1
0
forked from VimPlug/jedi
Files
jedi-fork/jedi/parser/representation.py
2013-12-27 14:35:30 +01:00

1449 lines
49 KiB
Python

"""
If you know what an abstract syntax tree (ast) is, you'll see that this module
is pretty much that. The classes represent syntax elements: ``Import``,
``Function``.
A very central class is ``Scope``. It is not used directly by the parser, but
inherited. It's used by ``Function``, ``Class``, ``Flow``, etc. A ``Scope`` may
have ``subscopes``, ``imports`` and ``statements``. The entire parser is based
on scopes, because they also stand for indentation.
One special thing:
``Array`` values are statements. But if you think about it, this makes sense.
``[1, 2+33]`` for example would be an Array with two ``Statement`` inside. This
is the easiest way to write a parser. The same behaviour applies to ``Param``,
which is being used in a function definition.
The easiest way to play with this module is to use :class:`parsing.Parser`.
:attr:`parsing.Parser.module` holds an instance of :class:`SubModule`:
>>> from jedi.parser import Parser
>>> parser = Parser('import os', 'example.py')
>>> submodule = parser.module
>>> submodule
<SubModule: example.py@1-1>
Any subclasses of :class:`Scope`, including :class:`SubModule` has
attribute :attr:`imports <Scope.imports>`. This attribute has import
statements in this scope. Check this out:
>>> submodule.imports
[<Import: import os @1,0>]
See also :attr:`Scope.subscopes` and :attr:`Scope.statements`.
"""
from __future__ import with_statement
import os
import re
from inspect import cleandoc
from ast import literal_eval
from jedi._compatibility import next, Python3Method, encoding, unicode, is_py3k
from jedi import common
from jedi import debug
from jedi.parser import tokenizer as tokenize
class Base(object):
"""
This is just here to have an isinstance check, which is also used on
evaluate classes. But since they have sometimes a special type of
delegation, it is important for those classes to override this method.
I know that there is a chance to do such things with __instancecheck__, but
since Python 2.5 doesn't support it, I decided to do it this way.
"""
__slots__ = ()
def isinstance(self, *cls):
return isinstance(self, cls)
class Simple(Base):
"""
The super class for Scope, Import, Name and Statement. Every object in
the parser tree inherits from this class.
"""
__slots__ = ('parent', '_sub_module', '_start_pos', 'use_as_parent',
'_end_pos')
def __init__(self, module, start_pos, end_pos=(None, None)):
"""
Initialize :class:`Simple`.
:type module: :class:`SubModule`
:param module: The module in which this Python object locates.
:type start_pos: 2-tuple of int
:param start_pos: Position (line, column) of the Statement.
:type end_pos: 2-tuple of int
:param end_pos: Same as `start_pos`.
"""
self._sub_module = module
self._start_pos = start_pos
self._end_pos = end_pos
self.parent = None
# use this attribute if parent should be something else than self.
self.use_as_parent = self
@property
def start_pos(self):
return self._sub_module.line_offset + self._start_pos[0], \
self._start_pos[1]
@start_pos.setter
def start_pos(self, value):
self._start_pos = value
@property
def end_pos(self):
if None in self._end_pos:
return self._end_pos
return self._sub_module.line_offset + self._end_pos[0], \
self._end_pos[1]
@end_pos.setter
def end_pos(self, value):
self._end_pos = value
@Python3Method
def get_parent_until(self, classes=(), reverse=False,
include_current=True):
""" Takes always the parent, until one class (not a Class) """
if type(classes) not in (tuple, list):
classes = (classes,)
scope = self if include_current else self.parent
while scope.parent is not None:
if classes and reverse != scope.isinstance(*classes):
break
scope = scope.parent
return scope
def __repr__(self):
code = self.get_code().replace('\n', ' ')
if not is_py3k:
code = code.encode(encoding, 'replace')
return "<%s: %s@%s,%s>" % \
(type(self).__name__, code, self.start_pos[0], self.start_pos[1])
class IsScope(Base):
pass
class Scope(Simple, IsScope):
"""
Super class for the parser tree, which represents the state of a python
text file.
A Scope manages and owns its subscopes, which are classes and functions, as
well as variables and imports. It is used to access the structure of python
files.
:param start_pos: The position (line and column) of the scope.
:type start_pos: tuple(int, int)
"""
def __init__(self, module, start_pos):
super(Scope, self).__init__(module, start_pos)
self.subscopes = []
self.imports = []
self.statements = []
self.docstr = ''
self.asserts = []
# Needed here for fast_parser, because the fast_parser splits and
# returns will be in "normal" modules.
self.returns = []
self.is_generator = False
def add_scope(self, sub, decorators):
sub.parent = self.use_as_parent
sub.decorators = decorators
for d in decorators:
# the parent is the same, because the decorator has not the scope
# of the function
d.parent = self.use_as_parent
self.subscopes.append(sub)
return sub
def add_statement(self, stmt):
"""
Used to add a Statement or a Scope.
