mirror of
https://github.com/davidhalter/jedi.git
synced 2025-12-06 05:54:25 +08:00
Move more stuff from gradual/typing.py to gradual/base.py
This commit is contained in:
@@ -12,10 +12,10 @@ from parso import ParserSyntaxError, parse
|
||||
from jedi._compatibility import force_unicode, Parameter
|
||||
from jedi.inference.cache import inference_state_method_cache
|
||||
from jedi.inference.base_value import ValueSet, NO_VALUES
|
||||
from jedi.inference.gradual.typing import TypeVar, LazyGenericClass, \
|
||||
AbstractAnnotatedClass
|
||||
from jedi.inference.gradual.typing import GenericClass, \
|
||||
TypingClassValueWithIndex
|
||||
from jedi.inference.gradual.base import LazyGenericClass, \
|
||||
AbstractAnnotatedClass, GenericClass
|
||||
from jedi.inference.gradual.typing import TypingClassValueWithIndex
|
||||
from jedi.inference.gradual.type_var import TypeVar
|
||||
from jedi.inference.helpers import is_string
|
||||
from jedi.inference.compiled import builtin_from_name
|
||||
from jedi.inference.param import get_executed_param_names
|
||||
|
||||
@@ -1,7 +1,37 @@
|
||||
from jedi.inference.base_value import Value
|
||||
from jedi.inference.value.klass import ClassFilter
|
||||
from jedi.inference.names import ValueName
|
||||
from jedi.inference.cache import inference_state_method_cache
|
||||
from jedi.inference.base_value import ValueSet, NO_VALUES, Value, \
|
||||
iterator_to_value_set, ValueWrapper
|
||||
from jedi.inference.compiled import builtin_from_name
|
||||
from jedi.inference.value.klass import ClassFilter
|
||||
from jedi.inference.value.iterable import SequenceLiteralValue
|
||||
from jedi.inference.value.klass import ClassMixin
|
||||
from jedi.inference.utils import to_list
|
||||
from jedi.inference.names import AbstractNameDefinition, ValueName
|
||||
from jedi.inference.context import ClassContext
|
||||
from jedi.inference.helpers import is_string
|
||||
|
||||
|
||||
def iter_over_arguments(maybe_tuple_value, defining_context):
|
||||
def iterate():
|
||||
if isinstance(maybe_tuple_value, SequenceLiteralValue):
|
||||
for lazy_value in maybe_tuple_value.py__iter__(contextualized_node=None):
|
||||
yield lazy_value.infer()
|
||||
else:
|
||||
yield ValueSet([maybe_tuple_value])
|
||||
|
||||
def resolve_forward_references(value_set):
|
||||
for value in value_set:
|
||||
if is_string(value):
|
||||
from jedi.inference.gradual.annotation import _get_forward_reference_node
|
||||
node = _get_forward_reference_node(defining_context, value.get_safe_value())
|
||||
if node is not None:
|
||||
for c in defining_context.infer_node(node):
|
||||
yield c
|
||||
else:
|
||||
yield value
|
||||
|
||||
for value_set in iterate():
|
||||
yield ValueSet(resolve_forward_references(value_set))
|
||||
|
||||
|
||||
class BaseTypingValue(Value):
|
||||
@@ -39,3 +69,224 @@ class BaseTypingValue(Value):
|
||||
|
||||
def __repr__(self):
|
||||
return '%s(%s)' % (self.__class__.__name__, self._tree_name.value)
|
||||
|
||||
|
||||
class BoundTypeVarName(AbstractNameDefinition):
|
||||
"""
|
||||
This type var was bound to a certain type, e.g. int.
