mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-07 12:44:28 +08:00
* Add os.add_dll_directory() * Add memfd_create() and flags * Add type annotation to flags * Add stat_result.st_reparse_tag and flags * Add ncurses_version * Add Path.link_to() * Add Picker.reducer_override() * Add plistlib.UID * Add has_dualstack_ipv6() and create_server() * Add shlex.join() * Add SSL methods and fields * Add Python 3.8 statistics functions and classes * Remove obsolete sys.subversion * Add sys.unraisablehook * Add threading.excepthook * Add get_native_id() and Thread.native_id * Add Python 3.8 tkinter methods * Add CLOCK_UPTIME_RAW * Add SupportsIndex * Add typing.get_origin() and get_args() * Add unicodedata.is_normalized * Add unittest.mock.AsyncMock Currently this is just an alias for Any like Mock and MagicMock. All of these classes should probably be sub-classing Any and add their own methods. See also #3224. * Add unittest cleanup methods * Add IsolatedAsyncioTestCase * Add ElementTree.canonicalize() and C14NWriterTarget * cProfile.Profile can be used as a context manager * Add asyncio task name handling * mmap.flush() now always returns None * Add posonlyargcount to CodeType
65 lines
2.8 KiB
Python
65 lines
2.8 KiB
Python
# Stubs for statistics
|
|
|
|
from decimal import Decimal
|
|
from fractions import Fraction
|
|
import sys
|
|
from typing import Any, Iterable, List, Optional, SupportsFloat, Type, TypeVar, Union
|
|
|
|
_T = TypeVar("_T")
|
|
# Most functions in this module accept homogeneous collections of one of these types
|
|
_Number = TypeVar('_Number', float, Decimal, Fraction)
|
|
|
|
class StatisticsError(ValueError): ...
|
|
|
|
if sys.version_info >= (3, 8):
|
|
def fmean(data: Iterable[SupportsFloat]) -> float: ...
|
|
def geometric_mean(data: Iterable[SupportsFloat]) -> float: ...
|
|
def mean(data: Iterable[_Number]) -> _Number: ...
|
|
if sys.version_info >= (3, 6):
|
|
def harmonic_mean(data: Iterable[_Number]) -> _Number: ...
|
|
def median(data: Iterable[_Number]) -> _Number: ...
|
|
def median_low(data: Iterable[_Number]) -> _Number: ...
|
|
def median_high(data: Iterable[_Number]) -> _Number: ...
|
|
def median_grouped(data: Iterable[_Number]) -> _Number: ...
|
|
def mode(data: Iterable[_Number]) -> _Number: ...
|
|
if sys.version_info >= (3, 8):
|
|
def multimode(data: Iterable[_T]) -> List[_T]: ...
|
|
def pstdev(data: Iterable[_Number], mu: Optional[_Number] = ...) -> _Number: ...
|
|
def pvariance(data: Iterable[_Number], mu: Optional[_Number] = ...) -> _Number: ...
|
|
if sys.version_info >= (3, 8):
|
|
def quantiles(data: Iterable[_Number], *, n: int = ..., method: str = ...) -> List[_Number]: ...
|
|
def stdev(data: Iterable[_Number], xbar: Optional[_Number] = ...) -> _Number: ...
|
|
def variance(data: Iterable[_Number], xbar: Optional[_Number] = ...) -> _Number: ...
|
|
|
|
if sys.version_info >= (3, 8):
|
|
class NormalDist:
|
|
def __init__(self, mu: float = ..., sigma: float = ...) -> None: ...
|
|
@property
|
|
def mean(self) -> float: ...
|
|
@property
|
|
def median(self) -> float: ...
|
|
@property
|
|
def mode(self) -> float: ...
|
|
@property
|
|
def stdev(self) -> float: ...
|
|
@property
|
|
def variance(self) -> float: ...
|
|
@classmethod
|
|
def from_samples(cls: Type[_T], data: Iterable[SupportsFloat]) -> _T: ...
|
|
def samples(self, n: int, *, seed: Optional[Any]) -> List[float]: ...
|
|
def pdf(self, x: float) -> float: ...
|
|
def cdf(self, x: float) -> float: ...
|
|
def inv_cdf(self, p: float) -> float: ...
|
|
def overlap(self, other: NormalDist) -> float: ...
|
|
def quantiles(self, n: int = ...) -> List[float]: ...
|
|
def __add__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
|
|
def __sub__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
|
|
def __mul__(self, x2: float) -> NormalDist: ...
|
|
def __truediv__(self, x2: float) -> NormalDist: ...
|
|
def __pos__(self) -> NormalDist: ...
|
|
def __neg__(self) -> NormalDist: ...
|
|
__radd__ = __add__
|
|
def __rsub__(self, x2: Union[float, NormalDist]) -> NormalDist: ...
|
|
__rmul__ = __mul__
|
|
def __hash__(self) -> int: ...
|