forked from VimPlug/jedi
Merge pull request #1572 from davidhalter/classvar
Remove is_class_value from infer_type_vars
This commit is contained in:
@@ -268,7 +268,7 @@ class Value(HelperValueMixin):
|
||||
def get_type_hint(self, add_class_info=True):
|
||||
return None
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
"""
|
||||
When the current instance represents a type annotation, this method
|
||||
tries to find information about undefined type vars and returns a dict
|
||||
@@ -294,14 +294,6 @@ class Value(HelperValueMixin):
|
||||
we're inferrined for, or (for recursive calls) their types. In the
|
||||
above example this would first be the representation of the list
|
||||
`[1]` and then, when recursing, just of `1`.
|
||||
|
||||
`is_class_value`: tells us whether or not to treat the `value_set` as
|
||||
representing the instances or types being passed, which is neccesary
|
||||
to correctly cope with `Type[T]` annotations. When it is True, this
|
||||
means that we are being called with a nested portion of an
|
||||
annotation and that the `value_set` represents the types of the
|
||||
arguments, rather than their actual instances. Note: not all
|
||||
recursive calls will neccesarily set this to True.
|
||||
"""
|
||||
return {}
|
||||
|
||||
@@ -538,7 +530,7 @@ class ValueSet(object):
|
||||
s = 'Optional[%s]' % s
|
||||
return s
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_type_var_dicts
|
||||
|
||||
@@ -546,7 +538,7 @@ class ValueSet(object):
|
||||
for value in self._set:
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
value.infer_type_vars(value_set, is_class_value),
|
||||
value.infer_type_vars(value_set),
|
||||
)
|
||||
return type_var_dict
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ from parso import ParserSyntaxError, parse
|
||||
from jedi._compatibility import force_unicode, Parameter
|
||||
from jedi.inference.cache import inference_state_method_cache
|
||||
from jedi.inference.base_value import ValueSet, NO_VALUES
|
||||
from jedi.inference.gradual.base import DefineGenericBase, GenericClass
|
||||
from jedi.inference.gradual.base import DefineGenericBaseClass, GenericClass
|
||||
from jedi.inference.gradual.generics import TupleGenericManager
|
||||
from jedi.inference.gradual.type_var import TypeVar
|
||||
from jedi.inference.helpers import is_string
|
||||
@@ -229,7 +229,7 @@ def infer_return_types(function, arguments):
|
||||
|
||||
return ValueSet.from_sets(
|
||||
ann.define_generics(type_var_dict)
|
||||
if isinstance(ann, (DefineGenericBase, TypeVar)) else ValueSet({ann})
|
||||
if isinstance(ann, (DefineGenericBaseClass, TypeVar)) else ValueSet({ann})
|
||||
for ann in annotation_values
|
||||
).execute_annotation()
|
||||
|
||||
@@ -276,17 +276,17 @@ def infer_return_for_callable(arguments, param_values, result_values):
|
||||
all_type_vars = {}
|
||||
for pv in param_values:
|
||||
if pv.array_type == 'list':
|
||||
type_var_dict = infer_type_vars_for_callable(arguments, pv.py__iter__())
|
||||
type_var_dict = _infer_type_vars_for_callable(arguments, pv.py__iter__())
|
||||
all_type_vars.update(type_var_dict)
|
||||
|
||||
return ValueSet.from_sets(
|
||||
v.define_generics(all_type_vars)
|
||||
if isinstance(v, (DefineGenericBase, TypeVar)) else ValueSet({v})
|
||||
if isinstance(v, (DefineGenericBaseClass, TypeVar)) else ValueSet({v})
|
||||
for v in result_values
|
||||
).execute_annotation()
|
||||
|
||||
|
||||
def infer_type_vars_for_callable(arguments, lazy_params):
|
||||
def _infer_type_vars_for_callable(arguments, lazy_params):
|
||||
"""
|
||||
Infers type vars for the Calllable class:
|
||||
|
||||
@@ -350,7 +350,7 @@ def merge_pairwise_generics(annotation_value, annotated_argument_class):
|
||||
|
||||
type_var_dict = {}
|
||||
|
||||
if not isinstance(annotated_argument_class, DefineGenericBase):
|
||||
if not isinstance(annotated_argument_class, DefineGenericBaseClass):
|
||||
return type_var_dict
|
||||
|
||||
annotation_generics = annotation_value.get_generics()
|
||||
@@ -359,12 +359,7 @@ def merge_pairwise_generics(annotation_value, annotated_argument_class):
