Add more networkx annotations for networkx.algorithms.dag (#11224)

This commit is contained in:
Wade Carpenter
2024-01-15 09:52:57 -08:00
committed by GitHub
parent cfb16543b8
commit 26e77cbf67

View File

@@ -1,17 +1,22 @@
from _typeshed import Incomplete
from _typeshed import SupportsRichComparison
from collections.abc import Callable, Generator, Iterable, Reversible
from networkx.classes.graph import Graph, _Node
def descendants(G: Graph[_Node], source: _Node) -> set[_Node]: ...
def ancestors(G: Graph[_Node], source: _Node) -> set[_Node]: ...
def is_directed_acyclic_graph(G): ...
def topological_sort(G) -> None: ...
def lexicographical_topological_sort(G, key: Incomplete | None = None): ...
def all_topological_sorts(G) -> None: ...
def is_aperiodic(G): ...
def transitive_closure(G, reflexive: bool = False): ...
def transitive_reduction(G): ...
def antichains(G, topo_order: Incomplete | None = None) -> None: ...
def dag_longest_path(G, weight: str = "weight", default_weight: int = 1, topo_order: Incomplete | None = None): ...
def dag_longest_path_length(G, weight: str = "weight", default_weight: int = 1): ...
def dag_to_branching(G): ...
def is_directed_acyclic_graph(G: Graph[_Node]) -> bool: ...
def topological_sort(G: Graph[_Node]) -> Generator[_Node, None, None]: ...
def lexicographical_topological_sort(
G: Graph[_Node], key: Callable[[_Node], SupportsRichComparison] | None = None
) -> Generator[_Node, None, None]: ...
def all_topological_sorts(G: Graph[_Node]) -> Generator[list[_Node], None, None]: ...
def is_aperiodic(G: Graph[_Node]) -> bool: ...
def transitive_closure(G: Graph[_Node], reflexive: bool = False) -> Graph[_Node]: ...
def transitive_reduction(G: Graph[_Node]) -> Graph[_Node]: ...
def antichains(G: Graph[_Node], topo_order: Reversible[_Node] | None = None) -> Generator[list[_Node], None, None]: ...
def dag_longest_path(
G: Graph[_Node], weight: str = "weight", default_weight: int = 1, topo_order: Iterable[_Node] | None = None
) -> list[_Node]: ...
def dag_longest_path_length(G: Graph[_Node], weight: str = "weight", default_weight: int = 1) -> int: ...
def dag_to_branching(G: Graph[_Node]) -> Graph[_Node]: ...