Files
typeshed/stdlib/statistics.pyi
Ivan Levkivskyi 16ae4c6120 Re-organize directory structure (#4971)
See discussion in #2491

Co-authored-by: Ivan Levkivskyi <ilevkivskyi@dropbox.com>
2021-01-27 12:00:39 +00:00

73 lines
3.1 KiB
Python

import sys
from _typeshed import SupportsLessThanT
from decimal import Decimal
from fractions import Fraction
from typing import Any, Hashable, Iterable, List, Optional, SupportsFloat, Type, TypeVar, Union
_T = TypeVar("_T")
# Most functions in this module accept homogeneous collections of one of these types
_NumberT = TypeVar("_NumberT", float, Decimal, Fraction)
# Used in mode, multimode
_HashableT = TypeVar("_HashableT", bound=Hashable)
class StatisticsError(ValueError): ...
if sys.version_info >= (3, 8):
def fmean(data: Iterable[SupportsFloat]) -> float: ...
def geometric_mean(data: Iterable[SupportsFloat]) -> float: ...
def mean(data: Iterable[_NumberT]) -> _NumberT: ...
def harmonic_mean(data: Iterable[_NumberT]) -> _NumberT: ...
def median(data: Iterable[_NumberT]) -> _NumberT: ...
def median_low(data: Iterable[SupportsLessThanT]) -> SupportsLessThanT: ...
def median_high(data: Iterable[SupportsLessThanT]) -> SupportsLessThanT: ...
def median_grouped(data: Iterable[_NumberT], interval: _NumberT = ...) -> _NumberT: ...
def mode(data: Iterable[_HashableT]) -> _HashableT: ...
if sys.version_info >= (3, 8):
def multimode(data: Iterable[_HashableT]) -> List[_HashableT]: ...
def pstdev(data: Iterable[_NumberT], mu: Optional[_NumberT] = ...) -> _NumberT: ...
def pvariance(data: Iterable[_NumberT], mu: Optional[_NumberT] = ...) -> _NumberT: ...
if sys.version_info >= (3, 8):
def quantiles(data: Iterable[_NumberT], *, n: int = ..., method: str = ...) -> List[_NumberT]: ...
def stdev(data: Iterable[_NumberT], xbar: Optional[_NumberT] = ...) -> _NumberT: ...
def variance(data: Iterable[_NumberT], xbar: Optional[_NumberT] = ...) -> _NumberT: ...
if sys.version_info >= (3, 8):
class NormalDist:
def __init__(self, mu: float = ..., sigma: float = ...) -> None: ...
@property
def mean(self) -> float: ...
@property
def median(self) -> float: ...
@property
def mode(self) -> float: ...
@property
def stdev(self) -> float: ...
@property
def variance(self) -> float: ...
@classmethod
def from_samples(cls: Type[_T], data: Iterable[SupportsFloat]) -> _T: ...
def samples(self, n: int, *, seed: Optional[Any] = ...) -> List[float]: ...
def pdf(self, x: float) -> float: ...
def cdf(self, x: float) -> float: ...
def inv_cdf(self, p: float) -> float: ...
def overlap(self, other: NormalDist) -> float: ...
def quantiles(self, n: int = ...) -> List[float]: ...
if sys.version_info >= (3, 9):
def zscore(self, x: float) -> float: ...
def __add__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
def __sub__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
def __mul__(self, x2: float) -> NormalDist: ...
def __truediv__(self, x2: float) -> NormalDist: ...
def __pos__(self) -> NormalDist: ...
def __neg__(self) -> NormalDist: ...
__radd__ = __add__
def __rsub__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
__rmul__ = __mul__
def __hash__(self) -> int: ...