|
||||
for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
annotation_generics_set.infer_type_vars(
|
||||
actual_generic_set,
|
||||
# This is a note to ourselves that we have already
|
||||
# converted the instance representation to its class.
|
||||
is_class_value=True,
|
||||
),
|
||||
annotation_generics_set.infer_type_vars(actual_generic_set.execute_annotation()),
|
||||
)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
@@ -23,8 +23,8 @@ class _BoundTypeVarName(AbstractNameDefinition):
|
||||
def iter_():
|
||||
for value in self._value_set:
|
||||
# Replace any with the constraints if they are there.
|
||||
from jedi.inference.gradual.typing import Any
|
||||
if isinstance(value, Any):
|
||||
from jedi.inference.gradual.typing import AnyClass
|
||||
if isinstance(value, AnyClass):
|
||||
for constraint in self._type_var.constraints:
|
||||
yield constraint
|
||||
else:
|
||||
@@ -81,7 +81,7 @@ class _AnnotatedClassContext(ClassContext):
|
||||
yield self._value.get_type_var_filter()
|
||||
|
||||
|
||||
class DefineGenericBase(LazyValueWrapper):
|
||||
class DefineGenericBaseClass(LazyValueWrapper):
|
||||
def __init__(self, generics_manager):
|
||||
self._generics_manager = generics_manager
|
||||
|
||||
@@ -99,7 +99,7 @@ class DefineGenericBase(LazyValueWrapper):
|
||||
for generic_set in self.get_generics():
|
||||
values = NO_VALUES
|
||||
for generic in generic_set:
|
||||
if isinstance(generic, (DefineGenericBase, TypeVar)):
|
||||
if isinstance(generic, (DefineGenericBaseClass, TypeVar)):
|
||||
result = generic.define_generics(type_var_dict)
|
||||
values |= result
|
||||
if result != ValueSet({generic}):
|
||||
@@ -119,7 +119,7 @@ class DefineGenericBase(LazyValueWrapper):
|
||||
)])
|
||||
|
||||
def is_same_class(self, other):
|
||||
if not isinstance(other, DefineGenericBase):
|
||||
if not isinstance(other, DefineGenericBaseClass):
|
||||
return False
|
||||
|
||||
if self.tree_node != other.tree_node:
|
||||
@@ -151,7 +151,7 @@ class DefineGenericBase(LazyValueWrapper):
|
||||
)
|
||||
|
||||
|
||||
class GenericClass(ClassMixin, DefineGenericBase):
|
||||
class GenericClass(ClassMixin, DefineGenericBaseClass):
|
||||
"""
|
||||
A class that is defined with generics, might be something simple like:
|
||||
|
||||
@@ -200,29 +200,27 @@ class GenericClass(ClassMixin, DefineGenericBase):
|
||||
return True
|
||||
return self._class_value.is_sub_class_of(class_value)
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
|
||||
annotation_name = self.py__name__()
|
||||
type_var_dict = {}
|
||||
if annotation_name == 'Iterable' and not is_class_value:
|
||||
if annotation_name == 'Iterable':
|
||||
annotation_generics = self.get_generics()
|
||||
if annotation_generics:
|
||||
return annotation_generics[0].infer_type_vars(
|
||||
value_set.merge_types_of_iterate(),
|
||||
)
|
||||
|
||||
else:
|
||||
# Note: we need to handle the MRO _in order_, so we need to extract
|
||||
# the elements from the set first, then handle them, even if we put
|
||||
# them back in a set afterwards.
|
||||
for py_class in value_set:
|
||||
if not is_class_value:
|
||||
if py_class.is_instance() and not py_class.is_compiled():
|
||||
py_class = py_class.get_annotated_class_object()
|
||||
else:
|
||||
continue
|
||||
if py_class.is_instance() and not py_class.is_compiled():
|
||||
py_class = py_class.get_annotated_class_object()
|
||||
else:
|
||||
continue
|
||||
|
||||
if py_class.api_type != u'class':
|
||||
# Functions & modules don't have an MRO and we're not
|
||||
@@ -332,10 +330,9 @@ class _PseudoTreeNameClass(Value):
|
||||
yield EmptyFilter()
|
||||
|
||||
def py__class__(self):
|
||||
# TODO this is obviously not correct, but at least gives us a class if
|
||||
# we have none. Some of these objects don't really have a base class in
|
||||
# typeshed.
|
||||
return builtin_from_name(self.inference_state, u'object')
|
||||
# This might not be 100% correct, but it is good enough. The details of
|
||||
# the typing library are not really an issue for Jedi.
|
||||
return builtin_from_name(self.inference_state, u'type')
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
@@ -365,9 +362,9 @@ class BaseTypingValue(LazyValueWrapper):
|
||||
return '%s(%s)' % (self.__class__.__name__, self._tree_name.value)
|
||||
|
||||
|
||||
class BaseTypingValueWithGenerics(DefineGenericBase):
|
||||
class BaseTypingClassWithGenerics(DefineGenericBaseClass):
|
||||
def __init__(self, parent_context, tree_name, generics_manager):
|
||||
super(BaseTypingValueWithGenerics, self).__init__(generics_manager)
|
||||
super(BaseTypingClassWithGenerics, self).__init__(generics_manager)
|
||||
self.inference_state = parent_context.inference_state
|
||||
self.parent_context = parent_context
|
||||
self._tree_name = tree_name
|
||||
@@ -378,3 +375,29 @@ class BaseTypingValueWithGenerics(DefineGenericBase):
|
||||
def __repr__(self):
|
||||
return '%s(%s%s)' % (self.__class__.__name__, self._tree_name.value,
|
||||
self._generics_manager)
|
||||
|
||||
|
||||
class BaseTypingInstance(LazyValueWrapper):
|
||||
def __init__(self, parent_context, class_value, tree_name, generics_manager):
|
||||
self.inference_state = class_value.inference_state
|
||||
self.parent_context = parent_context
|
||||
self._class_value = class_value
|
||||
self._tree_name = tree_name
|
||||
self._generics_manager = generics_manager
|
||||
|
||||
def py__class__(self):
|
||||
return self._class_value
|
||||
|
||||
def get_annotated_class_object(self):
|
||||
return self._class_value
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return ValueName(self, self._tree_name)
|
||||
|
||||
def _get_wrapped_value(self):
|
||||
object_, = builtin_from_name(self.inference_state, u'object').execute_annotation()
|
||||
return object_
|
||||
|
||||
def __repr__(self):
|
||||
return '<%s: %s>' % (self.__class__.__name__, self._generics_manager)
|
||||
|
||||
@@ -107,11 +107,9 @@ class TypeVar(BaseTypingValue):
|
||||
def execute_annotation(self):
|
||||
return self._get_classes().execute_annotation()
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
annotation_name = self.py__name__()
|
||||
if not is_class_value:
|
||||
return {annotation_name: value_set.py__class__()}
|
||||
return {annotation_name: value_set}
|
||||
return {annotation_name: value_set.py__class__()}
|
||||
|
||||
def __repr__(self):
|
||||
return '<%s: %s>' % (self.__class__.__name__, self.py__name__())
|
||||
|
||||
@@ -17,7 +17,8 @@ from jedi.inference.arguments import repack_with_argument_clinic
|
||||
from jedi.inference.filters import FilterWrapper
|
||||
from jedi.inference.names import NameWrapper, ValueName
|
||||
from jedi.inference.value.klass import ClassMixin
|
||||
from jedi.inference.gradual.base import BaseTypingValue, BaseTypingValueWithGenerics
|
||||
from jedi.inference.gradual.base import BaseTypingValue, \
|
||||
BaseTypingClassWithGenerics, BaseTypingInstance
|
||||
from jedi.inference.gradual.type_var import TypeVarClass
|
||||
from jedi.inference.gradual.generics import LazyGenericManager, TupleGenericManager
|
||||
|
||||
@@ -66,7 +67,7 @@ class TypingModuleName(NameWrapper):
|
||||
yield TypeVarClass.create_cached(
|
||||
inference_state, self.parent_context, self.tree_name)
|
||||
elif name == 'Any':
|
||||
yield Any.create_cached(
|
||||
yield AnyClass.create_cached(
|
||||
inference_state, self.parent_context, self.tree_name)
|
||||
elif name == 'TYPE_CHECKING':
|
||||
# This is needed for e.g. imports that are only available for type
|
||||
@@ -84,7 +85,7 @@ class TypingModuleName(NameWrapper):
|
||||
elif name == 'TypedDict':
