mirror of
https://github.com/davidhalter/jedi.git
synced 2025-12-06 22:14:27 +08:00
Merge branch 'improve-type-annotation-inference-refactors' of https://github.com/PeterJCLaw/jedi
This commit is contained in:
@@ -10,6 +10,43 @@ class BaseValue(object):
|
|||||||
return value
|
return value
|
||||||
value = value.parent_context
|
value = value.parent_context
|
||||||
|
|
||||||
|
def infer_type_vars(self, value_set, is_class_value=False):
|
||||||
|
"""
|
||||||
|
When the current instance represents a type annotation, this method
|
||||||
|
tries to find information about undefined type vars and returns a dict
|
||||||
|
from type var name to value set.
|
||||||
|
|
||||||
|
This is for example important to understand what `iter([1])` returns.
|
||||||
|
According to typeshed, `iter` returns an `Iterator[_T]`:
|
||||||
|
|
||||||
|
def iter(iterable: Iterable[_T]) -> Iterator[_T]: ...
|
||||||
|
|
||||||
|
This functions would generate `int` for `_T` in this case, because it
|
||||||
|
unpacks the `Iterable`.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
|
||||||
|
`self`: represents the annotation of the current parameter to infer the
|
||||||
|
value for. In the above example, this would initially be the
|
||||||
|
`Iterable[_T]` of the `iterable` parameter and then, when recursing,
|
||||||
|
just the `_T` generic parameter.
|
||||||
|
|
||||||
|
`value_set`: represents the actual argument passed to the parameter
|
||||||
|
we're inferrined for, or (for recursive calls) their types. In the
|
||||||
|
above example this would first be the representation of the list
|
||||||
|
`[1]` and then, when recursing, just of `1`.
|
||||||
|
|
||||||
|
`is_class_value`: tells us whether or not to treat the `value_set` as
|
||||||
|
representing the instances or types being passed, which is neccesary
|
||||||
|
to correctly cope with `Type[T]` annotations. When it is True, this
|
||||||
|
means that we are being called with a nested portion of an
|
||||||
|
annotation and that the `value_set` represents the types of the
|
||||||
|
arguments, rather than their actual instances. Note: not all
|
||||||
|
recursive calls will neccesarily set this to True.
|
||||||
|
"""
|
||||||
|
return {}
|
||||||
|
|
||||||
|
|
||||||
class BaseValueSet(object):
|
class BaseValueSet(object):
|
||||||
def __init__(self, iterable):
|
def __init__(self, iterable):
|
||||||
|
|||||||
@@ -438,6 +438,18 @@ class ValueSet(BaseValueSet):
|
|||||||
s = 'Optional[%s]' % s
|
s = 'Optional[%s]' % s
|
||||||
return s
|
return s
|
||||||
|
|
||||||
|
def infer_type_vars(self, value_set, is_class_value=False):
|
||||||
|
# Circular
|
||||||
|
from jedi.inference.gradual.annotation import merge_type_var_dicts
|
||||||
|
|
||||||
|
type_var_dict = {}
|
||||||
|
for value in self._set:
|
||||||
|
merge_type_var_dicts(
|
||||||
|
type_var_dict,
|
||||||
|
value.infer_type_vars(value_set, is_class_value),
|
||||||
|
)
|
||||||
|
return type_var_dict
|
||||||
|
|
||||||
|
|
||||||
NO_VALUES = ValueSet([])
|
NO_VALUES = ValueSet([])
|
||||||
|
|
||||||
|
|||||||
@@ -14,7 +14,6 @@ from jedi.inference.cache import inference_state_method_cache
|
|||||||
from jedi.inference.base_value import ValueSet, NO_VALUES
|
from jedi.inference.base_value import ValueSet, NO_VALUES
|
||||||
from jedi.inference.gradual.base import DefineGenericBase, GenericClass
|
from jedi.inference.gradual.base import DefineGenericBase, GenericClass
|
||||||
from jedi.inference.gradual.generics import TupleGenericManager
|
from jedi.inference.gradual.generics import TupleGenericManager
|
||||||
from jedi.inference.gradual.typing import TypingClassValueWithIndex
|
|
||||||
from jedi.inference.gradual.type_var import TypeVar
|
from jedi.inference.gradual.type_var import TypeVar
|
||||||
from jedi.inference.helpers import is_string
|
from jedi.inference.helpers import is_string
|
||||||
from jedi.inference.compiled import builtin_from_name
|
from jedi.inference.compiled import builtin_from_name
|
||||||
@@ -269,11 +268,10 @@ def infer_type_vars_for_execution(function, arguments, annotation_dict):
|
|||||||
elif kind is Parameter.VAR_KEYWORD:
|
elif kind is Parameter.VAR_KEYWORD:
|
||||||
# TODO _dict_values is not public.
|
# TODO _dict_values is not public.
|
||||||
actual_value_set = actual_value_set.try_merge('_dict_values')
|
actual_value_set = actual_value_set.try_merge('_dict_values')
|
||||||
for ann in annotation_value_set:
|
merge_type_var_dicts(
|
||||||
_merge_type_var_dicts(
|
annotation_variable_results,
|
||||||
annotation_variable_results,
|
annotation_value_set.infer_type_vars(actual_value_set),
|
||||||
_infer_type_vars(ann, actual_value_set),
|
)
|
||||||
)
|
|
||||||
return annotation_variable_results
|
return annotation_variable_results
|
||||||
|
|
||||||
|
|
||||||
@@ -302,15 +300,14 @@ def infer_type_vars_for_callable(arguments, lazy_params):
|
|||||||
callable_param_values = lazy_callable_param.infer()
|
callable_param_values = lazy_callable_param.infer()
|
||||||
# Infer unknown type var
|
# Infer unknown type var
|
||||||
actual_value_set = lazy_value.infer()
|
actual_value_set = lazy_value.infer()
|
||||||
for v in callable_param_values:
|
merge_type_var_dicts(
|
||||||
_merge_type_var_dicts(
|
annotation_variable_results,
|
||||||
annotation_variable_results,
|
callable_param_values.infer_type_vars(actual_value_set),
|
||||||
_infer_type_vars(v, actual_value_set),
|
)
|
||||||
)
|
|
||||||
return annotation_variable_results
|
return annotation_variable_results
|
||||||
|
|
||||||
|
|
||||||
def _merge_type_var_dicts(base_dict, new_dict):
|
def merge_type_var_dicts(base_dict, new_dict):
|
||||||
for type_var_name, values in new_dict.items():
|
for type_var_name, values in new_dict.items():
|
||||||
if values:
|
if values:
|
||||||
try:
|
try:
|
||||||
@@ -319,195 +316,59 @@ def _merge_type_var_dicts(base_dict, new_dict):
|
|||||||
base_dict[type_var_name] = values
|
base_dict[type_var_name] = values
|
||||||
|
|
||||||
|
|
||||||
def _infer_type_vars(annotation_value, value_set, is_class_value=False):
|
def merge_pairwise_generics(annotation_value, annotated_argument_class):
|
||||||
"""
|
"""
|
||||||
This function tries to find information about undefined type vars and
|
Match up the generic parameters from the given argument class to the
|
||||||
returns a dict from type var name to value set.
|
target annotation.
|
||||||
|
|
||||||
This is for example important to understand what `iter([1])` returns.
|
This walks the generic parameters immediately within the annotation and
|
||||||
According to typeshed, `iter` returns an `Iterator[_T]`:
|
argument's type, in order to determine the concrete values of the
|
||||||
|
annotation's parameters for the current case.
|
||||||
|
|
||||||
def iter(iterable: Iterable[_T]) -> Iterator[_T]: ...
|
For example, given the following code:
|
||||||
|
|
||||||
This functions would generate `int` for `_T` in this case, because it
|
def values(mapping: Mapping[K, V]) -> List[V]: ...
|
||||||
unpacks the `Iterable`.
|
|
||||||
|
for val in values({1: 'a'}):
|
||||||
|
val
|
||||||
|
|
||||||
|
Then this function should be given representations of `Mapping[K, V]`
|
||||||
|
and `Mapping[int, str]`, so that it can determine that `K` is `int and
|
||||||
|
`V` is `str`.
|
||||||
|
|
||||||
|
Note that it is responsibility of the caller to traverse the MRO of the
|
||||||
|
argument type as needed in order to find the type matching the
|
||||||
|
annotation (in this case finding `Mapping[int, str]` as a parent of
|
||||||
|
`Dict[int, str]`).