A statement would be a normal command (Statement) or a Scope (Flow).
"""
stmt.parent = self.use_as_parent
self.statements.append(stmt)
return stmt
def add_docstr(self, string):
""" Clean up a docstring """
self.docstr = cleandoc(literal_eval(string))
def add_import(self, imp):
self.imports.append(imp)
imp.parent = self.use_as_parent
def get_imports(self):
""" Gets also the imports within flow statements """
i = [] + self.imports
for s in self.statements:
if isinstance(s, Scope):
i += s.get_imports()
return i
def get_code(self, first_indent=False, indention=' '):
"""
:return: Returns the code of the current scope.
:rtype: str
"""
string = ""
if len(self.docstr) > 0:
string += '"""' + self.docstr + '"""\n'
objs = self.subscopes + self.imports + self.statements + self.returns
for obj in sorted(objs, key=lambda x: x.start_pos):
if isinstance(obj, Scope):
string += obj.get_code(first_indent=True, indention=indention)
else:
if obj in self.returns and not isinstance(self, Lambda):
string += 'yield ' if self.is_generator else 'return '
string += obj.get_code()
if first_indent:
string = common.indent_block(string, indention=indention)
return string
@Python3Method
def get_set_vars(self):
"""
Get all the names, that are active and accessible in the current
scope. See :meth:`get_defined_names` for examples.
:return: list of Name
:rtype: list
"""
n = []
for stmt in self.statements:
try:
n += stmt.get_set_vars(True)
except TypeError:
n += stmt.get_set_vars()
# function and class names
n += [s.name for s in self.subscopes]
for i in self.imports:
if not i.star:
n += i.get_defined_names()
return n
def get_defined_names(self):
"""
Get all defined names in this scope.
>>> from jedi.parser import Parser
>>> parser = Parser('''
... a = x
... b = y
... b.c = z
... ''')
>>> parser.module.get_defined_names()
[<Name: a@2,0>, <Name: b@3,0>]
Note that unlike :meth:`get_set_vars`, assignment to object
attribute does not change the result because it does not change
the defined names in this scope.
>>> parser.module.get_set_vars()
[<Name: a@2,0>, <Name: b@3,0>, <Name: b.c@4,0>]
"""
return [n for n in self.get_set_vars()
if isinstance(n, Import) or (len(n) == 1)]
def is_empty(self):
"""
:return: True if there are no subscopes, imports and statements.
:rtype: bool
"""
return not (self.imports or self.subscopes or self.statements or self.returns)
@Python3Method
def get_statement_for_position(self, pos, include_imports=False):
checks = self.statements + self.asserts
if include_imports:
checks += self.imports
if self.isinstance(Function):
checks += self.params + self.decorators
checks += [r for r in self.returns if r is not None]
for s in checks:
if isinstance(s, Flow):
p = s.get_statement_for_position(pos, include_imports)
while s.next and not p:
s = s.next
p = s.get_statement_for_position(pos, include_imports)
if p:
return p
elif s.start_pos <= pos <= s.end_pos:
return s
for s in self.subscopes:
if s.start_pos <= pos <= s.end_pos:
p = s.get_statement_for_position(pos, include_imports)
if p:
return p
def __repr__(self):
try:
name = self.path
except AttributeError:
try:
name = self.name
except AttributeError:
name = self.command
return "<%s: %s@%s-%s>" % (type(self).__name__, name,
self.start_pos[0], self.end_pos[0])
class Module(IsScope):
"""
For isinstance checks. fast_parser.Module also inherits from this.
"""
class SubModule(Scope, Module):
"""
The top scope, which is always a module.
Depending on the underlying parser this may be a full module or just a part
of a module.
"""
def __init__(self, path, start_pos=(1, 0), top_module=None):
"""
Initialize :class:`SubModule`.
:type path: str
:arg path: File path to this module.
.. todo:: Document `top_module`.
"""
super(SubModule, self).__init__(self, start_pos)
self.path = path
self.global_vars = []
self._name = None
self.used_names = {}
self.temp_used_names = []
# this may be changed depending on fast_parser
self.line_offset = 0
self.use_as_parent = top_module or self
def add_global(self, name):
"""
Global means in these context a function (subscope) which has a global
statement.
This is only relevant for the top scope.
:param name: The name of the global.