|
||||
"""
|
||||
def __init__(self, type_var, value_set):
|
||||
self._type_var = type_var
|
||||
self.parent_context = type_var.parent_context
|
||||
self._value_set = value_set
|
||||
|
||||
def infer(self):
|
||||
def iter_():
|
||||
for value in self._value_set:
|
||||
# Replace any with the constraints if they are there.
|
||||
from jedi.inference.gradual.typing import Any
|
||||
if isinstance(value, Any):
|
||||
for constraint in self._type_var.constraints:
|
||||
yield constraint
|
||||
else:
|
||||
yield value
|
||||
return ValueSet(iter_())
|
||||
|
||||
def py__name__(self):
|
||||
return self._type_var.py__name__()
|
||||
|
||||
def __repr__(self):
|
||||
return '<%s %s -> %s>' % (self.__class__.__name__, self.py__name__(), self._value_set)
|
||||
|
||||
|
||||
class TypeVarFilter(object):
|
||||
"""
|
||||
A filter for all given variables in a class.
|
||||
|
||||
A = TypeVar('A')
|
||||
B = TypeVar('B')
|
||||
class Foo(Mapping[A, B]):
|
||||
...
|
||||
|
||||
In this example we would have two type vars given: A and B
|
||||
"""
|
||||
def __init__(self, generics, type_vars):
|
||||
self._generics = generics
|
||||
self._type_vars = type_vars
|
||||
|
||||
def get(self, name):
|
||||
for i, type_var in enumerate(self._type_vars):
|
||||
if type_var.py__name__() == name:
|
||||
try:
|
||||
return [BoundTypeVarName(type_var, self._generics[i])]
|
||||
except IndexError:
|
||||
return [type_var.name]
|
||||
return []
|
||||
|
||||
def values(self):
|
||||
# The values are not relevant. If it's not searched exactly, the type
|
||||
# vars are just global and should be looked up as that.
|
||||
return []
|
||||
|
||||
|
||||
class AnnotatedClassContext(ClassContext):
|
||||
def get_filters(self, *args, **kwargs):
|
||||
filters = super(AnnotatedClassContext, self).get_filters(
|
||||
*args, **kwargs
|
||||
)
|
||||
for f in filters:
|
||||
yield f
|
||||
|
||||
# The type vars can only be looked up if it's a global search and
|
||||
# not a direct lookup on the class.
|
||||
yield self._value.get_type_var_filter()
|
||||
|
||||
|
||||
class AbstractAnnotatedClass(ClassMixin, ValueWrapper):
|
||||
def get_type_var_filter(self):
|
||||
return TypeVarFilter(self.get_generics(), self.list_type_vars())
|
||||
|
||||
def is_same_class(self, other):
|
||||
if not isinstance(other, AbstractAnnotatedClass):
|
||||
return False
|
||||
|
||||
if self.tree_node != other.tree_node:
|
||||
# TODO not sure if this is nice.
|
||||
return False
|
||||
given_params1 = self.get_generics()
|
||||
given_params2 = other.get_generics()
|
||||
|
||||
if len(given_params1) != len(given_params2):
|
||||
# If the amount of type vars doesn't match, the class doesn't
|
||||
# match.
|
||||
return False
|
||||
|
||||
# Now compare generics
|
||||
return all(
|
||||
any(
|
||||
# TODO why is this ordering the correct one?
|
||||
cls2.is_same_class(cls1)
|
||||
for cls1 in class_set1
|
||||
for cls2 in class_set2
|
||||
) for class_set1, class_set2 in zip(given_params1, given_params2)
|
||||
)
|
||||
|
||||
def py__call__(self, arguments):
|
||||
instance, = super(AbstractAnnotatedClass, self).py__call__(arguments)
|
||||
return ValueSet([InstanceWrapper(instance)])
|
||||
|
||||
def get_generics(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def define_generics(self, type_var_dict):
|
||||
from jedi.inference.gradual.type_var import TypeVar
|
||||
changed = False
|
||||
new_generics = []
|
||||
for generic_set in self.get_generics():
|
||||
values = NO_VALUES
|
||||
for generic in generic_set:
|
||||
if isinstance(generic, (AbstractAnnotatedClass, TypeVar)):
|
||||
result = generic.define_generics(type_var_dict)
|
||||
values |= result
|
||||
if result != ValueSet({generic}):
|
||||
changed = True
|
||||
else:
|
||||
values |= ValueSet([generic])
|
||||
new_generics.append(values)
|
||||
|
||||
if not changed:
|
||||
# There might not be any type vars that change. In that case just
|
||||
# return itself, because it does not make sense to potentially lose
|
||||
# cached results.
|
||||
return ValueSet([self])
|
||||
|
||||
return ValueSet([GenericClass(
|
||||
self._wrapped_value,
|
||||
generics=tuple(new_generics)
|
||||
)])
|
||||
|
||||
def _as_context(self):
|
||||
return AnnotatedClassContext(self)
|
||||
|
||||
def __repr__(self):
|
||||
return '<%s: %s%s>' % (
|
||||
self.__class__.__name__,
|
||||
self._wrapped_value,
|
||||
list(self.get_generics()),
|
||||
)
|
||||
|
||||
@to_list
|
||||
def py__bases__(self):
|
||||
for base in self._wrapped_value.py__bases__():
|
||||
yield LazyAnnotatedBaseClass(self, base)
|
||||
|
||||
|
||||
class LazyGenericClass(AbstractAnnotatedClass):
|
||||
def __init__(self, class_value, index_value, value_of_index):
|
||||
super(LazyGenericClass, self).__init__(class_value)
|
||||
self._index_value = index_value
|
||||
self._context_of_index = value_of_index
|
||||
|
||||
@inference_state_method_cache()
|
||||
def get_generics(self):
|
||||
return list(iter_over_arguments(self._index_value, self._context_of_index))
|
||||
|
||||
|
||||
class GenericClass(AbstractAnnotatedClass):
|
||||
def __init__(self, class_value, generics):
|
||||
super(GenericClass, self).__init__(class_value)
|
||||
self._generics = generics
|
||||
|
||||
def get_generics(self):
|
||||
return self._generics
|
||||
|
||||
|
||||
class LazyAnnotatedBaseClass(object):
|
||||
def __init__(self, class_value, lazy_base_class):
|
||||
self._class_value = class_value
|
||||
self._lazy_base_class = lazy_base_class
|
||||
|
||||
@iterator_to_value_set
|
||||
def infer(self):
|
||||
for base in self._lazy_base_class.infer():
|
||||
if isinstance(base, AbstractAnnotatedClass):
|
||||
# Here we have to recalculate the given types.
|
||||
yield GenericClass.create_cached(
|
||||
base.inference_state,
|
||||
base._wrapped_value,
|
||||
tuple(self._remap_type_vars(base)),
|
||||
)
|
||||
else:
|
||||
yield base
|
||||
|
||||
def _remap_type_vars(self, base):
|
||||
from jedi.inference.gradual.type_var import TypeVar
|
||||
filter = self._class_value.get_type_var_filter()
|
||||
for type_var_set in base.get_generics():
|
||||
new = NO_VALUES
|
||||
for type_var in type_var_set:
|
||||
if isinstance(type_var, TypeVar):
|
||||
names = filter.get(type_var.py__name__())
|
||||
new |= ValueSet.from_sets(
|
||||
name.infer() for name in names
|
||||
)
|
||||
else:
|
||||
# Mostly will be type vars, except if in some cases
|
||||
# a concrete type will already be there. In that
|
||||
# case just add it to the value set.
|
||||
new |= ValueSet([type_var])
|
||||
yield new
|
||||
|
||||
|
||||
class InstanceWrapper(ValueWrapper):
|
||||
def py__stop_iteration_returns(self):
|
||||
for cls in self._wrapped_value.class_value.py__mro__():
|
||||
if cls.py__name__() == 'Generator':
|
||||
generics = cls.get_generics()
|
||||
try:
|
||||
return generics[2].execute_annotation()
|
||||
except IndexError:
|
||||
pass
|
||||
elif cls.py__name__() == 'Iterator':
|
||||
return ValueSet([builtin_from_name(self.inference_state, u'None')])
|
||||
return self._wrapped_value.py__stop_iteration_returns()
|
||||
|
||||
@@ -9,19 +9,16 @@ from jedi import debug
|
||||
from jedi.inference.cache import inference_state_method_cache
|
||||
from jedi.inference.compiled import builtin_from_name
|
||||
from jedi.inference.base_value import ValueSet, NO_VALUES, Value, \
|
||||
iterator_to_value_set, ValueWrapper, LazyValueWrapper
|
||||
LazyValueWrapper
|
||||
from jedi.inference.lazy_value import LazyKnownValues
|
||||
from jedi.inference.value.iterable import SequenceLiteralValue
|
||||
from jedi.inference.arguments import repack_with_argument_clinic
|
||||
from jedi.inference.utils import to_list
|
||||
from jedi.inference.filters import FilterWrapper
|
||||
from jedi.inference.names import NameWrapper, AbstractTreeName, \
|
||||
AbstractNameDefinition, ValueName
|
||||
from jedi.inference.helpers import is_string
|
||||
from jedi.inference.names import NameWrapper, ValueName
|
||||
from jedi.inference.value.klass import ClassMixin
|
||||
from jedi.inference.context import ClassContext
|
||||
from jedi.inference.gradual.base import BaseTypingValue
|
||||
from jedi.inference.gradual.type_var import TypeVarClass, TypeVar
|
||||
from jedi.inference.gradual.type_var import TypeVarClass
|
||||
from jedi.inference.gradual.base import iter_over_arguments
|
||||
|
||||
_PROXY_CLASS_TYPES = 'Tuple Generic Protocol Callable Type'.split()
|
||||
_TYPE_ALIAS_TYPES = {
|
||||
@@ -138,7 +135,7 @@ class TypingValueWithIndex(_WithIndexBase):
|
||||
|
||||
def gather_annotation_classes(self):
|
||||
return ValueSet.from_sets(
|
||||
_iter_over_arguments(self._index_value, self._context_of_index)
|
||||
iter_over_arguments(self._index_value, self._context_of_index)
|
||||
)
|
||||
|
||||
|
||||
@@ -176,36 +173,13 @@ class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
||||
|
||||
@inference_state_method_cache()
|
||||
def get_generics(self):
|
||||
return list(_iter_over_arguments(self._index_value, self._context_of_index))
|
||||
return list(iter_over_arguments(self._index_value, self._context_of_index))
|
||||
|
||||
|
||||
class TypingClassValue(_TypingClassMixin, TypingValue):
|
||||
index_class = TypingClassValueWithIndex
|
||||
|
||||
|
||||
def _iter_over_arguments(maybe_tuple_value, defining_context):
|
||||
def iterate():
|
||||
if isinstance(maybe_tuple_value, SequenceLiteralValue):
|
||||
for lazy_value in maybe_tuple_value.py__iter__(contextualized_node=None):
|
||||
yield lazy_value.infer()
|
||||
else:
|
||||
yield ValueSet([maybe_tuple_value])
|
||||
|
||||
def resolve_forward_references(value_set):
|
||||
for value in value_set:
|
||||
if is_string(value):
|
||||
from jedi.inference.gradual.annotation import _get_forward_reference_node
|
||||