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
|
||||||
`annotation_value`: represents the annotation of the current parameter to
|
`annotation_value`: represents the annotation to infer the concrete
|
||||||
infer the value for. In the above example, this would initially be the
|
parameter types of.
|
||||||
`Iterable[_T]` of the `iterable` parameter and then, when recursing,
|
|
||||||
just the `_T` generic parameter.
|
|
||||||
|
|
||||||
`value_set`: represents the actual argument passed to the parameter we're
|
`annotated_argument_class`: represents the annotated class of the
|
||||||
inferrined for, or (for recursive calls) their types. In the above
|
argument being passed to the object annotated by `annotation_value`.
|
||||||
example this would first be the representation of the list `[1]` and
|
|
||||||
then, when recursing, just of `1`.
|
|
||||||
|
|
||||||
`is_class_value`: tells us whether or not to treat the `value_set` as
|
|
||||||
representing the instances or types being passed, which is neccesary to
|
|
||||||
correctly cope with `Type[T]` annotations. When it is True, this means
|
|
||||||
that we are being called with a nested portion of an annotation and that
|
|
||||||
the `value_set` represents the types of the arguments, rather than their
|
|
||||||
actual instances.
|
|
||||||
Note: not all recursive calls will neccesarily set this to True.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
type_var_dict = {}
|
type_var_dict = {}
|
||||||
annotation_name = annotation_value.py__name__()
|
|
||||||
|
|
||||||
def merge_pairwise_generics(annotation_value, annotated_argument_class):
|
if not isinstance(annotated_argument_class, DefineGenericBase):
|
||||||
"""
|
return type_var_dict
|
||||||
Match up the generic parameters from the given argument class to the
|
|
||||||
target annotation.
|
|
||||||
|
|
||||||
This walks the generic parameters immediately within the annotation and
|
annotation_generics = annotation_value.get_generics()
|
||||||
argument's type, in order to determine the concrete values of the
|
actual_generics = annotated_argument_class.get_generics()
|
||||||
annotation's parameters for the current case.
|
|
||||||
|
|
||||||
For example, given the following code:
|
for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
|
||||||
|
merge_type_var_dicts(
|
||||||
def values(mapping: Mapping[K, V]) -> List[V]: ...
|
type_var_dict,
|
||||||
|
annotation_generics_set.infer_type_vars(
|
||||||
for val in values({1: 'a'}):
|
actual_generic_set,
|
||||||
val
|
# This is a note to ourselves that we have already
|
||||||
|
# converted the instance representation to its class.
|
||||||
Then this function should be given representations of `Mapping[K, V]`
|
is_class_value=True,
|
||||||
and `Mapping[int, str]`, so that it can determine that `K` is `int and
|
),
|
||||||
`V` is `str`.
|
)
|
||||||
|
|
||||||
Note that it is responsibility of the caller to traverse the MRO of the
|
|
||||||
argument type as needed in order to find the type matching the
|
|
||||||
annotation (in this case finding `Mapping[int, str]` as a parent of
|
|
||||||
`Dict[int, str]`).
