVar('_KT') # Key type.
_VT = TypeVar('_VT') # Value type.
_T_co = TypeVar('_T_co', covariant=True) # Any type covariant containers.
_V_co = TypeVar('_V_co', covariant=True) # Any type covariant containers.
_KT_co = TypeVar('_KT_co', covariant=True) # Key type covariant containers.
_VT_co = TypeVar('_VT_co', covariant=True) # Value type covariant containers.
_T_contra = TypeVar('_T_contra', contravariant=True) # Ditto contravariant.
_TC = TypeVar('_TC', bound=Type[object])
_C = TypeVar("_C", bound=Callable[..., Any])
no_type_check = object()
def no_type_check_decorator(decorator: _C) -> _C: ...
# Type aliases and type constructors
class TypeAlias:
# Class for defining generic aliases for library types.
def __init__(self, target_type: type) -> None: ...
def __getitem__(self, typeargs: Any) -> Any: ...
Union = TypeAlias(object)
Optional = TypeAlias(object)
List = TypeAlias(object)
Dict = TypeAlias(object)
DefaultDict = TypeAlias(object)
Set = TypeAlias(object)
FrozenSet = TypeAlias(object)
Counter = TypeAlias(object)
Deque = TypeAlias(object)
# Predefined type variables.
AnyStr = TypeVar('AnyStr', str, unicode)
# Abstract base classes.
def runtime_checkable(cls: _TC) -> _TC: ...
@runtime_checkable
class SupportsInt(Protocol, metaclass=ABCMeta):
@abstractmethod
def __int__(self) -> int: ...
@runtime_checkable
class SupportsFloat(Protocol, metaclass=ABCMeta):
@abstractmethod
def __float__(self) -> float: ...
@runtime_checkable
class SupportsComplex(Protocol, metaclass=ABCMeta):
@abstractmethod
def __complex__(self) -> complex: ...
@runtime_checkable
class SupportsAbs(Protocol[_T_co]):
@abstractmethod
def __abs__(self) -> _T_co: ...
@runtime_checkable
class Reversible(Protocol[_T_co]):
@abstractmethod
def __reversed__(self) -> Iterator[_T_co]: ...
@runtime_checkable
class Sized(Protocol, metaclass=ABCMeta):
@abstractmethod
def __len__(self) -> int: ...
@runtime_checkable
class Hashable(Protocol, metaclass=ABCMeta):
# TODO: This is special, in that a subclass of a hashable class may not be hashable
# (for example, list vs. object). It's not obvious how to represent this. This class
# is currently mostly useless for static checking.
@abstractmethod
def __hash__(self) -> int: ...
@runtime_checkable
class Iterable(Protocol[_T_co]):
@abstractmethod
def __iter__(self) -> Iterator[_T_co]: ...
@runtime_checkable
class Iterator(Iterable[_T_co], Protocol[_T_co]):
@abstractmethod
def next(self) -> _T_co: ...
def __iter__(self) -> Iterator[_T_co]: ...
class Generator(Iterator[_T_co], Generic[_T_co, _T_contra, _V_co]):
@abstractmethod
def next(self) -> _T_co: ...
@abstractmethod
def send(self, value: _T_contra) -> _T_co: ...
@abstractmethod
def throw(self, typ: Type[BaseException], val: Optional[BaseException] = ...,
tb: TracebackType = ...) -> _T_co: ...
@abstractmethod
def close(self) -> None: ...
@property
def gi_code(self) -> CodeType: ...
@property
def gi_frame(self) -> FrameType: ...
@property
def gi_running(self) -> bool: ...
@runtime_checkable
class Container(Protocol[_T_co]):
@abstractmethod
def __contains__(self, x: object) -> bool: ...
class Sequence(Iterable[_T_co], Container[_T_co], Reversible[_T_co], Generic[_T_co]):
@overload
@abstractmethod
def __getitem__(self, i: int) -> _T_co: ...
@overload
@abstractmethod
def __getitem__(self, s: slice) -> Sequence[_T_co]: ...
# Mixin methods
def index(self, x: Any) -> int: ...
def count(self, x: Any) -> int: ...
def __contains__(self, x: object) -> bool: ...
def __iter__(self) -> Iterator[_T_co]: ...
def __reversed__(self) -> Iterator[_T_co]: ...
# Implement Sized (but don't have it as a base class).
@abstractmethod
def __len__(self) -> int: ...
class MutableSequence(Sequence[_T], Generic[_T]):
@abstractmethod
def insert(self, index: int, object: _T) -> None: ...
