Files
typeshed/stdlib/statistics.pyi

162 lines
5.5 KiB
Python

import sys
from _typeshed import SupportsRichComparisonT
from collections.abc import Callable, Hashable, Iterable, Sequence
from decimal import Decimal
from fractions import Fraction
from typing import Any, Literal, NamedTuple, SupportsFloat, TypeVar
from typing_extensions import Self, TypeAlias
__all__ = [
"StatisticsError",
"fmean",
"geometric_mean",
"mean",
"harmonic_mean",
"pstdev",
"pvariance",
"stdev",
"variance",
"median",
"median_low",
"median_high",
"median_grouped",
"mode",
"multimode",
"NormalDist",
"quantiles",
]
if sys.version_info >= (3, 10):
__all__ += ["covariance", "correlation", "linear_regression"]
if sys.version_info >= (3, 13):
__all__ += ["kde", "kde_random"]
# Most functions in this module accept homogeneous collections of one of these types
_Number: TypeAlias = float | Decimal | Fraction
_NumberT = TypeVar("_NumberT", float, Decimal, Fraction)
# Used in mode, multimode
_HashableT = TypeVar("_HashableT", bound=Hashable)
class StatisticsError(ValueError): ...
if sys.version_info >= (3, 11):
def fmean(data: Iterable[SupportsFloat], weights: Iterable[SupportsFloat] | None = None) -> float: ...
else:
def fmean(data: Iterable[SupportsFloat]) -> float: ...
def geometric_mean(data: Iterable[SupportsFloat]) -> float: ...
def mean(data: Iterable[_NumberT]) -> _NumberT: ...
if sys.version_info >= (3, 10):
def harmonic_mean(data: Iterable[_NumberT], weights: Iterable[_Number] | None = None) -> _NumberT: ...
else:
def harmonic_mean(data: Iterable[_NumberT]) -> _NumberT: ...
def median(data: Iterable[_NumberT]) -> _NumberT: ...
def median_low(data: Iterable[SupportsRichComparisonT]) -> SupportsRichComparisonT: ...
def median_high(data: Iterable[SupportsRichComparisonT]) -> SupportsRichComparisonT: ...
if sys.version_info >= (3, 11):
def median_grouped(data: Iterable[SupportsFloat], interval: SupportsFloat = 1.0) -> float: ...
else:
def median_grouped(data: Iterable[_NumberT], interval: _NumberT | float = 1) -> _NumberT | float: ...
def mode(data: Iterable[_HashableT]) -> _HashableT: ...
def multimode(data: Iterable[_HashableT]) -> list[_HashableT]: ...
def pstdev(data: Iterable[_NumberT], mu: _NumberT | None = None) -> _NumberT: ...
def pvariance(data: Iterable[_NumberT], mu: _NumberT | None = None) -> _NumberT: ...
def quantiles(
data: Iterable[_NumberT], *, n: int = 4, method: Literal["inclusive", "exclusive"] = "exclusive"
) -> list[_NumberT]: ...
def stdev(data: Iterable[_NumberT], xbar: _NumberT | None = None) -> _NumberT: ...
def variance(data: Iterable[_NumberT], xbar: _NumberT | None = None) -> _NumberT: ...
class NormalDist:
def __init__(self, mu: float = 0.0, sigma: float = 1.0) -> None: ...
@property
def mean(self) -> float: ...
@property
def median(self) -> float: ...
@property
def mode(self) -> float: ...
@property
def stdev(self) -> float: ...
@property
def variance(self) -> float: ...
@classmethod
def from_samples(cls, data: Iterable[SupportsFloat]) -> Self: ...
def samples(self, n: int, *, seed: Any | None = None) -> list[float]: ...
def pdf(self, x: float) -> float: ...
def cdf(self, x: float) -> float: ...
def inv_cdf(self, p: float) -> float: ...
def overlap(self, other: NormalDist) -> float: ...
def quantiles(self, n: int = 4) -> list[float]: ...
if sys.version_info >= (3, 9):
def zscore(self, x: float) -> float: ...
def __eq__(self, x2: object) -> bool: ...
def __add__(self, x2: float | NormalDist) -> NormalDist: ...
def __sub__(self, x2: float | NormalDist) -> NormalDist: ...
def __mul__(self, x2: float) -> NormalDist: ...
def __truediv__(self, x2: float) -> NormalDist: ...
def __pos__(self) -> NormalDist: ...
def __neg__(self) -> NormalDist: ...
__radd__ = __add__
def __rsub__(self, x2: float | NormalDist) -> NormalDist: ...
__rmul__ = __mul__
def __hash__(self) -> int: ...
if sys.version_info >= (3, 12):
def correlation(
x: Sequence[_Number], y: Sequence[_Number], /, *, method: Literal["linear", "ranked"] = "linear"
) -> float: ...
elif sys.version_info >= (3, 10):
def correlation(x: Sequence[_Number], y: Sequence[_Number], /) -> float: ...
if sys.version_info >= (3, 10):
def covariance(x: Sequence[_Number], y: Sequence[_Number], /) -> float: ...
class LinearRegression(NamedTuple):
slope: float
intercept: float
if sys.version_info >= (3, 11):
def linear_regression(
regressor: Sequence[_Number], dependent_variable: Sequence[_Number], /, *, proportional: bool = False
) -> LinearRegression: ...
elif sys.version_info >= (3, 10):
def linear_regression(regressor: Sequence[_Number], dependent_variable: Sequence[_Number], /) -> LinearRegression: ...
if sys.version_info >= (3, 13):
_Kernel: TypeAlias = Literal[
"normal",
"gauss",
"logistic",
"sigmoid",
"rectangular",
"uniform",
"triangular",
"parabolic",
"epanechnikov",
"quartic",
"biweight",
"triweight",
"cosine",
]
def kde(
data: Sequence[float], h: float, kernel: _Kernel = "normal", *, cumulative: bool = False
) -> Callable[[float], float]: ...
def kde_random(
data: Sequence[float],
h: float,
kernel: _Kernel = "normal",
*,
seed: int | float | str | bytes | bytearray | None = None, # noqa: Y041
) -> Callable[[], float]: ...