node = _get_forward_reference_node(defining_context, value.get_safe_value())
|
||||
if node is not None:
|
||||
for c in defining_context.infer_node(node):
|
||||
yield c
|
||||
else:
|
||||
yield value
|
||||
|
||||
for value_set in iterate():
|
||||
yield ValueSet(resolve_forward_references(value_set))
|
||||
|
||||
|
||||
class TypeAlias(LazyValueWrapper):
|
||||
def __init__(self, parent_context, origin_tree_name, actual):
|
||||
self.inference_state = parent_context.inference_state
|
||||
@@ -242,7 +216,7 @@ class TypeAlias(LazyValueWrapper):
|
||||
|
||||
class _GetItemMixin(object):
|
||||
def _get_getitem_values(self, index):
|
||||
args = _iter_over_arguments(self._index_value, self._context_of_index)
|
||||
args = iter_over_arguments(self._index_value, self._context_of_index)
|
||||
for i, values in enumerate(args):
|
||||
if i == index:
|
||||
return values
|
||||
@@ -296,7 +270,7 @@ class Tuple(LazyValueWrapper, _GetItemMixin):
|
||||
return self._get_getitem_values(0).execute_annotation()
|
||||
|
||||
return ValueSet.from_sets(
|
||||
_iter_over_arguments(self._index_value, self._context_of_index)
|
||||
iter_over_arguments(self._index_value, self._context_of_index)
|
||||
).execute_annotation()
|
||||
|
||||
def _get_wrapped_value(self):
|
||||
@@ -356,221 +330,3 @@ class CastFunction(BaseTypingValue):
|
||||
@repack_with_argument_clinic('type, object, /')
|
||||
def py__call__(self, type_value_set, object_value_set):
|
||||
return type_value_set.execute_annotation()
|
||||
|
||||
|
||||
class BoundTypeVarName(AbstractNameDefinition):
|
||||
"""
|
||||
This type var was bound to a certain type, e.g. int.
|
||||
"""
|
||||
def __init__(self, type_var, value_set):
|
||||
self._type_var = type_var
|
||||
self.parent_context = type_var.parent_context
|
||||
self._value_set = value_set
|
||||
|
||||
def infer(self):
|
||||
def iter_():
|
||||
for value in self._value_set:
|
||||
# Replace any with the constraints if they are there.
|
||||
if isinstance(value, Any):
|
||||
for constraint in self._type_var.constraints:
|
||||
yield constraint
|
||||
else:
|
||||
yield value
|
||||
return ValueSet(iter_())
|
||||
|
||||
def py__name__(self):
|
||||
return self._type_var.py__name__()
|
||||
|
||||
def __repr__(self):
|
||||
return '<%s %s -> %s>' % (self.__class__.__name__, self.py__name__(), self._value_set)
|
||||
|
||||
|
||||
class TypeVarFilter(object):
|
||||
"""
|
||||
A filter for all given variables in a class.
|
||||
|
||||
A = TypeVar('A')
|
||||
B = TypeVar('B')
|
||||
class Foo(Mapping[A, B]):
|
||||
...
|
||||
|
||||
In this example we would have two type vars given: A and B
|
||||
"""
|
||||
def __init__(self, generics, type_vars):
|
||||
self._generics = generics
|
||||
self._type_vars = type_vars
|
||||
|
||||
def get(self, name):
|
||||
for i, type_var in enumerate(self._type_vars):
|
||||
if type_var.py__name__() == name:
|
||||
try:
|
||||
return [BoundTypeVarName(type_var, self._generics[i])]
|
||||
except IndexError:
|
||||
return [type_var.name]
|
||||
return []
|
||||
|
||||
def values(self):
|
||||
# The values are not relevant. If it's not searched exactly, the type
|
||||
# vars are just global and should be looked up as that.
|
||||
return []
|
||||
|
||||
|
||||
class AnnotatedClassContext(ClassContext):
|
||||
def get_filters(self, *args, **kwargs):
|
||||
filters = super(AnnotatedClassContext, self).get_filters(
|
||||
*args, **kwargs
|
||||
)
|
||||
for f in filters:
|
||||
yield f
|
||||
|
||||
# The type vars can only be looked up if it's a global search and
|
||||
# not a direct lookup on the class.
|
||||
yield self._value.get_type_var_filter()
|
||||
|
||||
|
||||
class AbstractAnnotatedClass(ClassMixin, ValueWrapper):
|
||||
def get_type_var_filter(self):
|
||||
return TypeVarFilter(self.get_generics(), self.list_type_vars())
|
||||
|
||||
def is_same_class(self, other):
|
||||
if not isinstance(other, AbstractAnnotatedClass):
|
||||
return False
|
||||
|
||||
if self.tree_node != other.tree_node:
|
||||
# TODO not sure if this is nice.
|
||||
return False
|
||||
given_params1 = self.get_generics()
|
||||
given_params2 = other.get_generics()
|
||||
|
||||
if len(given_params1) != len(given_params2):
|
||||
# If the amount of type vars doesn't match, the class doesn't
|
||||
# match.
|
||||
return False
|
||||
|
||||
# Now compare generics
|
||||
return all(
|
||||
any(
|
||||
# TODO why is this ordering the correct one?
|
||||
cls2.is_same_class(cls1)
|
||||
for cls1 in class_set1
|
||||
for cls2 in class_set2
|
||||
) for class_set1, class_set2 in zip(given_params1, given_params2)
|
||||
)
|
||||
|
||||
def py__call__(self, arguments):
|
||||
instance, = super(AbstractAnnotatedClass, self).py__call__(arguments)
|
||||
return ValueSet([InstanceWrapper(instance)])
|
||||
|
||||
def get_generics(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def define_generics(self, type_var_dict):
|
||||
changed = False
|
||||
new_generics = []
|
||||
for generic_set in self.get_generics():
|
||||
values = NO_VALUES
|
||||
for generic in generic_set:
|
||||
if isinstance(generic, (AbstractAnnotatedClass, TypeVar)):
|
||||
result = generic.define_generics(type_var_dict)
|
||||
values |= result
|
||||
if result != ValueSet({generic}):
|
||||
changed = True
|
||||
else:
|
||||
values |= ValueSet([generic])
|
||||
new_generics.append(values)
|
||||
|
||||
if not changed:
|
||||
# There might not be any type vars that change. In that case just
|
||||
# return itself, because it does not make sense to potentially lose
|
||||
# cached results.
|
||||
return ValueSet([self])
|
||||
|
||||
return ValueSet([GenericClass(
|
||||
self._wrapped_value,
|
||||
generics=tuple(new_generics)
|
||||
)])
|
||||
|
||||
def _as_context(self):
|
||||
return AnnotatedClassContext(self)
|
||||
|
||||
def __repr__(self):
|
||||
return '<%s: %s%s>' % (
|
||||
self.__class__.__name__,
|
||||
self._wrapped_value,
|
||||
list(self.get_generics()),
|
||||
)
|
||||
|
||||
@to_list
|
||||
def py__bases__(self):
|
||||
for base in self._wrapped_value.py__bases__():
|
||||
yield LazyAnnotatedBaseClass(self, base)
|
||||
|
||||
|
||||
class LazyGenericClass(AbstractAnnotatedClass):
|
||||
def __init__(self, class_value, index_value, value_of_index):
|
||||
super(LazyGenericClass, self).__init__(class_value)
|
||||
self._index_value = index_value
|
||||
self._context_of_index = value_of_index
|
||||
|
||||
@inference_state_method_cache()
|
||||
def get_generics(self):
|
||||
return list(_iter_over_arguments(self._index_value, self._context_of_index))
|
||||
|
||||
|
||||
class GenericClass(AbstractAnnotatedClass):
|
||||
def __init__(self, class_value, generics):
|
||||
super(GenericClass, self).__init__(class_value)
|
||||
self._generics = generics
|
||||
|
||||
def get_generics(self):
|
||||
return self._generics
|
||||
|
||||
|
||||
class LazyAnnotatedBaseClass(object):
|
||||
def __init__(self, class_value, lazy_base_class):
|
||||
self._class_value = class_value
|
||||
self._lazy_base_class = lazy_base_class
|
||||
|
||||
@iterator_to_value_set
|
||||
def infer(self):
|
||||
for base in self._lazy_base_class.infer():
|
||||
if isinstance(base, AbstractAnnotatedClass):