@overload
@abstractmethod
def __getitem__(self, i: int) -> _T: ...
@overload
@abstractmethod
def __getitem__(self, s: slice) -> MutableSequence[_T]: ...
@overload
@abstractmethod
def __setitem__(self, i: int, o: _T) -> None: ...
@overload
@abstractmethod
def __setitem__(self, s: slice, o: Iterable[_T]) -> None: ...
@overload
@abstractmethod
def __delitem__(self, i: int) -> None: ...
@overload
@abstractmethod
def __delitem__(self, i: slice) -> None: ...
# Mixin methods
def append(self, object: _T) -> None: ...
def extend(self, iterable: Iterable[_T]) -> None: ...
def reverse(self) -> None: ...
def pop(self, index: int = ...) -> _T: ...
def remove(self, object: _T) -> None: ...
def __iadd__(self, x: Iterable[_T]) -> MutableSequence[_T]: ...
class AbstractSet(Iterable[_T_co], Container[_T_co], Generic[_T_co]):
@abstractmethod
def __contains__(self, x: object) -> bool: ...
# Mixin methods
def __le__(self, s: AbstractSet[Any]) -> bool: ...
def __lt__(self, s: AbstractSet[Any]) -> bool: ...
def __gt__(self, s: AbstractSet[Any]) -> bool: ...
def __ge__(self, s: AbstractSet[Any]) -> bool: ...
def __and__(self, s: AbstractSet[Any]) -> AbstractSet[_T_co]: ...
def __or__(self, s: AbstractSet[_T]) -> AbstractSet[Union[_T_co, _T]]: ...
def __sub__(self, s: AbstractSet[Any]) -> AbstractSet[_T_co]: ...
def __xor__(self, s: AbstractSet[_T]) -> AbstractSet[Union[_T_co, _T]]: ...
# TODO: argument can be any container?
def isdisjoint(self, s: AbstractSet[Any]) -> bool: ...
# Implement Sized (but don't have it as a base class).
@abstractmethod
def __len__(self) -> int: ...
class MutableSet(AbstractSet[_T], Generic[_T]):
@abstractmethod
def add(self, x: _T) -> None: ...
@abstractmethod
def discard(self, x: _T) -> None: ...
# Mixin methods
def clear(self) -> None: ...
def pop(self) -> _T: ...
def remove(self, element: _T) -> None: ...
def __ior__(self, s: AbstractSet[_S]) -> MutableSet[Union[_T, _S]]: ...
def __iand__(self, s: AbstractSet[Any]) -> MutableSet[_T]: ...
def __ixor__(self, s: AbstractSet[_S]) -> MutableSet[Union[_T, _S]]: ...
def __isub__(self, s: AbstractSet[Any]) -> MutableSet[_T]: ...
class MappingView(object):
def __len__(self) -> int: ...
class ItemsView(MappingView, AbstractSet[Tuple[_KT_co, _VT_co]], Generic[_KT_co, _VT_co]):
def __contains__(self, o: object) -> bool: ...
def __iter__(self) -> Iterator[Tuple[_KT_co, _VT_co]]: ...
class KeysView(MappingView, AbstractSet[_KT_co], Generic[_KT_co]):
def __contains__(self, o: object) -> bool: ...
def __iter__(self) -> Iterator[_KT_co]: ...
class ValuesView(MappingView, Iterable[_VT_co], Generic[_VT_co]):
def __contains__(self, o: object) -> bool: ...
def __iter__(self) -> Iterator[_VT_co]: ...
@runtime_checkable
class ContextManager(Protocol[_T_co]):
def __enter__(self) -> _T_co: ...
def __exit__(self, __exc_type: Optional[Type[BaseException]],
__exc_value: Optional[BaseException],
__traceback: Optional[TracebackType]) -> Optional[bool]: ...
class Mapping(Iterable[_KT], Container[_KT], Generic[_KT, _VT_co]):
# TODO: We wish the key type could also be covariant, but that doesn't work,
# see discussion in https: //github.com/python/typing/pull/273.
@abstractmethod
def __getitem__(self, k: _KT) -> _VT_co:
...
# Mixin methods
@overload
def get(self, k: _KT) -> Optional[_VT_co]: ...