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
|
|
||||||
`annotation_value`: represents the annotation to infer the concrete
|
|
||||||
parameter types of.
|
|
||||||
|
|
||||||
`annotated_argument_class`: represents the annotated class of the
|
|
||||||
argument being passed to the object annotated by `annotation_value`.
|
|
||||||
"""
|
|
||||||
if not isinstance(annotated_argument_class, DefineGenericBase):
|
|
||||||
return
|
|
||||||
|
|
||||||
annotation_generics = annotation_value.get_generics()
|
|
||||||
actual_generics = annotated_argument_class.get_generics()
|
|
||||||
|
|
||||||
for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
|
|
||||||
for nested_annotation_value in annotation_generics_set:
|
|
||||||
_merge_type_var_dicts(
|
|
||||||
type_var_dict,
|
|
||||||
_infer_type_vars(
|
|
||||||
nested_annotation_value,
|
|
||||||
actual_generic_set,
|
|
||||||
# This is a note to ourselves that we have already
|
|
||||||
# converted the instance representation to its class.
|
|
||||||
is_class_value=True,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
if isinstance(annotation_value, TypeVar):
|
|
||||||
if not is_class_value:
|
|
||||||
return {annotation_name: value_set.py__class__()}
|
|
||||||
return {annotation_name: value_set}
|
|
||||||
elif isinstance(annotation_value, TypingClassValueWithIndex):
|
|
||||||
if annotation_name == 'Type':
|
|
||||||
given = annotation_value.get_generics()
|
|
||||||
if given:
|
|
||||||
if is_class_value:
|
|
||||||
for element in value_set:
|
|
||||||
element_name = element.py__name__()
|
|
||||||
if annotation_name == element_name:
|
|
||||||
merge_pairwise_generics(annotation_value, element)
|
|
||||||
|
|
||||||
else:
|
|
||||||
for nested_annotation_value in given[0]:
|
|
||||||
_merge_type_var_dicts(
|
|
||||||
type_var_dict,
|
|
||||||
_infer_type_vars(
|
|
||||||
nested_annotation_value,
|
|
||||||
value_set,
|
|
||||||
is_class_value=True,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
elif annotation_name == 'Callable':
|
|
||||||
given = annotation_value.get_generics()
|
|
||||||
if len(given) == 2:
|
|
||||||
for nested_annotation_value in given[1]:
|
|
||||||
_merge_type_var_dicts(
|
|
||||||
type_var_dict,
|
|
||||||
_infer_type_vars(
|
|
||||||
nested_annotation_value,
|
|
||||||
value_set.execute_annotation(),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
elif annotation_name == 'Tuple':
|
|
||||||
annotation_generics = annotation_value.get_generics()
|
|
||||||
tuple_annotation, = annotation_value.execute_annotation()
|
|
||||||
# TODO: is can we avoid using this private method?
|
|
||||||
if tuple_annotation._is_homogenous():
|
|
||||||
# The parameter annotation is of the form `Tuple[T, ...]`,
|
|
||||||
# so we treat the incoming tuple like a iterable sequence
|
|
||||||
# rather than a positional container of elements.
|
|
||||||
for nested_annotation_value in annotation_generics[0]:
|
|
||||||
_merge_type_var_dicts(
|
|
||||||
type_var_dict,
|
|
||||||
_infer_type_vars(
|
|
||||||
nested_annotation_value,
|
|
||||||
value_set.merge_types_of_iterate(),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
else:
|
|
||||||
# The parameter annotation has only explicit type parameters
|
|
||||||
# (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we
|
|
||||||
# treat the incoming values as needing to match the annotation
|
|
||||||
# exactly, just as we would for non-tuple annotations.
|
|
||||||
|
|
||||||
for element in value_set:
|
|
||||||
py_class = element.get_annotated_class_object()
|
|
||||||
if not isinstance(py_class, GenericClass):
|
|
||||||
py_class = element
|
|
||||||
|
|
||||||
merge_pairwise_generics(annotation_value, py_class)
|
|
||||||
|
|
||||||
elif isinstance(annotation_value, GenericClass):
|
|
||||||
if annotation_name == 'Iterable' and not is_class_value:
|
|
||||||
given = annotation_value.get_generics()
|
|
||||||
if given:
|
|
||||||
for nested_annotation_value in given[0]:
|
|
||||||
_merge_type_var_dicts(
|
|
||||||
type_var_dict,
|
|
||||||
_infer_type_vars(
|
|
||||||
nested_annotation_value,
|
|
||||||
value_set.merge_types_of_iterate(),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