:type name: Name
"""
# set no parent here, because globals are not defined in this scope.
self.global_vars.append(name)
def get_set_vars(self):
n = super(SubModule, self).get_set_vars()
n += self.global_vars
return n
@property
def name(self):
""" This is used for the goto functions. """
if self._name is not None:
return self._name
if self.path is None:
string = '' # no path -> empty name
else:
sep = (re.escape(os.path.sep),) * 2
r = re.search(r'([^%s]*?)(%s__init__)?(\.py|\.so)?$' % sep,
self.path)
# remove PEP 3149 names
string = re.sub('\.[a-z]+-\d{2}[mud]{0,3}$', '', r.group(1))
# positions are not real therefore choose (0, 0)
names = [(string, (0, 0))]
self._name = Name(self, names, (0, 0), (0, 0), self.use_as_parent)
return self._name
def is_builtin(self):
return not (self.path is None or self.path.endswith('.py'))
@property
def has_explicit_absolute_import(self):
"""
Checks if imports in this module are explicitly absolute, i.e. there
is a ``__future__`` import.
"""
for imp in self.imports:
if imp.from_ns is None or imp.namespace is None:
continue
namespace, feature = imp.from_ns.names[0], imp.namespace.names[0]
if namespace == "__future__" and feature == "absolute_import":
return True
return False
class Class(Scope):
"""
Used to store the parsed contents of a python class.
:param name: The Class name.
:type name: str
:param supers: The super classes of a Class.
:type supers: list
:param start_pos: The start position (line, column) of the class.
:type start_pos: tuple(int, int)
"""
def __init__(self, module, name, supers, start_pos):
super(Class, self).__init__(module, start_pos)
self.name = name
name.parent = self.use_as_parent
self.supers = supers
for s in self.supers:
s.parent = self.use_as_parent
self.decorators = []
def get_code(self, first_indent=False, indention=' '):
string = "\n".join('@' + stmt.get_code() for stmt in self.decorators)
string += 'class %s' % (self.name)
if len(self.supers) > 0:
sup = ', '.join(stmt.get_code(False) for stmt in self.supers)
string += '(%s)' % sup
string += ':\n'
string += super(Class, self).get_code(True, indention)
if self.is_empty():
if self.docstr:
string += indention
string += "pass\n"
return string
@property
def doc(self):
"""
Return a document string including call signature of __init__.
"""
for sub in self.subscopes:
if sub.name.names[-1] == '__init__':
return '%s\n\n%s' % (
sub.get_call_signature(funcname=self.name.names[-1]),
self.docstr)
return self.docstr
class Function(Scope):
"""
Used to store the parsed contents of a python function.
:param name: The Function name.
:type name: str
:param params: The parameters (Statement) of a Function.
:type params: list
:param start_pos: The start position (line, column) the Function.
:type start_pos: tuple(int, int)
"""
def __init__(self, module, name, params, start_pos, annotation):
super(Function, self).__init__(module, start_pos)
self.name = name
if name is not None:
name.parent = self.use_as_parent
self.params = params
for p in params:
p.parent = self.use_as_parent
p.parent_function = self.use_as_parent
self.decorators = []
self.listeners = set() # not used here, but in evaluation.
if annotation is not None:
annotation.parent = self.use_as_parent
self.annotation = annotation
def get_code(self, first_indent=False, indention=' '):
string = "\n".join('@' + stmt.get_code() for stmt in self.decorators)
params = ', '.join([stmt.get_code(False) for stmt in self.params])
string += "def %s(%s):\n" % (self.name, params)
string += super(Function, self).get_code(True, indention)
if self.is_empty():
if self.docstr:
string += indention
string += 'pass\n'
return string
def get_set_vars(self):
n = super(Function, self).get_set_vars()
for p in self.params:
try:
n.append(p.get_name())
except IndexError:
debug.warning("multiple names in param %s" % n)
return n
def get_call_signature(self, width=72, funcname=None):
"""
Generate call signature of this function.
:param width: Fold lines if a line is longer than this value.
:type width: int
:arg funcname: Override function name when given.
:type funcname: str
:rtype: str
"""
l = (funcname or self.name.names[-1]) + '('
lines = []
for (i, p) in enumerate(self.params):
code = p.get_code(False)
if i != len(self.params) - 1:
code += ', '
if len(l + code) > width:
lines.append(l[:-1] if l[-1] == ' ' else l)
l = code
else:
l += code
if l:
lines.append(l)
lines[-1] += ')'
return '\n'.join(lines)
@property
def doc(self):
""" Return a document string including call signature. """
return '%s\n\n%s' % (self.get_call_signature(), self.docstr)
class Lambda(Function):
def __init__(self, module, params, start_pos, parent):
super(Lambda, self).__init__(module, None, params, start_pos, None)
self.parent = parent
def get_code(self, first_indent=False, indention=' '):
params = ','.join([stmt.get_code() for stmt in self.params])
string = "lambda %s: " % params
return string + super(Function, self).get_code(indention=indention)
def __repr__(self):
return "<%s @%s (%s-%s)>" % (type(self).__name__, self.start_pos[0],
self.start_pos[1], self.end_pos[1])
class Flow(Scope):
"""
Used to describe programming structure - flow statements,
which indent code, but are not classes or functions:
- for
- while
- if
- try
- with
Therefore statements like else, except and finally are also here,
they are now saved in the root flow elements, but in the next variable.