|
||||
# TODO doesn't even exist in typeshed/typing.py, yet. But will be
|
||||
# added soon.
|
||||
yield TypedDictBase.create_cached(
|
||||
yield TypedDictClass.create_cached(
|
||||
inference_state, self.parent_context, self.tree_name)
|
||||
elif name in ('no_type_check', 'no_type_check_decorator'):
|
||||
# This is not necessary, as long as we are not doing type checking.
|
||||
@@ -100,7 +101,7 @@ class TypingModuleFilterWrapper(FilterWrapper):
|
||||
name_wrapper_class = TypingModuleName
|
||||
|
||||
|
||||
class TypingValueWithIndex(BaseTypingValueWithGenerics):
|
||||
class TypingClassWithIndex(BaseTypingClassWithGenerics):
|
||||
def execute_annotation(self):
|
||||
string_name = self._tree_name.value
|
||||
|
||||
@@ -129,6 +130,7 @@ class TypingValueWithIndex(BaseTypingValueWithGenerics):
|
||||
cls = mapped[string_name]
|
||||
return ValueSet([cls(
|
||||
self.parent_context,
|
||||
self,
|
||||
self._tree_name,
|
||||
generics_manager=self._generics_manager,
|
||||
)])
|
||||
@@ -137,7 +139,7 @@ class TypingValueWithIndex(BaseTypingValueWithGenerics):
|
||||
return ValueSet.from_sets(self._generics_manager.to_tuple())
|
||||
|
||||
def _create_instance_with_generics(self, generics_manager):
|
||||
return TypingValueWithIndex(
|
||||
return TypingClassWithIndex(
|
||||
self.parent_context,
|
||||
self._tree_name,
|
||||
generics_manager
|
||||
@@ -145,7 +147,7 @@ class TypingValueWithIndex(BaseTypingValueWithGenerics):
|
||||
|
||||
|
||||
class ProxyTypingValue(BaseTypingValue):
|
||||
index_class = TypingValueWithIndex
|
||||
index_class = TypingClassWithIndex
|
||||
|
||||
def with_generics(self, generics_tuple):
|
||||
return self.index_class.create_cached(
|
||||
@@ -183,11 +185,8 @@ class _TypingClassMixin(ClassMixin):
|
||||
return ValueName(self, self._tree_name)
|
||||
|
||||
|
||||
class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
|
||||
class TypingClassValueWithIndex(_TypingClassMixin, TypingClassWithIndex):
|
||||
def infer_type_vars(self, value_set):
|
||||
type_var_dict = {}
|
||||
annotation_generics = self.get_generics()
|
||||
|
||||
@@ -196,49 +195,22 @@ class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
||||
|
||||
annotation_name = self.py__name__()
|
||||
if annotation_name == 'Type':
|
||||
if is_class_value:
|
||||
# This only applies if we are comparing something like
|
||||
# List[Type[int]] with Iterable[Type[int]]. First, Jedi tries to
|
||||
# match List/Iterable. After that we will land here, because
|
||||
# is_class_value will be True at that point. Obviously we also
|
||||
# compare below that both sides are `Type`.
|
||||
for element in value_set:
|
||||
element_name = element.py__name__()
|
||||
if element_name == 'Type':
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, element),
|
||||
)
|
||||
else:
|
||||
return annotation_generics[0].infer_type_vars(
|
||||
value_set,
|
||||
is_class_value=True,
|
||||
)
|
||||
return annotation_generics[0].infer_type_vars(
|
||||
# This is basically a trick to avoid extra code: We execute the
|
||||
# incoming classes to be able to use the normal code for type
|
||||
# var inference.
|
||||
value_set.execute_annotation(),
|
||||
)
|
||||
|
||||
elif annotation_name == 'Callable':
|
||||
if len(annotation_generics) == 2:
|
||||
if is_class_value:
|
||||
# This only applies if we are comparing something like
|
||||
# List[Callable[..., T]] with Iterable[Callable[..., T]].
|
||||
# First, Jedi tries to match List/Iterable. After that we
|
||||
# will land here, because is_class_value will be True at
|
||||
# that point. Obviously we also compare below that both
|
||||
# sides are `Callable`.
|
||||
for element in value_set:
|
||||
element_name = element.py__name__()
|
||||
if element_name == 'Callable':
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, element),
|
||||
)
|
||||
else:
|
||||
return annotation_generics[1].infer_type_vars(
|
||||
value_set.execute_annotation(),
|
||||
)
|
||||
return annotation_generics[1].infer_type_vars(
|
||||
value_set.execute_annotation(),
|
||||
)
|
||||
|
||||
elif annotation_name == 'Tuple':
|
||||
tuple_annotation, = self.execute_annotation()
|
||||
return tuple_annotation.infer_type_vars(value_set, is_class_value)
|
||||
return tuple_annotation.infer_type_vars(value_set)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
@@ -284,7 +256,7 @@ class TypeAlias(LazyValueWrapper):
|
||||
return ValueSet([self._get_wrapped_value()])
|
||||
|
||||
|
||||
class Callable(BaseTypingValueWithGenerics):
|
||||
class Callable(BaseTypingInstance):
|
||||
def py__call__(self, arguments):
|
||||
"""
|
||||
def x() -> Callable[[Callable[..., _T]], _T]: ...
|
||||
@@ -301,7 +273,7 @@ class Callable(BaseTypingValueWithGenerics):
|
||||
return infer_return_for_callable(arguments, param_values, result_values)
|
||||
|
||||
|
||||
class Tuple(BaseTypingValueWithGenerics):
|
||||
class Tuple(BaseTypingInstance):
|
||||
def _is_homogenous(self):
|
||||
# To specify a variable-length tuple of homogeneous type, Tuple[T, ...]
|
||||
# is used.
|
||||
@@ -337,28 +309,23 @@ class Tuple(BaseTypingValueWithGenerics):
|
||||
.py__getattribute__('tuple').execute_annotation()
|
||||
return tuple_
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
@property
|
||||
def name(self):
|
||||
return self._wrapped_value.name
|
||||
|
||||
def infer_type_vars(self, value_set):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
from jedi.inference.gradual.base import GenericClass
|
||||
|
||||
value_set = value_set.filter(
|
||||
lambda x: x.py__name__().lower() == 'tuple',
|
||||
)
|
||||
|
||||
# Somewhat unusually, this `infer_type_vars` method is on an instance
|
||||
# representation of a type, rather than the annotation or class
|
||||
# representation. This means that as a starting point, we need to
|
||||
# convert the incoming values to their instance style if they're
|
||||
# classes, rather than the reverse.
|
||||
if is_class_value:
|
||||
value_set = value_set.execute_annotation()
|
||||
|
||||
if self._is_homogenous():