# Note: we need to handle the MRO _in order_, so we need to extract
|
|
||||||
# the elements from the set first, then handle them, even if we put
|
|
||||||
# them back in a set afterwards.
|
|
||||||
for element in value_set:
|
|
||||||
if element.api_type == u'function':
|
|
||||||
# Functions & methods don't have an MRO and we're not
|
|
||||||
# expecting a Callable (those are handled separately above).
|
|
||||||
continue
|
|
||||||
|
|
||||||
if element.is_instance():
|
|
||||||
py_class = element.get_annotated_class_object()
|
|
||||||
else:
|
|
||||||
py_class = element
|
|
||||||
|
|
||||||
for parent_class in py_class.py__mro__():
|
|
||||||
class_name = parent_class.py__name__()
|
|
||||||
if annotation_name == class_name:
|
|
||||||
merge_pairwise_generics(annotation_value, parent_class)
|
|
||||||
break
|
|
||||||
|
|
||||||
return type_var_dict
|
return type_var_dict
|
||||||
|
|
||||||
|
|||||||
@@ -200,6 +200,46 @@ class GenericClass(ClassMixin, DefineGenericBase):
|
|||||||
return True
|
return True
|
||||||
return self._class_value.is_sub_class_of(class_value)
|
return self._class_value.is_sub_class_of(class_value)
|
||||||
|
|
||||||
|
def infer_type_vars(self, value_set, is_class_value=False):
|
||||||
|
# Circular
|
||||||
|
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||||
|
|
||||||
|
annotation_name = self.py__name__()
|
||||||
|
type_var_dict = {}
|
||||||
|
if annotation_name == 'Iterable' and not is_class_value:
|
||||||
|
annotation_generics = self.get_generics()
|
||||||
|
if annotation_generics:
|
||||||
|
return annotation_generics[0].infer_type_vars(
|
||||||
|
value_set.merge_types_of_iterate(),
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Note: we need to handle the MRO _in order_, so we need to extract
|
||||||
|
# the elements from the set first, then handle them, even if we put
|
||||||
|
# them back in a set afterwards.
|
||||||
|
for element in value_set:
|
||||||
|
if element.api_type == u'function':
|
||||||
|
# Functions & methods don't have an MRO and we're not
|
||||||
|
# expecting a Callable (those are handled separately within
|
||||||
|
# TypingClassValueWithIndex).
|
||||||
|
continue
|
||||||
|
|
||||||
|
if element.is_instance():
|
||||||
|
py_class = element.get_annotated_class_object()
|
||||||
|
else:
|
||||||
|
py_class = element
|
||||||
|
|
||||||
|
for parent_class in py_class.py__mro__():
|
||||||
|
class_name = parent_class.py__name__()
|
||||||
|
if annotation_name == class_name:
|
||||||
|
merge_type_var_dicts(
|
||||||
|
type_var_dict,
|
||||||
|
merge_pairwise_generics(self, parent_class),
|
||||||
|
)
|
||||||
|
break
|
||||||
|
|
||||||
|
return type_var_dict
|
||||||
|
|
||||||
|
|
||||||
class _LazyGenericBaseClass(object):
|
class _LazyGenericBaseClass(object):
|
||||||
def __init__(self, class_value, lazy_base_class):
|
def __init__(self, class_value, lazy_base_class):
|
||||||
|
|||||||
@@ -107,5 +107,11 @@ class TypeVar(BaseTypingValue):
|
|||||||
def execute_annotation(self):
|
def execute_annotation(self):
|
||||||
return self._get_classes().execute_annotation()
|
return self._get_classes().execute_annotation()
|
||||||
|
|
||||||
|
def infer_type_vars(self, value_set, is_class_value=False):
|
||||||
|
annotation_name = self.py__name__()
|
||||||
|
if not is_class_value:
|
||||||
|
return {annotation_name: value_set.py__class__()}
|
||||||
|
return {annotation_name: value_set}
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return '<%s: %s>' % (self.__class__.__name__, self.py__name__())