:param command: The flow command, if, while, else, etc.
:type command: str
:param inputs: The initializations of a flow -> while 'statement'.
:type inputs: list(Statement)
:param start_pos: Position (line, column) of the Flow statement.
:type start_pos: tuple(int, int)
"""
def __init__(self, module, command, inputs, start_pos):
self.next = None
self.command = command
super(Flow, self).__init__(module, start_pos)
self._parent = None
# These have to be statements, because of with, which takes multiple.
self.inputs = inputs
for s in inputs:
s.parent = self.use_as_parent
self.set_vars = []
@property
def parent(self):
return self._parent
@parent.setter
def parent(self, value):
self._parent = value
try:
self.next.parent = value
except AttributeError:
return
def get_code(self, first_indent=False, indention=' '):
stmts = []
for s in self.inputs:
stmts.append(s.get_code(new_line=False))
stmt = ', '.join(stmts)
string = "%s %s:\n" % (self.command, stmt)
string += super(Flow, self).get_code(True, indention)
if self.next:
string += self.next.get_code()
return string
def get_set_vars(self, is_internal_call=False):
"""
Get the names for the flow. This includes also a call to the super
class.
:param is_internal_call: defines an option for internal files to crawl
through this class. Normally it will just call its superiors, to
generate the output.
"""
if is_internal_call:
n = list(self.set_vars)
for s in self.inputs:
n += s.get_set_vars()
if self.next:
n += self.next.get_set_vars(is_internal_call)
n += super(Flow, self).get_set_vars()
return n
else:
return self.get_parent_until((Class, Function)).get_set_vars()
def get_imports(self):
i = super(Flow, self).get_imports()
if self.next:
i += self.next.get_imports()
return i
def set_next(self, next):
"""Set the next element in the flow, those are else, except, etc."""
if self.next:
return self.next.set_next(next)
else:
self.next = next
self.next.parent = self.parent
return next
class ForFlow(Flow):
"""
Used for the for loop, because there are two statement parts.
"""
def __init__(self, module, inputs, start_pos, set_stmt, is_list_comp=False):
super(ForFlow, self).__init__(module, 'for', inputs, start_pos)
self.set_stmt = set_stmt
set_stmt.parent = self.use_as_parent
self.is_list_comp = is_list_comp
self.set_vars = set_stmt.get_set_vars()
for s in self.set_vars:
s.parent.parent = self.use_as_parent
s.parent = self.use_as_parent
def get_code(self, first_indent=False, indention=" " * 4):
vars = ",".join(x.get_code() for x in self.set_vars)
stmts = []
for s in self.inputs:
stmts.append(s.get_code(new_line=False))
stmt = ', '.join(stmts)
s = "for %s in %s:\n" % (vars, stmt)
return s + super(Flow, self).get_code(True, indention)
class Import(Simple):
"""
Stores the imports of any Scopes.
:param start_pos: Position (line, column) of the Import.
:type start_pos: tuple(int, int)
:param namespace: The import, can be empty if a star is given
:type namespace: Name
:param alias: The alias of a namespace(valid in the current namespace).
:type alias: Name
:param from_ns: Like the namespace, can be equally used.
:type from_ns: Name
:param star: If a star is used -> from time import *.
:type star: bool
:param defunct: An Import is valid or not.
:type defunct: bool
"""
def __init__(self, module, start_pos, end_pos, namespace, alias=None,
from_ns=None, star=False, relative_count=0, defunct=False):
super(Import, self).__init__(module, start_pos, end_pos)
self.namespace = namespace
self.alias = alias
self.from_ns = from_ns
for n in [namespace, alias, from_ns]:
if n:
n.parent = self.use_as_parent
self.star = star
self.relative_count = relative_count
self.defunct = defunct
def get_code(self, new_line=True):
# in case one of the names is None
alias = self.alias or ''
namespace = self.namespace or ''
from_ns = self.from_ns or ''
if self.alias:
ns_str = "%s as %s" % (namespace, alias)
else:
ns_str = str(namespace)
nl = '\n' if new_line else ''
if self.from_ns or self.relative_count:
if self.star:
ns_str = '*'
dots = '.' * self.relative_count
return "from %s%s import %s%s" % (dots, from_ns, ns_str, nl)
else:
return "import %s%s" % (ns_str, nl)
def get_defined_names(self):
if self.defunct:
return []
if self.star:
return [self]
if self.alias:
return [self.alias]
if len(self.namespace) > 1:
o = self.namespace
n = Name(self._sub_module, [(o.names[0], o.start_pos)],
o.start_pos, o.end_pos, parent=o.parent)
return [n]
else:
return [self.namespace]
def get_set_vars(self):
return self.get_defined_names()
def get_all_import_names(self):
n = []
if self.from_ns:
n.append(self.from_ns)
if self.namespace:
n.append(self.namespace)
if self.alias:
n.append(self.alias)
return n
class Statement(Simple):
"""
This is the class for all the possible statements. Which means, this class
stores pretty much all the Python code, except functions, classes, imports,
and flow functions like if, for, etc.
