Remove is_class_value from infer_type_vars

This commit is contained in:
Dave Halter
2020-05-08 17:49:02 +02:00
parent 12090ce74b
commit 2a227dcc7a
5 changed files with 23 additions and 82 deletions

View File

@@ -268,7 +268,7 @@ class Value(HelperValueMixin):
def get_type_hint(self, add_class_info=True):
return None
def infer_type_vars(self, value_set, is_class_value=False):
def infer_type_vars(self, value_set):
"""
When the current instance represents a type annotation, this method
tries to find information about undefined type vars and returns a dict
@@ -294,14 +294,6 @@ class Value(HelperValueMixin):
we're inferrined for, or (for recursive calls) their types. In the
above example this would first be the representation of the list
`[1]` and then, when recursing, just of `1`.
`is_class_value`: tells us whether or not to treat the `value_set` as
representing the instances or types being passed, which is neccesary
to correctly cope with `Type[T]` annotations. When it is True, this
means that we are being called with a nested portion of an
annotation and that the `value_set` represents the types of the
arguments, rather than their actual instances. Note: not all
recursive calls will neccesarily set this to True.
"""
return {}
@@ -538,7 +530,7 @@ class ValueSet(object):
s = 'Optional[%s]' % s
return s
def infer_type_vars(self, value_set, is_class_value=False):
def infer_type_vars(self, value_set):
# Circular
from jedi.inference.gradual.annotation import merge_type_var_dicts
@@ -546,7 +538,7 @@ class ValueSet(object):
for value in self._set:
merge_type_var_dicts(
type_var_dict,
value.infer_type_vars(value_set, is_class_value),
value.infer_type_vars(value_set),
)
return type_var_dict

View File

@@ -359,12 +359,7 @@ def merge_pairwise_generics(annotation_value, annotated_argument_class):
for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
merge_type_var_dicts(
type_var_dict,
annotation_generics_set.infer_type_vars(
actual_generic_set,
# This is a note to ourselves that we have already
# converted the instance representation to its class.
is_class_value=True,
),
annotation_generics_set.infer_type_vars(actual_generic_set.execute_annotation()),
)
return type_var_dict

View File

@@ -200,29 +200,27 @@ class GenericClass(ClassMixin, DefineGenericBase):
return True
return self._class_value.is_sub_class_of(class_value)
def infer_type_vars(self, value_set, is_class_value=False):
def infer_type_vars(self, value_set):
# Circular
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
annotation_name = self.py__name__()
type_var_dict = {}
if annotation_name == 'Iterable' and not is_class_value:
if annotation_name == 'Iterable':
annotation_generics = self.get_generics()
if annotation_generics:
return annotation_generics[0].infer_type_vars(
value_set.merge_types_of_iterate(),
)
else:
# Note: we need to handle the MRO _in order_, so we need to extract
# the elements from the set first, then handle them, even if we put
# them back in a set afterwards.
for py_class in value_set:
if not is_class_value:
if py_class.is_instance() and not py_class.is_compiled():
py_class = py_class.get_annotated_class_object()
else:
continue
if py_class.is_instance() and not py_class.is_compiled():
py_class = py_class.get_annotated_class_object()
else:
continue
if py_class.api_type != u'class':
# Functions & modules don't have an MRO and we're not

View File

@@ -107,11 +107,9 @@ class TypeVar(BaseTypingValue):
def execute_annotation(self):
return self._get_classes().execute_annotation()
def infer_type_vars(self, value_set, is_class_value=False):
def infer_type_vars(self, value_set):
annotation_name = self.py__name__()
if not is_class_value:
return {annotation_name: value_set.py__class__()}
return {annotation_name: value_set}
return {annotation_name: value_set.py__class__()}
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self.py__name__())

View File

@@ -184,7 +184,7 @@ class _TypingClassMixin(ClassMixin):
class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
def infer_type_vars(self, value_set, is_class_value=False):
def infer_type_vars(self, value_set):
# Circular
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
@@ -196,49 +196,18 @@ class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
annotation_name = self.py__name__()
if annotation_name == 'Type':
if is_class_value:
# This only applies if we are comparing something like
# List[Type[int]] with Iterable[Type[int]]. First, Jedi tries to
# match List/Iterable. After that we will land here, because
# is_class_value will be True at that point. Obviously we also
# compare below that both sides are `Type`.
for element in value_set:
element_name = element.py__name__()
if element_name == 'Type':
merge_type_var_dicts(
type_var_dict,
merge_pairwise_generics(self, element),
)
else:
return annotation_generics[0].infer_type_vars(
value_set,
is_class_value=True,
)
return annotation_generics[0].infer_type_vars(
value_set.execute_with_values(),
)
elif annotation_name == 'Callable':
if len(annotation_generics) == 2:
if is_class_value:
# This only applies if we are comparing something like
# List[Callable[..., T]] with Iterable[Callable[..., T]].
# First, Jedi tries to match List/Iterable. After that we
# will land here, because is_class_value will be True at
# that point. Obviously we also compare below that both
# sides are `Callable`.
for element in value_set:
element_name = element.py__name__()
if element_name == 'Callable':
merge_type_var_dicts(
type_var_dict,
merge_pairwise_generics(self, element),
)
else:
return annotation_generics[1].infer_type_vars(
value_set.execute_annotation(),
)
return annotation_generics[1].infer_type_vars(
value_set.execute_annotation(),
)
elif annotation_name == 'Tuple':
tuple_annotation, = self.execute_annotation()
return tuple_annotation.infer_type_vars(value_set, is_class_value)
return tuple_annotation.infer_type_vars(value_set)
return type_var_dict
@@ -337,7 +306,7 @@ class Tuple(BaseTypingValueWithGenerics):
.py__getattribute__('tuple').execute_annotation()
return tuple_
def infer_type_vars(self, value_set, is_class_value=False):
def infer_type_vars(self, value_set):
# Circular
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
from jedi.inference.gradual.base import GenericClass
@@ -346,14 +315,6 @@ class Tuple(BaseTypingValueWithGenerics):
lambda x: x.py__name__().lower() == 'tuple',
)
# Somewhat unusually, this `infer_type_vars` method is on an instance
# representation of a type, rather than the annotation or class
# representation. This means that as a starting point, we need to
# convert the incoming values to their instance style if they're
# classes, rather than the reverse.
if is_class_value:
value_set = value_set.execute_annotation()
if self._is_homogenous():
# The parameter annotation is of the form `Tuple[T, ...]`,
# so we treat the incoming tuple like a iterable sequence
@@ -370,11 +331,8 @@ class Tuple(BaseTypingValueWithGenerics):
type_var_dict = {}
for element in value_set:
if not is_class_value:
py_class = element.get_annotated_class_object()
if not isinstance(py_class, GenericClass):
py_class = element
else:
py_class = element.get_annotated_class_object()
if not isinstance(py_class, GenericClass):
py_class = element
merge_type_var_dicts(