|
return '<%s: %s>' % (self.__class__.__name__, self.py__name__())
|
||||||
|
|||||||
@@ -184,7 +184,44 @@ class _TypingClassMixin(ClassMixin):
|
|||||||
|
|
||||||
|
|
||||||
class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
||||||
pass
|
def infer_type_vars(self, value_set, is_class_value=False):
|
||||||
|
# Circular
|
||||||
|
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||||
|
|
||||||
|
type_var_dict = {}
|
||||||
|
annotation_generics = self.get_generics()
|
||||||
|
|
||||||
|
if not annotation_generics:
|
||||||
|
return type_var_dict
|
||||||
|
|
||||||
|
annotation_name = self.py__name__()
|
||||||
|
if annotation_name == 'Type':
|
||||||
|
if is_class_value:
|
||||||
|
for element in value_set:
|
||||||
|
element_name = element.py__name__()
|
||||||
|
if annotation_name == element_name:
|
||||||
|
merge_type_var_dicts(
|
||||||
|
type_var_dict,
|
||||||
|
merge_pairwise_generics(self, element),
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
return annotation_generics[0].infer_type_vars(
|
||||||
|
value_set,
|
||||||
|
is_class_value=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
elif annotation_name == 'Callable':
|
||||||
|
if len(annotation_generics) == 2:
|
||||||
|
return annotation_generics[1].infer_type_vars(
|
||||||
|
value_set.execute_annotation(),
|
||||||
|
)
|
||||||
|
|
||||||
|
elif annotation_name == 'Tuple':
|
||||||
|
tuple_annotation, = self.execute_annotation()
|
||||||
|
return tuple_annotation.infer_type_vars(value_set, is_class_value)
|
||||||
|
|
||||||
|
return type_var_dict
|
||||||
|
|
||||||
|
|
||||||
class ProxyTypingClassValue(_TypingClassMixin, ProxyTypingValue):
|
class ProxyTypingClassValue(_TypingClassMixin, ProxyTypingValue):
|
||||||
@@ -281,6 +318,38 @@ class Tuple(BaseTypingValueWithGenerics):
|
|||||||
.py__getattribute__('tuple').execute_annotation()
|
.py__getattribute__('tuple').execute_annotation()
|
||||||
return tuple_
|
return tuple_
|
||||||
|
|
||||||
|
def infer_type_vars(self, value_set, is_class_value=False):
|
||||||
|
# Circular
|
||||||
|
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||||
|
from jedi.inference.gradual.base import GenericClass
|
||||||
|
|
||||||
|
if self._is_homogenous():
|
||||||
|
# The parameter annotation is of the form `Tuple[T, ...]`,
|
||||||
|
# so we treat the incoming tuple like a iterable sequence
|
||||||
|
# rather than a positional container of elements.
|
||||||
|
return self.get_generics()[0].infer_type_vars(
|
||||||
|
value_set.merge_types_of_iterate(),
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# The parameter annotation has only explicit type parameters
|
||||||
|
# (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we
|
||||||
|
# treat the incoming values as needing to match the annotation
|
||||||
|
# exactly, just as we would for non-tuple annotations.
|
||||||
|
|
||||||
|
type_var_dict = {}
|
||||||
|
for element in value_set:
|
||||||
|
py_class = element.get_annotated_class_object()
|
||||||
|
if not isinstance(py_class, GenericClass):
|
||||||
|
py_class = element
|
||||||
|
|
||||||
|
merge_type_var_dicts(
|
||||||
|
type_var_dict,
|
||||||
|
merge_pairwise_generics(self, py_class),
|
||||||
|
)
|
||||||
|
|
||||||
|
return type_var_dict
|
||||||
|
|
||||||
|
|
||||||
class Generic(BaseTypingValueWithGenerics):
|
class Generic(BaseTypingValueWithGenerics):
|
||||||
pass
|
pass
|
||||||
|
|||||||
Reference in New Issue
Block a user