mirror of
https://github.com/davidhalter/jedi.git
synced 2026-01-11 14:32:20 +08:00
Remove is_class_value from infer_type_vars
This commit is contained in:
@@ -268,7 +268,7 @@ class Value(HelperValueMixin):
|
||||
def get_type_hint(self, add_class_info=True):
|
||||
return None
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
"""
|
||||
When the current instance represents a type annotation, this method
|
||||
tries to find information about undefined type vars and returns a dict
|
||||
@@ -294,14 +294,6 @@ class Value(HelperValueMixin):
|
||||
we're inferrined for, or (for recursive calls) their types. In the
|
||||
above example this would first be the representation of the list
|
||||
`[1]` and then, when recursing, just of `1`.
|
||||
|
||||
`is_class_value`: tells us whether or not to treat the `value_set` as
|
||||
representing the instances or types being passed, which is neccesary
|
||||
to correctly cope with `Type[T]` annotations. When it is True, this
|
||||
means that we are being called with a nested portion of an
|
||||
annotation and that the `value_set` represents the types of the
|
||||
arguments, rather than their actual instances. Note: not all
|
||||
recursive calls will neccesarily set this to True.
|
||||
"""
|
||||
return {}
|
||||
|
||||
@@ -538,7 +530,7 @@ class ValueSet(object):
|
||||
s = 'Optional[%s]' % s
|
||||
return s
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_type_var_dicts
|
||||
|
||||
@@ -546,7 +538,7 @@ class ValueSet(object):
|
||||
for value in self._set:
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
value.infer_type_vars(value_set, is_class_value),
|
||||
value.infer_type_vars(value_set),
|
||||
)
|
||||
return type_var_dict
|
||||
|
||||
|
||||
@@ -359,12 +359,7 @@ def merge_pairwise_generics(annotation_value, annotated_argument_class):
|
||||
for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
annotation_generics_set.infer_type_vars(
|
||||
actual_generic_set,
|
||||
# This is a note to ourselves that we have already
|
||||
# converted the instance representation to its class.
|
||||
is_class_value=True,
|
||||
),
|
||||
annotation_generics_set.infer_type_vars(actual_generic_set.execute_annotation()),
|
||||
)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
@@ -200,29 +200,27 @@ class GenericClass(ClassMixin, DefineGenericBase):
|
||||
return True
|
||||
return self._class_value.is_sub_class_of(class_value)
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
|
||||
annotation_name = self.py__name__()
|
||||
type_var_dict = {}
|
||||
if annotation_name == 'Iterable' and not is_class_value:
|
||||
if annotation_name == 'Iterable':
|
||||
annotation_generics = self.get_generics()
|
||||
if annotation_generics:
|
||||
return annotation_generics[0].infer_type_vars(
|
||||
value_set.merge_types_of_iterate(),
|
||||
)
|
||||
|
||||
else:
|
||||
# Note: we need to handle the MRO _in order_, so we need to extract
|
||||
# the elements from the set first, then handle them, even if we put
|
||||
# them back in a set afterwards.
|
||||
for py_class in value_set:
|
||||
if not is_class_value:
|
||||
if py_class.is_instance() and not py_class.is_compiled():
|
||||
py_class = py_class.get_annotated_class_object()
|
||||
else:
|
||||
continue
|
||||
if py_class.is_instance() and not py_class.is_compiled():
|
||||
py_class = py_class.get_annotated_class_object()
|
||||
else:
|
||||
continue
|
||||
|
||||
if py_class.api_type != u'class':
|
||||
# Functions & modules don't have an MRO and we're not
|
||||
|
||||
@@ -107,11 +107,9 @@ class TypeVar(BaseTypingValue):
|
||||
def execute_annotation(self):
|
||||
return self._get_classes().execute_annotation()
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
annotation_name = self.py__name__()
|
||||
if not is_class_value:
|
||||
return {annotation_name: value_set.py__class__()}
|
||||
return {annotation_name: value_set}
|
||||
return {annotation_name: value_set.py__class__()}
|
||||
|
||||
def __repr__(self):
|
||||
return '<%s: %s>' % (self.__class__.__name__, self.py__name__())
|
||||
|
||||
@@ -184,7 +184,7 @@ class _TypingClassMixin(ClassMixin):
|
||||
|
||||
|
||||
class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
|
||||
@@ -196,49 +196,18 @@ class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
||||
|
||||
annotation_name = self.py__name__()
|
||||
if annotation_name == 'Type':
|
||||
if is_class_value:
|
||||
# This only applies if we are comparing something like
|
||||
# List[Type[int]] with Iterable[Type[int]]. First, Jedi tries to
|
||||
# match List/Iterable. After that we will land here, because
|
||||
# is_class_value will be True at that point. Obviously we also
|
||||
# compare below that both sides are `Type`.
|
||||
for element in value_set:
|
||||
element_name = element.py__name__()
|
||||
if element_name == 'Type':
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, element),
|
||||
)
|
||||
else:
|
||||
return annotation_generics[0].infer_type_vars(
|
||||
value_set,
|
||||
is_class_value=True,
|
||||
)
|
||||
return annotation_generics[0].infer_type_vars(
|
||||
value_set.execute_with_values(),
|
||||
)
|
||||
|
||||
elif annotation_name == 'Callable':
|
||||
if len(annotation_generics) == 2:
|
||||
if is_class_value:
|
||||
# This only applies if we are comparing something like
|
||||
# List[Callable[..., T]] with Iterable[Callable[..., T]].
|
||||
# First, Jedi tries to match List/Iterable. After that we
|
||||
# will land here, because is_class_value will be True at
|
||||
# that point. Obviously we also compare below that both
|
||||
# sides are `Callable`.
|
||||
for element in value_set:
|
||||
element_name = element.py__name__()
|
||||
if element_name == 'Callable':
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, element),
|
||||
)
|
||||
else:
|
||||
return annotation_generics[1].infer_type_vars(
|
||||
value_set.execute_annotation(),
|
||||
)
|
||||
return annotation_generics[1].infer_type_vars(
|
||||
value_set.execute_annotation(),
|
||||
)
|
||||
|
||||
elif annotation_name == 'Tuple':
|
||||
tuple_annotation, = self.execute_annotation()
|
||||
return tuple_annotation.infer_type_vars(value_set, is_class_value)
|
||||
return tuple_annotation.infer_type_vars(value_set)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
@@ -337,7 +306,7 @@ class Tuple(BaseTypingValueWithGenerics):
|
||||
.py__getattribute__('tuple').execute_annotation()
|
||||
return tuple_
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
def infer_type_vars(self, value_set):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
from jedi.inference.gradual.base import GenericClass
|
||||
@@ -346,14 +315,6 @@ class Tuple(BaseTypingValueWithGenerics):
|
||||
lambda x: x.py__name__().lower() == 'tuple',
|
||||
)
|
||||
|
||||
# Somewhat unusually, this `infer_type_vars` method is on an instance
|
||||
# representation of a type, rather than the annotation or class
|
||||
# representation. This means that as a starting point, we need to
|
||||
# convert the incoming values to their instance style if they're
|
||||
# classes, rather than the reverse.
|
||||
if is_class_value:
|
||||
value_set = value_set.execute_annotation()
|
||||
|
||||
if self._is_homogenous():
|
||||
# The parameter annotation is of the form `Tuple[T, ...]`,
|
||||
# so we treat the incoming tuple like a iterable sequence
|
||||
@@ -370,11 +331,8 @@ class Tuple(BaseTypingValueWithGenerics):
|
||||
|
||||
type_var_dict = {}
|
||||
for element in value_set:
|
||||
if not is_class_value:
|
||||
py_class = element.get_annotated_class_object()
|
||||
if not isinstance(py_class, GenericClass):
|
||||
py_class = element
|
||||
else:
|
||||
py_class = element.get_annotated_class_object()
|
||||
if not isinstance(py_class, GenericClass):
|
||||
py_class = element
|
||||
|
||||
merge_type_var_dicts(
|
||||
|
||||
Reference in New Issue
Block a user