mirror of
https://github.com/davidhalter/jedi.git
synced 2025-12-06 05:54:25 +08:00
Merge branch 'improve-type-annotation-inference-refactors' of https://github.com/PeterJCLaw/jedi
This commit is contained in:
@@ -10,6 +10,43 @@ class BaseValue(object):
|
||||
return value
|
||||
value = value.parent_context
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
"""
|
||||
When the current instance represents a type annotation, this method
|
||||
tries to find information about undefined type vars and returns a dict
|
||||
from type var name to value set.
|
||||
|
||||
This is for example important to understand what `iter([1])` returns.
|
||||
According to typeshed, `iter` returns an `Iterator[_T]`:
|
||||
|
||||
def iter(iterable: Iterable[_T]) -> Iterator[_T]: ...
|
||||
|
||||
This functions would generate `int` for `_T` in this case, because it
|
||||
unpacks the `Iterable`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
`self`: represents the annotation of the current parameter to infer the
|
||||
value for. In the above example, this would initially be the
|
||||
`Iterable[_T]` of the `iterable` parameter and then, when recursing,
|
||||
just the `_T` generic parameter.
|
||||
|
||||
`value_set`: represents the actual argument passed to the parameter
|
||||
we're inferrined for, or (for recursive calls) their types. In the
|
||||
above example this would first be the representation of the list
|
||||
`[1]` and then, when recursing, just of `1`.
|
||||
|
||||
`is_class_value`: tells us whether or not to treat the `value_set` as
|
||||
representing the instances or types being passed, which is neccesary
|
||||
to correctly cope with `Type[T]` annotations. When it is True, this
|
||||
means that we are being called with a nested portion of an
|
||||
annotation and that the `value_set` represents the types of the
|
||||
arguments, rather than their actual instances. Note: not all
|
||||
recursive calls will neccesarily set this to True.
|
||||
"""
|
||||
return {}
|
||||
|
||||
|
||||
class BaseValueSet(object):
|
||||
def __init__(self, iterable):
|
||||
|
||||
@@ -438,6 +438,18 @@ class ValueSet(BaseValueSet):
|
||||
s = 'Optional[%s]' % s
|
||||
return s
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_type_var_dicts
|
||||
|
||||
type_var_dict = {}
|
||||
for value in self._set:
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
value.infer_type_vars(value_set, is_class_value),
|
||||
)
|
||||
return type_var_dict
|
||||
|
||||
|
||||
NO_VALUES = ValueSet([])
|
||||
|
||||
|
||||
@@ -14,7 +14,6 @@ from jedi.inference.cache import inference_state_method_cache
|
||||
from jedi.inference.base_value import ValueSet, NO_VALUES
|
||||
from jedi.inference.gradual.base import DefineGenericBase, GenericClass
|
||||
from jedi.inference.gradual.generics import TupleGenericManager
|
||||
from jedi.inference.gradual.typing import TypingClassValueWithIndex
|
||||
from jedi.inference.gradual.type_var import TypeVar
|
||||
from jedi.inference.helpers import is_string
|
||||
from jedi.inference.compiled import builtin_from_name
|
||||
@@ -269,11 +268,10 @@ def infer_type_vars_for_execution(function, arguments, annotation_dict):
|
||||
elif kind is Parameter.VAR_KEYWORD:
|
||||
# TODO _dict_values is not public.
|
||||
actual_value_set = actual_value_set.try_merge('_dict_values')
|
||||
for ann in annotation_value_set:
|
||||
_merge_type_var_dicts(
|
||||
annotation_variable_results,
|
||||
_infer_type_vars(ann, actual_value_set),
|
||||
)
|
||||
merge_type_var_dicts(
|
||||
annotation_variable_results,
|
||||
annotation_value_set.infer_type_vars(actual_value_set),
|
||||
)
|
||||
return annotation_variable_results
|
||||
|
||||
|
||||
@@ -302,15 +300,14 @@ def infer_type_vars_for_callable(arguments, lazy_params):
|
||||
callable_param_values = lazy_callable_param.infer()
|
||||
# Infer unknown type var
|
||||
actual_value_set = lazy_value.infer()
|
||||
for v in callable_param_values:
|
||||
_merge_type_var_dicts(
|
||||
annotation_variable_results,
|
||||
_infer_type_vars(v, actual_value_set),
|
||||
)
|
||||
merge_type_var_dicts(
|
||||
annotation_variable_results,
|
||||
callable_param_values.infer_type_vars(actual_value_set),
|
||||
)
|
||||
return annotation_variable_results
|
||||
|
||||
|
||||
def _merge_type_var_dicts(base_dict, new_dict):
|
||||
def merge_type_var_dicts(base_dict, new_dict):
|
||||
for type_var_name, values in new_dict.items():
|
||||
if values:
|
||||
try:
|
||||
@@ -319,195 +316,59 @@ def _merge_type_var_dicts(base_dict, new_dict):
|
||||
base_dict[type_var_name] = values
|
||||
|
||||
|
||||
def _infer_type_vars(annotation_value, value_set, is_class_value=False):
|
||||
def merge_pairwise_generics(annotation_value, annotated_argument_class):
|
||||
"""
|
||||
This function tries to find information about undefined type vars and
|
||||
returns a dict from type var name to value set.