|
||||
# Here we have to recalculate the given types.
|
||||
yield GenericClass.create_cached(
|
||||
base.inference_state,
|
||||
base._wrapped_value,
|
||||
tuple(self._remap_type_vars(base)),
|
||||
)
|
||||
else:
|
||||
yield base
|
||||
|
||||
def _remap_type_vars(self, base):
|
||||
filter = self._class_value.get_type_var_filter()
|
||||
for type_var_set in base.get_generics():
|
||||
new = NO_VALUES
|
||||
for type_var in type_var_set:
|
||||
if isinstance(type_var, TypeVar):
|
||||
names = filter.get(type_var.py__name__())
|
||||
new |= ValueSet.from_sets(
|
||||
name.infer() for name in names
|
||||
)
|
||||
else:
|
||||
# Mostly will be type vars, except if in some cases
|
||||
# a concrete type will already be there. In that
|
||||
# case just add it to the value set.
|
||||
new |= ValueSet([type_var])
|
||||
yield new
|
||||
|
||||
|
||||
class InstanceWrapper(ValueWrapper):
|
||||
def py__stop_iteration_returns(self):
|
||||
for cls in self._wrapped_value.class_value.py__mro__():
|
||||
if cls.py__name__() == 'Generator':
|
||||
generics = cls.get_generics()
|
||||
try:
|
||||
return generics[2].execute_annotation()
|
||||
except IndexError:
|
||||
pass
|
||||
elif cls.py__name__() == 'Iterator':
|
||||
return ValueSet([builtin_from_name(self.inference_state, u'None')])
|
||||
return self._wrapped_value.py__stop_iteration_returns()
|
||||
|
||||
@@ -283,7 +283,7 @@ class BaseFunctionExecutionContext(ValueContext, TreeContextMixin):
|
||||
inference_state = self.inference_state
|
||||
is_coroutine = self.tree_node.parent.type in ('async_stmt', 'async_funcdef')
|
||||
is_generator = bool(get_yield_exprs(inference_state, self.tree_node))
|
||||
from jedi.inference.gradual.typing import GenericClass
|
||||
from jedi.inference.gradual.base import GenericClass
|
||||
|
||||
if is_coroutine:
|
||||
if is_generator:
|
||||
|
||||
@@ -194,7 +194,7 @@ class Sequence(LazyAttributeOverwrite, IterableMixin):
|
||||
return (self.merge_types_of_iterate().py__class__(),)
|
||||
|
||||
def _get_wrapped_value(self):
|
||||
from jedi.inference.gradual.typing import GenericClass
|
||||
from jedi.inference.gradual.base import GenericClass
|
||||
klass = compiled.builtin_from_name(self.inference_state, self.array_type)
|
||||
c, = GenericClass(klass, self._get_generics()).execute_annotation()
|
||||
return c
|
||||
|
||||
@@ -266,7 +266,7 @@ class ClassValue(use_metaclass(CachedMetaClass, ClassMixin, FunctionAndClassBase
|
||||
)]
|
||||
|
||||
def py__getitem__(self, index_value_set, contextualized_node):
|
||||
from jedi.inference.gradual.typing import LazyGenericClass
|
||||
from jedi.inference.gradual.base import LazyGenericClass
|
||||
if not index_value_set:
|
||||
return ValueSet([self])
|
||||
return ValueSet(
|
||||
@@ -279,7 +279,7 @@ class ClassValue(use_metaclass(CachedMetaClass, ClassMixin, FunctionAndClassBase
|
||||
)
|
||||
|
||||
def define_generics(self, type_var_dict):
|
||||
from jedi.inference.gradual.typing import GenericClass
|
||||
from jedi.inference.gradual.base import GenericClass
|
||||
|
||||
def remap_type_vars():
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user