:type token_list: list
:param token_list:
List of tokens or names. Each element is either an instance
of :class:`Name` or a tuple of token type value (e.g.,
:data:`tokenize.NUMBER`), token string (e.g., ``'='``), and
start position (e.g., ``(1, 0)``).
:type start_pos: 2-tuple of int
:param start_pos: Position (line, column) of the Statement.
"""
__slots__ = ('token_list', '_set_vars', 'as_names', '_expression_list',
'_assignment_details', 'docstr', '_names_are_set_vars')
def __init__(self, module, token_list, start_pos, end_pos, parent=None,
as_names=(), names_are_set_vars=False, set_name_parents=True):
super(Statement, self).__init__(module, start_pos, end_pos)
if isinstance(start_pos, list):
raise NotImplementedError()
self.token_list = token_list
self._names_are_set_vars = names_are_set_vars
if set_name_parents:
for t in token_list:
if isinstance(t, Name):
t.parent = self.use_as_parent
for n in as_names:
n.parent = self.use_as_parent
self.parent = parent
self.docstr = ''
self._set_vars = None
self.as_names = list(as_names)
# cache
self._expression_list = None
self._assignment_details = []
# this is important for other scripts
def add_docstr(self, string):
""" Clean up a docstring """
self.docstr = cleandoc(literal_eval(string))
def get_code(self, new_line=True):
def assemble(command_list, assignment=None):
pieces = [c.get_code() if isinstance(c, Simple) else unicode(c)
for c in command_list]
if assignment is None:
return ''.join(pieces)
return '%s %s ' % (''.join(pieces), assignment)
code = ''.join(assemble(*a) for a in self.assignment_details)
code += assemble(self.expression_list())
if self.docstr:
code += '\n"""%s"""' % self.docstr
if new_line:
return code + '\n'
else:
return code
def get_set_vars(self):
""" Get the names for the statement. """
if self._set_vars is None:
def search_calls(calls):
for call in calls:
if isinstance(call, Array):
for stmt in call:
search_calls(stmt.expression_list())
elif isinstance(call, Call):
c = call
# Check if there's an execution in it, if so this is
# not a set_var.
is_execution = False
while c:
if Array.is_type(c.execution, Array.TUPLE):
is_execution = True
c = c.next
if is_execution:
continue
self._set_vars.append(call.name)
self._set_vars = []
for calls, operation in self.assignment_details:
search_calls(calls)
if not self.assignment_details and self._names_are_set_vars:
# In the case of Param, it's also a defining name without ``=``
search_calls(self.expression_list())
return self._set_vars + self.as_names
def is_global(self):
# first keyword of the first token is global -> must be a global
return str(self.token_list[0]) == "global"
@property
def assignment_details(self):
"""
Returns an array of tuples of the elements before the assignment.
For example the following code::
x = (y, z) = 2, ''
would result in ``[(Name(x), '='), (Array([Name(y), Name(z)]), '=')]``.
"""
# parse statement which creates the assignment details.
self.expression_list()
return self._assignment_details
def expression_list(self):
if self._expression_list is None:
self._expression_list = ['time neeeeed'] # avoid recursions
self._expression_list = self._parse_statement()
return self._expression_list
def _parse_statement(self):
"""
This is not done in the main parser, because it might be slow and
most of the statements won't need this data anyway. This is something
'like' a lazy execution.
This is not really nice written, sorry for that. If you plan to replace
it and make it nicer, that would be cool :-)
"""
def is_assignment(tok):
return isinstance(tok, (str, unicode)) and tok.endswith('=') \
and not tok in ['>=', '<=', '==', '!=']
def parse_array(token_iterator, array_type, start_pos, add_el=None,
added_breaks=()):
arr = Array(self._sub_module, start_pos, array_type, self)
if add_el is not None:
arr.add_statement(add_el)
maybe_dict = array_type == Array.SET
break_tok = None
is_array = None
while True:
stmt, break_tok = parse_stmt(token_iterator, maybe_dict,
break_on_assignment=bool(add_el),
added_breaks=added_breaks)
if stmt is None:
break
else:
if break_tok == ',':
is_array = True
is_key = maybe_dict and break_tok == ':'
arr.add_statement(stmt, is_key)
if break_tok in closing_brackets \
or break_tok in added_breaks \
or is_assignment(break_tok):
break
if arr.type == Array.TUPLE and len(arr) == 1 and not is_array:
arr.type = Array.NOARRAY
if not arr.values and maybe_dict:
# this is a really special case - empty brackets {} are
# always dictionaries and not sets.
arr.type = Array.DICT
c = token_iterator.current[1]
arr.end_pos = c.end_pos if isinstance(c, Simple) \
else c.end_pos
return arr, break_tok
def parse_stmt(token_iterator, maybe_dict=False, added_breaks=(),
break_on_assignment=False, stmt_class=Statement):
token_list = []
level = 1
tok = None
first = True
end_pos = None, None
for i, tok_temp in token_iterator:
if isinstance(tok_temp, Base):
# the token is a Name, which has already been parsed
tok = tok_temp
if first:
start_pos = tok.start_pos
first = False
end_pos = tok.end_pos
if isinstance(tok, ListComprehension):
# it's not possible to set it earlier
tok.parent = self
else:
tok = tok_temp.token
start_tok_pos = tok_temp.start_pos
last_end_pos = end_pos
end_pos = tok_temp.end_pos
if first:
first = False
start_pos = start_tok_pos
if tok == 'lambda':
lambd, tok = parse_lambda(token_iterator)
if lambd is not None:
token_list.append(lambd)
elif tok == 'for':
list_comp, tok = parse_list_comp(
token_iterator,
token_list,
start_pos,
last_end_pos
)
if list_comp is not None:
token_list = [list_comp]
if tok in closing_brackets:
level -= 1
elif tok in brackets.keys():
level += 1
if level == 0 and tok in closing_brackets \
or tok in added_breaks \
or level == 1 and (
tok == ','
or maybe_dict and tok == ':'
or is_assignment(tok)
and break_on_assignment
):
end_pos = end_pos[0], end_pos[1] - 1
break
token_list.append(tok_temp)
if not token_list:
return None, tok
statement = stmt_class(
self._sub_module,
token_list,
start_pos,
end_pos,
self.parent,
set_name_parents=False
)
return statement, tok
def parse_lambda(token_iterator):
params = []
start_pos = self.start_pos
while True:
param, tok = parse_stmt(token_iterator, added_breaks=[':'],
stmt_class=Param)
if param is None:
break
params.append(param)
if tok == ':':
break
if tok != ':':
return None, tok
# since lambda is a Function scope, it needs Scope parents
parent = self.get_parent_until(IsScope)
lambd = Lambda(self._sub_module, params, start_pos, parent)
ret, tok = parse_stmt(token_iterator)
if ret is not None:
ret.parent = lambd
lambd.returns.append(ret)
lambd.end_pos = self.end_pos
return lambd, tok
def parse_list_comp(token_iterator, token_list, start_pos, end_pos):
def parse_stmt_or_arr(
token_iterator, added_breaks=(), names_are_set_vars=False
):
stmt, tok = parse_stmt(token_iterator,
added_breaks=added_breaks)
if not stmt:
return None, tok
if tok == ',':
arr, tok = parse_array(token_iterator, Array.TUPLE,
stmt.start_pos, stmt,
added_breaks=added_breaks)
token_list = []
for stmt in arr:
token_list += stmt.token_list
start_pos = arr.start_pos[0], arr.start_pos[1] - 1
stmt = Statement(self._sub_module, token_list,
start_pos, arr.end_pos)
arr.parent = stmt
stmt.token_list = stmt._expression_list = [arr]
else:
for t in stmt.token_list:
if isinstance(t, Name):
t.parent = stmt
stmt._names_are_set_vars = names_are_set_vars
return stmt, tok
st = Statement(self._sub_module, token_list, start_pos,
end_pos, set_name_parents=False)
middle, tok = parse_stmt_or_arr(token_iterator, ['in'], True)
if tok != 'in' or middle is None:
debug.warning('list comprehension middle @%s' % str(start_pos))
return None, tok
in_clause, tok = parse_stmt_or_arr(token_iterator)
if in_clause is None:
debug.warning('list comprehension in @%s' % str(start_pos))
return None, tok
return ListComprehension(st, middle, in_clause, self), tok
# initializations
result = []
is_chain = False
brackets = {'(': Array.TUPLE, '[': Array.LIST, '{': Array.SET}
closing_brackets = ')', '}', ']'
token_iterator = common.PushBackIterator(enumerate(self.token_list))
for i, tok_temp in token_iterator:
if isinstance(tok_temp, Base):
# the token is a Name, which has already been parsed
tok = tok_temp
token_type = None
start_pos = tok.start_pos
end_pos = tok.end_pos
else:
token_type = tok_temp.token_type
tok = tok_temp.token
start_pos = tok_temp.start_pos
end_pos = tok_temp.end_pos
if is_assignment(tok):