|
||||
Match up the generic parameters from the given argument class to the
|
||||
target annotation.
|
||||
|
||||
This is for example important to understand what `iter([1])` returns.
|
||||
According to typeshed, `iter` returns an `Iterator[_T]`:
|
||||
This walks the generic parameters immediately within the annotation and
|
||||
argument's type, in order to determine the concrete values of the
|
||||
annotation's parameters for the current case.
|
||||
|
||||
def iter(iterable: Iterable[_T]) -> Iterator[_T]: ...
|
||||
For example, given the following code:
|
||||
|
||||
This functions would generate `int` for `_T` in this case, because it
|
||||
unpacks the `Iterable`.
|
||||
def values(mapping: Mapping[K, V]) -> List[V]: ...
|
||||
|
||||
for val in values({1: 'a'}):
|
||||
val
|
||||
|
||||
Then this function should be given representations of `Mapping[K, V]`
|
||||
and `Mapping[int, str]`, so that it can determine that `K` is `int and
|
||||
`V` is `str`.
|
||||
|
||||
Note that it is responsibility of the caller to traverse the MRO of the
|
||||
argument type as needed in order to find the type matching the
|
||||
annotation (in this case finding `Mapping[int, str]` as a parent of
|
||||
`Dict[int, str]`).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
`annotation_value`: represents the annotation of the current parameter to
|
||||
infer the value for. In the above example, this would initially be the
|
||||
`Iterable[_T]` of the `iterable` parameter and then, when recursing,
|
||||
just the `_T` generic parameter.
|
||||
`annotation_value`: represents the annotation to infer the concrete
|
||||
parameter types of.
|
||||
|
||||
`value_set`: represents the actual argument passed to the parameter we're
|
||||
inferrined for, or (for recursive calls) their types. In the above
|
||||
example this would first be the representation of the list `[1]` and
|
||||
then, when recursing, just of `1`.
|
||||
|
||||
`is_class_value`: tells us whether or not to treat the `value_set` as
|
||||
representing the instances or types being passed, which is neccesary to
|
||||
correctly cope with `Type[T]` annotations. When it is True, this means
|
||||
that we are being called with a nested portion of an annotation and that
|
||||
the `value_set` represents the types of the arguments, rather than their
|
||||
actual instances.
|
||||
Note: not all recursive calls will neccesarily set this to True.
|
||||
`annotated_argument_class`: represents the annotated class of the
|
||||
argument being passed to the object annotated by `annotation_value`.
|
||||
"""
|
||||
|
||||
type_var_dict = {}
|
||||
annotation_name = annotation_value.py__name__()
|
||||
|
||||
def merge_pairwise_generics(annotation_value, annotated_argument_class):
|
||||
"""
|
||||
Match up the generic parameters from the given argument class to the
|
||||
target annotation.
|
||||
if not isinstance(annotated_argument_class, DefineGenericBase):
|
||||
return type_var_dict
|
||||
|
||||
This walks the generic parameters immediately within the annotation and
|
||||
argument's type, in order to determine the concrete values of the
|
||||
annotation's parameters for the current case.
|
||||
annotation_generics = annotation_value.get_generics()
|
||||
actual_generics = annotated_argument_class.get_generics()
|
||||
|
||||
For example, given the following code:
|
||||
|
||||
def values(mapping: Mapping[K, V]) -> List[V]: ...
|
||||
|
||||
for val in values({1: 'a'}):
|
||||
val
|
||||
|
||||
Then this function should be given representations of `Mapping[K, V]`
|
||||
and `Mapping[int, str]`, so that it can determine that `K` is `int and
|
||||
`V` is `str`.
|
||||
|
||||
Note that it is responsibility of the caller to traverse the MRO of the
|
||||
argument type as needed in order to find the type matching the
|
||||
annotation (in this case finding `Mapping[int, str]` as a parent of
|
||||
`Dict[int, str]`).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
`annotation_value`: represents the annotation to infer the concrete
|
||||
parameter types of.
|
||||
|
||||
`annotated_argument_class`: represents the annotated class of the
|
||||
argument being passed to the object annotated by `annotation_value`.