|
||||
# The parameter annotation is of the form `Tuple[T, ...]`,
|
||||
# so we treat the incoming tuple like a iterable sequence
|
||||
# rather than a positional container of elements.
|
||||
return self.get_generics()[0].infer_type_vars(
|
||||
return self._class_value.get_generics()[0].infer_type_vars(
|
||||
value_set.merge_types_of_iterate(),
|
||||
)
|
||||
|
||||
@@ -370,30 +337,32 @@ class Tuple(BaseTypingValueWithGenerics):
|
||||
|
||||
type_var_dict = {}
|
||||
for element in value_set:
|
||||
if not is_class_value:
|
||||
py_class = element.get_annotated_class_object()
|
||||
if not isinstance(py_class, GenericClass):
|
||||
py_class = element
|
||||
else:
|
||||
py_class = element
|
||||
try:
|
||||
method = element.get_annotated_class_object
|
||||
except AttributeError:
|
||||
# This might still happen, because the tuple name matching
|
||||
# above is not 100% correct, so just catch the remaining
|
||||
# cases here.
|
||||
continue
|
||||
|
||||
py_class = method()
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, py_class),
|
||||
merge_pairwise_generics(self._class_value, py_class),
|
||||
)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
|
||||
class Generic(BaseTypingValueWithGenerics):
|
||||
class Generic(BaseTypingInstance):
|
||||
pass
|
||||
|
||||
|
||||
class Protocol(BaseTypingValueWithGenerics):
|
||||
class Protocol(BaseTypingInstance):
|
||||
pass
|
||||
|
||||
|
||||
class Any(BaseTypingValue):
|
||||
class AnyClass(BaseTypingValue):
|
||||
def execute_annotation(self):
|
||||
debug.warning('Used Any - returned no results')
|
||||
return NO_VALUES
|
||||
@@ -447,7 +416,7 @@ class CastFunction(BaseTypingValue):
|
||||
return type_value_set.execute_annotation()
|
||||
|
||||
|
||||
class TypedDictBase(BaseTypingValue):
|
||||
class TypedDictClass(BaseTypingValue):
|
||||
"""
|
||||
This class has no responsibilities and is just here to make sure that typed
|
||||
dicts can be identified.
|
||||
|
||||
@@ -241,7 +241,7 @@ class ClassMixin(object):
|
||||
def is_typeddict(self):
|
||||
# TODO Do a proper mro resolution. Currently we are just listing
|
||||
# classes. However, it's a complicated algorithm.
|
||||
from jedi.inference.gradual.typing import TypedDictBase
|
||||
from jedi.inference.gradual.typing import TypedDictClass
|
||||
for lazy_cls in self.py__bases__():
|
||||
if not isinstance(lazy_cls, LazyTreeValue):
|
||||
return False
|
||||
@@ -253,7 +253,7 @@ class ClassMixin(object):
|
||||
return False
|
||||
|
||||
for cls in lazy_cls.infer():
|
||||
if isinstance(cls, TypedDictBase):
|
||||
if isinstance(cls, TypedDictClass):
|
||||
return True
|
||||
try:
|
||||
method = cls.is_typeddict
|
||||
|
||||
@@ -10,6 +10,7 @@ from typing import (
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
Sequence,
|
||||
)
|
||||
|
||||
K = TypeVar('K')
|
||||
@@ -165,6 +166,9 @@ some_str = NotImplemented # type: str
|
||||
#? str()
|
||||
first(some_str)
|
||||
|
||||
annotated = [len] # type: List[ Callable[[Sequence[float]], int] ]
|
||||
#? int()
|
||||
first(annotated)()
|
||||
|
||||
# Test that the right type is chosen when a partially realised mapping is expected
|
||||
def values(mapping: Mapping[int, T]) -> List[T]:
|
||||
|
||||
@@ -656,7 +656,8 @@ def bar():
|
||||
({'return': 'typing.Optional[str, int]'}, [], ''), # Takes only one arg
|
||||
({'return': 'typing.Any'}, [], ''),
|
||||
|
||||
({'return': 'typing.Tuple[int, str]'}, ['tuple'], ''),
|
||||
({'return': 'typing.Tuple[int, str]'},
|
||||
['Tuple' if sys.version_info[:2] == (3, 6) else 'tuple'], ''),
|
||||
({'return': 'typing.Tuple[int, str]'}, ['int'], 'x()[0]'),
|
||||
({'return': 'typing.Tuple[int, str]'}, ['str'], 'x()[1]'),
|
||||
({'return': 'typing.Tuple[int, str]'}, [], 'x()[2]'),
|
||||
|
||||
Reference in New Issue
Block a user