@overload
def get(self, k: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]: ...
def keys(self) -> list[_KT]: ...
def values(self) -> list[_VT_co]: ...
def items(self) -> list[Tuple[_KT, _VT_co]]: ...
def iterkeys(self) -> Iterator[_KT]: ...
def itervalues(self) -> Iterator[_VT_co]: ...
def iteritems(self) -> Iterator[Tuple[_KT, _VT_co]]: ...
def __contains__(self, o: object) -> bool: ...
# Implement Sized (but don't have it as a base class).
@abstractmethod
def __len__(self) -> int: ...
class MutableMapping(Mapping[_KT, _VT], Generic[_KT, _VT]):
@abstractmethod
def __setitem__(self, k: _KT, v: _VT) -> None: ...
@abstractmethod
def __delitem__(self, v: _KT) -> None: ...
def clear(self) -> None: ...
@overload
def pop(self, k: _KT) -> _VT: ...
@overload
def pop(self, k: _KT, default: Union[_VT, _T] = ...) -> Union[_VT, _T]: ...
def popitem(self) -> Tuple[_KT, _VT]: ...
def setdefault(self, k: _KT, default: _VT = ...) -> _VT: ...
@overload
def update(self, __m: Mapping[_KT, _VT], **kwargs: _VT) -> None: ...
@overload
def update(self, __m: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) -> None: ...
@overload
def update(self, **kwargs: _VT) -> None: ...
Text = unicode
TYPE_CHECKING = True
class IO(Iterator[AnyStr], Generic[AnyStr]):
# TODO detach
# TODO use abstract properties
@property
def mode(self) -> str: ...
@property
def name(self) -> str: ...
@abstractmethod
def close(self) -> None: ...
@property
def closed(self) -> bool: ...
@abstractmethod
def fileno(self) -> int: ...
@abstractmethod
def flush(self) -> None: ...
@abstractmethod
def isatty(self) -> bool: ...
# TODO what if n is None?
@abstractmethod
def read(self, n: int = ...) -> AnyStr: ...
@abstractmethod
def readable(self) -> bool: ...
@abstractmethod
def readline(self, limit: int = ...) -> AnyStr: ...
@abstractmethod
def readlines(self, hint: int = ...) -> list[AnyStr]: ...
@abstractmethod
def seek(self, offset: int, whence: int = ...) -> int: ...
@abstractmethod
def seekable(self) -> bool: ...
@abstractmethod
def tell(self) -> int: ...
@abstractmethod
def truncate(self, size: Optional[int] = ...) -> int: ...
@abstractmethod
def writable(self) -> bool: ...
# TODO buffer objects
@abstractmethod
def write(self, s: AnyStr) -> int: ...
@abstractmethod
def writelines(self, lines: Iterable[AnyStr]) -> None: ...
@abstractmethod
def next(self) -> AnyStr: ...
@abstractmethod
def __iter__(self) -> Iterator[AnyStr]: ...
@abstractmethod
def __enter__(self) -> IO[AnyStr]: ...
@abstractmethod
def __exit__(self, t: Optional[Type[BaseException]], value: Optional[BaseException],
traceback: Optional[TracebackType]) -> Optional[bool]: ...
class BinaryIO(IO[str]):
# TODO readinto
# TODO read1?
# TODO peek?
@abstractmethod
def __enter__(self) -> BinaryIO: ...
class TextIO(IO[unicode]):
# TODO use abstractproperty
@property
def buffer(self) -> BinaryIO: ...
@property
def encoding(self) -> str: ...
@property
def errors(self) -> Optional[str]: ...
@property
def line_buffering(self) -> bool: ...
@property
def newlines(self) -> Any: ... # None, str or tuple
@abstractmethod
def __enter__(self) -> TextIO: ...
class ByteString(Sequence[int], metaclass=ABCMeta): ...
class Match(Generic[AnyStr]):
pos: int
endpos: int
lastindex: Optional[int]
string: AnyStr
# The regular expression object whose match() or search() method produced
# this match instance. This should not be Pattern[AnyStr] because the type
# of the pattern is independent of the type of the matched string in
# Python 2. Strictly speaking Match should be generic over AnyStr twice:
# once for the type of the pattern and once for the type of the matched
# string.
re: Pattern[Any]
# Can be None if there are no groups or if the last group was unnamed;
# otherwise matches the type of the pattern.
lastgroup: Optional[Any]
def expand(self, template: Union[str, Text]) -> Any: ...
@overload
def group(self, group1: int = ...) -> AnyStr: ...
@overload
def group(self, group1: str) -> AnyStr: ...