|
||||
"""
|
||||
if not isinstance(annotated_argument_class, DefineGenericBase):
|
||||
return
|
||||
|
||||
annotation_generics = annotation_value.get_generics()
|
||||
actual_generics = annotated_argument_class.get_generics()
|
||||
|
||||
for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
|
||||
for nested_annotation_value in annotation_generics_set:
|
||||
_merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
_infer_type_vars(
|
||||
nested_annotation_value,
|
||||
actual_generic_set,
|
||||
# This is a note to ourselves that we have already
|
||||
# converted the instance representation to its class.
|
||||
is_class_value=True,
|
||||
),
|
||||
)
|
||||
|
||||
if isinstance(annotation_value, TypeVar):
|
||||
if not is_class_value:
|
||||
return {annotation_name: value_set.py__class__()}
|
||||
return {annotation_name: value_set}
|
||||
elif isinstance(annotation_value, TypingClassValueWithIndex):
|
||||
if annotation_name == 'Type':
|
||||
given = annotation_value.get_generics()
|
||||
if given:
|
||||
if is_class_value:
|
||||
for element in value_set:
|
||||
element_name = element.py__name__()
|
||||
if annotation_name == element_name:
|
||||
merge_pairwise_generics(annotation_value, element)
|
||||
|
||||
else:
|
||||
for nested_annotation_value in given[0]:
|
||||
_merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
_infer_type_vars(
|
||||
nested_annotation_value,
|
||||
value_set,
|
||||
is_class_value=True,
|
||||
),
|
||||
)
|
||||
|
||||
elif annotation_name == 'Callable':
|
||||
given = annotation_value.get_generics()
|
||||
if len(given) == 2:
|
||||
for nested_annotation_value in given[1]:
|
||||
_merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
_infer_type_vars(
|
||||
nested_annotation_value,
|
||||
value_set.execute_annotation(),
|
||||
),
|
||||
)
|
||||
|
||||
elif annotation_name == 'Tuple':
|
||||
annotation_generics = annotation_value.get_generics()
|
||||
tuple_annotation, = annotation_value.execute_annotation()
|
||||
# TODO: is can we avoid using this private method?
|
||||
if tuple_annotation._is_homogenous():
|
||||
# The parameter annotation is of the form `Tuple[T, ...]`,
|
||||
# so we treat the incoming tuple like a iterable sequence
|
||||
# rather than a positional container of elements.
|
||||
for nested_annotation_value in annotation_generics[0]:
|
||||
_merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
_infer_type_vars(
|
||||
nested_annotation_value,
|
||||
value_set.merge_types_of_iterate(),
|
||||
),
|
||||
)
|
||||
|
||||
else:
|
||||
# The parameter annotation has only explicit type parameters
|
||||
# (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we
|
||||
# treat the incoming values as needing to match the annotation
|
||||
# exactly, just as we would for non-tuple annotations.
|
||||
|
||||
for element in value_set:
|
||||
py_class = element.get_annotated_class_object()
|
||||
if not isinstance(py_class, GenericClass):
|
||||
py_class = element
|
||||
|
||||
merge_pairwise_generics(annotation_value, py_class)
|
||||
|
||||
elif isinstance(annotation_value, GenericClass):
|
||||
if annotation_name == 'Iterable' and not is_class_value:
|
||||
given = annotation_value.get_generics()
|
||||
if given:
|
||||
for nested_annotation_value in given[0]:
|
||||
_merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
_infer_type_vars(
|
||||
nested_annotation_value,
|
||||
value_set.merge_types_of_iterate(),
|
||||
),
|
||||
)
|
||||
else:
|
||||
# Note: we need to handle the MRO _in order_, so we need to extract
|
||||
# the elements from the set first, then handle them, even if we put
|
||||
# them back in a set afterwards.
|
||||
for element in value_set:
|
||||
if element.api_type == u'function':
|
||||
# Functions & methods don't have an MRO and we're not
|
||||
# expecting a Callable (those are handled separately above).
|
||||
continue
|
||||
|
||||
if element.is_instance():
|
||||
py_class = element.get_annotated_class_object()
|
||||
else:
|
||||
py_class = element
|
||||
|
||||
for parent_class in py_class.py__mro__():
|
||||
class_name = parent_class.py__name__()
|
||||
if annotation_name == class_name:
|
||||
merge_pairwise_generics(annotation_value, parent_class)