# This means, there is an assignment here.
# Add assignments, which can be more than one
self._assignment_details.append(
(result, tok_temp.token)
)
result = []
is_chain = False
continue
elif tok == 'as': # just ignore as, because it sets values
next(token_iterator, None)
continue
if tok == 'lambda':
lambd, tok = parse_lambda(token_iterator)
if lambd is not None:
result.append(lambd)
else:
continue
is_literal = token_type in [tokenize.STRING, tokenize.NUMBER]
if isinstance(tok, Name) or is_literal:
cls = Call
if is_literal:
cls = String if token_type == tokenize.STRING else Number
call = cls(self._sub_module, tok, start_pos, end_pos, self)
if is_chain:
result[-1].set_next(call)
else:
result.append(call)
is_chain = False
elif tok in brackets.keys():
arr, is_ass = parse_array(
token_iterator, brackets[tok], start_pos
)
if result and isinstance(result[-1], StatementElement):
result[-1].set_execution(arr)
else:
arr.parent = self
result.append(arr)
elif tok == '.':
if result and isinstance(result[-1], StatementElement):
is_chain = True
elif tok == ',': # implies a tuple
# expression is now an array not a statement anymore
t = result[0]
start_pos = t[2] if isinstance(t, tuple) else t.start_pos
# get the correct index
i, tok = next(token_iterator, (len(self.token_list), None))
if tok is not None:
token_iterator.push_back((i, tok))
t = self.token_list[i - 1]
try:
e = t.end_pos
except AttributeError:
e = (t[2][0], t[2][1] + len(t[1])) \
if isinstance(t, tuple) else t.start_pos
stmt = Statement(
self._sub_module,
result,
start_pos,
e,
self.parent,
set_name_parents=False
)
stmt._expression_list = result
arr, break_tok = parse_array(token_iterator, Array.TUPLE,
stmt.start_pos, stmt)
result = [arr]
if is_assignment(break_tok):
self._assignment_details.append((result, break_tok))
result = []
is_chain = False
else:
if tok != '\n' and token_type != tokenize.COMMENT:
result.append(tok)
return result
class Param(Statement):
"""
The class which shows definitions of params of classes and functions.
But this is not to define function calls.
"""
__slots__ = ('position_nr', 'is_generated', 'annotation_stmt',
'parent_function')
def __init__(self, *args, **kwargs):
kwargs.pop('names_are_set_vars', None)
super(Param, self).__init__(*args, names_are_set_vars=True, **kwargs)
# this is defined by the parser later on, not at the initialization
# it is the position in the call (first argument, second...)
self.position_nr = None
self.is_generated = False
self.annotation_stmt = None
self.parent_function = None
def add_annotation(self, annotation_stmt):
annotation_stmt.parent = self.use_as_parent
self.annotation_stmt = annotation_stmt
def get_name(self):
""" get the name of the param """
n = self.get_set_vars()
if len(n) > 1:
debug.warning("Multiple param names (%s)." % n)
return n[0]
class StatementElement(Simple):
def __init__(self, module, start_pos, end_pos, parent):
super(StatementElement, self).__init__(module, start_pos, end_pos)
# parent is not the oposite of next. The parent of c: a = [b.c] would
# be an array.
self.parent = parent
self.next = None
self.execution = None
def set_next(self, call):
""" Adds another part of the statement"""
call.parent = self
if self.next is not None:
self.next.set_next(call)
else:
self.next = call
def set_execution(self, call):
"""
An execution is nothing else than brackets, with params in them, which
shows access on the internals of this name.
"""
call.parent = self
if self.next is not None:
self.next.set_execution(call)
elif self.execution is not None:
self.execution.set_execution(call)
else:
self.execution = call
def generate_call_path(self):
""" Helps to get the order in which statements are executed. """
try:
for name_part in self.name.names:
yield name_part
except AttributeError:
yield self
if self.execution is not None:
for y in self.execution.generate_call_path():
yield y
if self.next is not None:
for y in self.next.generate_call_path():
yield y
def get_code(self):
s = ''
if self.execution is not None:
s += self.execution.get_code()
if self.next is not None:
s += '.' + self.next.get_code()
return s
class Call(StatementElement):
def __init__(self, module, name, start_pos, end_pos, parent=None):
super(Call, self).__init__(module, start_pos, end_pos, parent)
self.name = name
def get_code(self):
return self.name.get_code() + super(Call, self).get_code()
def __repr__(self):
return "<%s: %s>" % (type(self).__name__, self.name)
class Literal(StatementElement):
def __init__(self, module, literal, start_pos, end_pos, parent=None):
super(Literal, self).__init__(module, start_pos, end_pos, parent)
self.literal = literal
self.value = literal_eval(literal)
def get_code(self):
return self.literal + super(Literal, self).get_code()
def type_as_string(self):
return type(self.value).__name__
def __repr__(self):
if is_py3k:
s = self.literal
else:
s = self.literal.encode('ascii', 'replace')
return "<%s: %s>" % (type(self).__name__, s)
class String(Literal):
pass
class Number(Literal):
pass
class Array(StatementElement):
"""
Describes the different python types for an array, but also empty
statements. In the Python syntax definitions this type is named 'atom'.
http://docs.python.org/py3k/reference/grammar.html
Array saves sub-arrays as well as normal operators and calls to methods.
