mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-07 04:34:28 +08:00
75 lines
3.2 KiB
Python
75 lines
3.2 KiB
Python
# Stubs for statistics
|
|
|
|
from decimal import Decimal
|
|
from fractions import Fraction
|
|
import sys
|
|
from typing import Any, Iterable, List, Optional, SupportsFloat, Type, TypeVar, Union, Protocol, Hashable
|
|
|
|
_T = TypeVar("_T")
|
|
# Most functions in this module accept homogeneous collections of one of these types
|
|
_Number = TypeVar('_Number', float, Decimal, Fraction)
|
|
|
|
# Used in median_high, median_low
|
|
class _Sortable(Protocol):
|
|
def __lt__(self, other) -> bool: ...
|
|
_SortableT = TypeVar("_SortableT", bound=_Sortable)
|
|
|
|
# Used in mode, multimode
|
|
_HashableT = TypeVar("_HashableT", bound=Hashable)
|
|
|
|
class StatisticsError(ValueError): ...
|
|
|
|
if sys.version_info >= (3, 8):
|
|
def fmean(data: Iterable[SupportsFloat]) -> float: ...
|
|
def geometric_mean(data: Iterable[SupportsFloat]) -> float: ...
|
|
def mean(data: Iterable[_Number]) -> _Number: ...
|
|
if sys.version_info >= (3, 6):
|
|
def harmonic_mean(data: Iterable[_Number]) -> _Number: ...
|
|
def median(data: Iterable[_Number]) -> _Number: ...
|
|
def median_low(data: Iterable[_SortableT]) -> _SortableT: ...
|
|
def median_high(data: Iterable[_SortableT]) -> _SortableT: ...
|
|
def median_grouped(data: Iterable[_Number], interval: _Number = ...) -> _Number: ...
|
|
def mode(data: Iterable[_HashableT]) -> _HashableT: ...
|
|
if sys.version_info >= (3, 8):
|
|
def multimode(data: Iterable[_HashableT]) -> List[_HashableT]: ...
|
|
def pstdev(data: Iterable[_Number], mu: Optional[_Number] = ...) -> _Number: ...
|
|
def pvariance(data: Iterable[_Number], mu: Optional[_Number] = ...) -> _Number: ...
|
|
if sys.version_info >= (3, 8):
|
|
def quantiles(data: Iterable[_Number], *, n: int = ..., method: str = ...) -> List[_Number]: ...
|
|
def stdev(data: Iterable[_Number], xbar: Optional[_Number] = ...) -> _Number: ...
|
|
def variance(data: Iterable[_Number], xbar: Optional[_Number] = ...) -> _Number: ...
|
|
|
|
if sys.version_info >= (3, 8):
|
|
class NormalDist:
|
|
def __init__(self, mu: float = ..., sigma: float = ...) -> None: ...
|
|
@property
|
|
def mean(self) -> float: ...
|
|
@property
|
|
def median(self) -> float: ...
|
|
@property
|
|
def mode(self) -> float: ...
|
|
@property
|
|
def stdev(self) -> float: ...
|
|
@property
|
|
def variance(self) -> float: ...
|
|
@classmethod
|
|
def from_samples(cls: Type[_T], data: Iterable[SupportsFloat]) -> _T: ...
|
|
def samples(self, n: int, *, seed: Optional[Any] = ...) -> List[float]: ...
|
|
def pdf(self, x: float) -> float: ...
|
|
def cdf(self, x: float) -> float: ...
|
|
def inv_cdf(self, p: float) -> float: ...
|
|
def overlap(self, other: NormalDist) -> float: ...
|
|
def quantiles(self, n: int = ...) -> List[float]: ...
|
|
if sys.version_info >= (3, 9):
|
|
def zscore(self, x: float) -> float: ...
|
|
def __add__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
|
|
def __sub__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
|
|
def __mul__(self, x2: float) -> NormalDist: ...
|
|
def __truediv__(self, x2: float) -> NormalDist: ...
|
|
def __pos__(self) -> NormalDist: ...
|
|
def __neg__(self) -> NormalDist: ...
|
|
__radd__ = __add__
|
|
def __rsub__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
|
|
__rmul__ = __mul__
|
|
def __hash__(self) -> int: ...
|