@overload
def group(self, group1: int, group2: int,
*groups: int) -> Tuple[AnyStr, ...]: ...
@overload
def group(self, group1: str, group2: str,
*groups: str) -> Tuple[AnyStr, ...]: ...
def groups(self, default: AnyStr = ...) -> Tuple[AnyStr, ...]: ...
def groupdict(self, default: AnyStr = ...) -> Dict[str, AnyStr]: ...
def start(self, group: Union[int, str] = ...) -> int: ...
def end(self, group: Union[int, str] = ...) -> int: ...
def span(self, group: Union[int, str] = ...) -> Tuple[int, int]: ...
@property
def regs(self) -> Tuple[Tuple[int, int], ...]: ... # undocumented
# We need a second TypeVar with the same definition as AnyStr, because
# Pattern is generic over AnyStr (determining the type of its .pattern
# attribute), but at the same time its methods take either bytes or
# Text and return the same type, regardless of the type of the pattern.
_AnyStr2 = TypeVar('_AnyStr2', bytes, Text)
class Pattern(Generic[AnyStr]):
flags: int
groupindex: Dict[AnyStr, int]
groups: int
pattern: AnyStr
def search(self, string: _AnyStr2, pos: int = ...,
endpos: int = ...) -> Optional[Match[_AnyStr2]]: ...
def match(self, string: _AnyStr2, pos: int = ...,
endpos: int = ...) -> Optional[Match[_AnyStr2]]: ...
def split(self, string: _AnyStr2, maxsplit: int = ...) -> List[_AnyStr2]: ...
# Returns either a list of _AnyStr2 or a list of tuples, depending on
# whether there are groups in the pattern.
def findall(self, string: Union[bytes, Text], pos: int = ...,
endpos: int = ...) -> List[Any]: ...
def finditer(self, string: _AnyStr2, pos: int = ...,
endpos: int = ...) -> Iterator[Match[_AnyStr2]]: ...
@overload
def sub(self, repl: _AnyStr2, string: _AnyStr2,
count: int = ...) -> _AnyStr2: ...
@overload
def sub(self, repl: Callable[[Match[_AnyStr2]], _AnyStr2], string: _AnyStr2,
count: int = ...) -> _AnyStr2: ...
@overload
def subn(self, repl: _AnyStr2, string: _AnyStr2,
count: int = ...) -> Tuple[_AnyStr2, int]: ...
@overload
def subn(self, repl: Callable[[Match[_AnyStr2]], _AnyStr2], string: _AnyStr2,
count: int = ...) -> Tuple[_AnyStr2, int]: ...
# Functions
def get_type_hints(
obj: Callable[..., Any], globalns: Optional[Dict[Text, Any]] = ..., localns: Optional[Dict[Text, Any]] = ...,
) -> None: ...
@overload
def cast(tp: Type[_T], obj: Any) -> _T: ...
@overload
def cast(tp: str, obj: Any) -> Any: ...
# Type constructors
# NamedTuple is special-cased in the type checker
class NamedTuple(Tuple[Any, ...]):
_fields: Tuple[str, ...]
def __init__(self, typename: Text, fields: Iterable[Tuple[Text, Any]] = ...,
**kwargs: Any) -> None: ...
@classmethod
def _make(cls: Type[_T], iterable: Iterable[Any]) -> _T: ...
def _asdict(self) -> Dict[str, Any]: ...
def _replace(self: _T, **kwargs: Any) -> _T: ...
# Internal mypy fallback type for all typed dicts (does not exist at runtime)
class _TypedDict(Mapping[str, object], metaclass=ABCMeta):
def copy(self: _T) -> _T: ...
# Using NoReturn so that only calls using mypy plugin hook that specialize the signature
# can go through.
def setdefault(self, k: NoReturn, default: object) -> object: ...
# Mypy plugin hook for 'pop' expects that 'default' has a type variable type.
def pop(self, k: NoReturn, default: _T = ...) -> object: ...
def update(self: _T, __m: _T) -> None: ...
def has_key(self, k: str) -> bool: ...
def viewitems(self) -> ItemsView[str, object]: ...
def viewkeys(self) -> KeysView[str]: ...
def viewvalues(self) -> ValuesView[object]: ...
def __delitem__(self, k: NoReturn) -> None: ...
def NewType(name: str, tp: Type[_T]) -> Type[_T]: ...
# This itself is only available during type checking
def type_check_only(func_or_cls: _C) -> _C: ...