:param array_type: The type of an array, which can be one of the constants
below.
:type array_type: int
"""
NOARRAY = None # just brackets, like `1 * (3 + 2)`
TUPLE = 'tuple'
LIST = 'list'
DICT = 'dict'
SET = 'set'
def __init__(self, module, start_pos, arr_type=NOARRAY, parent=None):
super(Array, self).__init__(module, start_pos, (None, None), parent)
self.end_pos = None, None
self.type = arr_type
self.values = []
self.keys = []
def add_statement(self, statement, is_key=False):
"""Just add a new statement"""
statement.parent = self
if is_key:
self.type = self.DICT
self.keys.append(statement)
else:
self.values.append(statement)
@staticmethod
def is_type(instance, *types):
"""
This is not only used for calls on the actual object, but for
ducktyping, to invoke this function with anything as `self`.
"""
try:
if instance.type in types:
return True
except AttributeError:
pass
return False
def __len__(self):
return len(self.values)
def __getitem__(self, key):
if self.type == self.DICT:
raise TypeError('no dicts allowed')
return self.values[key]
def __iter__(self):
if self.type == self.DICT:
raise TypeError('no dicts allowed')
return iter(self.values)
def items(self):
if self.type != self.DICT:
raise TypeError('only dicts allowed')
return zip(self.keys, self.values)
def get_code(self):
map = {
self.NOARRAY: '(%s)',
self.TUPLE: '(%s)',
self.LIST: '[%s]',
self.DICT: '{%s}',
self.SET: '{%s}'
}
inner = []
for i, stmt in enumerate(self.values):
s = ''
with common.ignored(IndexError):
key = self.keys[i]
s += key.get_code(new_line=False) + ': '
s += stmt.get_code(new_line=False)
inner.append(s)
add = ',' if self.type == self.TUPLE and len(self) == 1 else ''
s = map[self.type] % (', '.join(inner) + add)
return s + super(Array, self).get_code()
def __repr__(self):
if self.type == self.NOARRAY:
typ = 'noarray'
else:
typ = self.type
return "<%s: %s%s>" % (type(self).__name__, typ, self.values)
class NamePart(str):
"""
A string. Sometimes it is important to know if the string belongs to a name
or not.
"""
# Unfortunately there's no way to use slots for str (non-zero __itemsize__)
# -> http://utcc.utoronto.ca/~cks/space/blog/python/IntSlotsPython3k
#__slots__ = ('_start_pos', 'parent')
def __new__(cls, s, parent, start_pos):
self = super(NamePart, cls).__new__(cls, s)
self._start_pos = start_pos
self.parent = parent
return self
@property
def start_pos(self):
offset = self.parent._sub_module.line_offset
return offset + self._start_pos[0], self._start_pos[1]
@property
def end_pos(self):
return self.start_pos[0], self.start_pos[1] + len(self)
def __getnewargs__(self):
return str(self), self.parent, self._start_pos
class Name(Simple):
"""
Used to define names in python.
Which means the whole namespace/class/function stuff.
So a name like "module.class.function"
would result in an array of [module, class, function]
"""
__slots__ = ('names',)
def __init__(self, module, names, start_pos, end_pos, parent=None):
super(Name, self).__init__(module, start_pos, end_pos)
self.names = tuple(n if isinstance(n, NamePart) else
NamePart(n[0], self, n[1]) for n in names)
if parent is not None:
self.parent = parent
def get_code(self):
""" Returns the names in a full string format """
return ".".join(self.names)
@property
def docstr(self):
"""Return attribute docstring (PEP 257) if exists."""
return self.parent.docstr
def __str__(self):
return self.get_code()
def __len__(self):
return len(self.names)
class ListComprehension(Base):
""" Helper class for list comprehensions """
def __init__(self, stmt, middle, input, parent):
self.stmt = stmt
self.middle = middle
self.input = input
for s in [stmt, middle, input]:
s.parent = self
self.parent = parent
def get_parent_until(self, *args, **kwargs):
return Simple.get_parent_until(self, *args, **kwargs)
@property
def start_pos(self):
return self.stmt.start_pos
@property
def end_pos(self):
return self.stmt.end_pos
def __repr__(self):
return "<%s: %s>" % \
(type(self).__name__, self.get_code())
def get_code(self):
statements = self.stmt, self.middle, self.input
code = [s.get_code().replace('\n', '') for s in statements]
return "%s for %s in %s" % tuple(code)