|
||||
break
|
||||
for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
annotation_generics_set.infer_type_vars(
|
||||
actual_generic_set,
|
||||
# This is a note to ourselves that we have already
|
||||
# converted the instance representation to its class.
|
||||
is_class_value=True,
|
||||
),
|
||||
)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
|
||||
@@ -200,6 +200,46 @@ class GenericClass(ClassMixin, DefineGenericBase):
|
||||
return True
|
||||
return self._class_value.is_sub_class_of(class_value)
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
|
||||
annotation_name = self.py__name__()
|
||||
type_var_dict = {}
|
||||
if annotation_name == 'Iterable' and not is_class_value:
|
||||
annotation_generics = self.get_generics()
|
||||
if annotation_generics:
|
||||
return annotation_generics[0].infer_type_vars(
|
||||
value_set.merge_types_of_iterate(),
|
||||
)
|
||||
|
||||
else:
|
||||
# Note: we need to handle the MRO _in order_, so we need to extract
|
||||
# the elements from the set first, then handle them, even if we put
|
||||
# them back in a set afterwards.
|
||||
for element in value_set:
|
||||
if element.api_type == u'function':
|
||||
# Functions & methods don't have an MRO and we're not
|
||||
# expecting a Callable (those are handled separately within
|
||||
# TypingClassValueWithIndex).
|
||||
continue
|
||||
|
||||
if element.is_instance():
|
||||
py_class = element.get_annotated_class_object()
|
||||
else:
|
||||
py_class = element
|
||||
|
||||
for parent_class in py_class.py__mro__():
|
||||
class_name = parent_class.py__name__()
|
||||
if annotation_name == class_name:
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, parent_class),
|
||||
)
|
||||
break
|
||||
|
||||
return type_var_dict
|
||||
|
||||
|
||||
class _LazyGenericBaseClass(object):
|
||||
def __init__(self, class_value, lazy_base_class):
|
||||
|
||||
@@ -107,5 +107,11 @@ class TypeVar(BaseTypingValue):
|
||||
def execute_annotation(self):
|
||||
return self._get_classes().execute_annotation()
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
annotation_name = self.py__name__()
|
||||
if not is_class_value:
|
||||
return {annotation_name: value_set.py__class__()}
|
||||
return {annotation_name: value_set}
|
||||
|
||||
def __repr__(self):
|
||||
return '<%s: %s>' % (self.__class__.__name__, self.py__name__())
|
||||
|
||||
@@ -184,7 +184,44 @@ class _TypingClassMixin(ClassMixin):
|
||||
|
||||
|
||||
class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
||||
pass
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
|
||||
type_var_dict = {}
|
||||
annotation_generics = self.get_generics()
|
||||
|
||||
if not annotation_generics:
|
||||
return type_var_dict
|
||||
|
||||
annotation_name = self.py__name__()
|
||||
if annotation_name == 'Type':
|
||||
if is_class_value:
|
||||
for element in value_set:
|
||||
element_name = element.py__name__()
|
||||
if annotation_name == element_name:
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, element),
|
||||
)
|
||||
|
||||
else:
|
||||
return annotation_generics[0].infer_type_vars(
|
||||
value_set,
|
||||
is_class_value=True,
|
||||
)
|
||||
|
||||
elif annotation_name == 'Callable':
|
||||
if len(annotation_generics) == 2:
|
||||
return annotation_generics[1].infer_type_vars(
|
||||
value_set.execute_annotation(),
|
||||
)
|
||||
|
||||
elif annotation_name == 'Tuple':
|
||||
tuple_annotation, = self.execute_annotation()
|
||||
return tuple_annotation.infer_type_vars(value_set, is_class_value)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
|
||||
class ProxyTypingClassValue(_TypingClassMixin, ProxyTypingValue):
|
||||
@@ -281,6 +318,38 @@ class Tuple(BaseTypingValueWithGenerics):
|
||||
.py__getattribute__('tuple').execute_annotation()
|
||||
return tuple_
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
from jedi.inference.gradual.base import GenericClass
|
||||
|
||||
if self._is_homogenous():
|
||||
# The parameter annotation is of the form `Tuple[T, ...]`,
|
||||
# so we treat the incoming tuple like a iterable sequence
|
||||
# rather than a positional container of elements.
|
||||
return self.get_generics()[0].infer_type_vars(
|
||||
value_set.merge_types_of_iterate(),
|
||||
)
|
||||
|
||||
else:
|
||||
# The parameter annotation has only explicit type parameters
|
||||
# (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we
|
||||
# treat the incoming values as needing to match the annotation
|
||||
# exactly, just as we would for non-tuple annotations.
|
||||
|
||||
type_var_dict = {}
|
||||
for element in value_set:
|
||||
py_class = element.get_annotated_class_object()
|
||||
if not isinstance(py_class, GenericClass):
|
||||
py_class = element
|
||||
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, py_class),
|
||||
)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
|
||||
class Generic(BaseTypingValueWithGenerics):
|
||||
pass
|
||||
|
||||
Reference in New Issue
Block a user