Bump protobuf stub to 3.18.1 and mypy-protobuf 3.0.0 (#6157)

* Bump protobuf stub to 3.18.1 and mypy-protobuf 3.0.0

* Fix ConsumeInteger in google/protobuf/text_format.pyi

The arg was removed in protobuf 3.18
This commit is contained in:
Nipunn Koorapati
2021-10-12 14:33:22 -07:00
committed by GitHub
parent 71f2e4ab0a
commit 39867f1096
15 changed files with 1910 additions and 1552 deletions

View File

@@ -9,8 +9,8 @@
# followed by committing the changes to typeshed
#
# Update these two variables when rerunning script
PROTOBUF_VERSION=3.17.3
MYPY_PROTOBUF_VERSION=v2.8
PROTOBUF_VERSION=3.18.1
MYPY_PROTOBUF_VERSION=v3.0.0
set -ex

View File

@@ -1,4 +1,4 @@
version = "3.17.*"
version = "3.18.*"
python2 = true
requires = ["types-futures"]
extra_description = "Generated with aid from mypy-protobuf v2.8"
extra_description = "Generated with aid from mypy-protobuf v3.0.0"

View File

@@ -11,126 +11,130 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# `Any` contains an arbitrary serialized protocol buffer message along with a
# URL that describes the type of the serialized message.
#
# Protobuf library provides support to pack/unpack Any values in the form
# of utility functions or additional generated methods of the Any type.
#
# Example 1: Pack and unpack a message in C++.
#
# Foo foo = ...;
# Any any;
# any.PackFrom(foo);
# ...
# if (any.UnpackTo(&foo)) {
# ...
# }
#
# Example 2: Pack and unpack a message in Java.
#
# Foo foo = ...;
# Any any = Any.pack(foo);
# ...
# if (any.is(Foo.class)) {
# foo = any.unpack(Foo.class);
# }
#
# Example 3: Pack and unpack a message in Python.
#
# foo = Foo(...)
# any = Any()
# any.Pack(foo)
# ...
# if any.Is(Foo.DESCRIPTOR):
# any.Unpack(foo)
# ...
#
# Example 4: Pack and unpack a message in Go
#
# foo := &pb.Foo{...}
# any, err := anypb.New(foo)
# if err != nil {
# ...
# }
# ...
# foo := &pb.Foo{}
# if err := any.UnmarshalTo(foo); err != nil {
# ...
# }
#
# The pack methods provided by protobuf library will by default use
# 'type.googleapis.com/full.type.name' as the type URL and the unpack
# methods only use the fully qualified type name after the last '/'
# in the type URL, for example "foo.bar.com/x/y.z" will yield type
# name "y.z".
#
#
# JSON
# ====
# The JSON representation of an `Any` value uses the regular
# representation of the deserialized, embedded message, with an
# additional field `@type` which contains the type URL. Example:
#
# package google.profile;
# message Person {
# string first_name = 1;
# string last_name = 2;
# }
#
# {
# "@type": "type.googleapis.com/google.profile.Person",
# "firstName": <string>,
# "lastName": <string>
# }
#
# If the embedded message type is well-known and has a custom JSON
# representation, that representation will be embedded adding a field
# `value` which holds the custom JSON in addition to the `@type`
# field. Example (for message [google.protobuf.Duration][]):
#
# {
# "@type": "type.googleapis.com/google.protobuf.Duration",
# "value": "1.212s"
# }
class Any(google.protobuf.message.Message, google.protobuf.internal.well_known_types.Any):
"""`Any` contains an arbitrary serialized protocol buffer message along with a
URL that describes the type of the serialized message.
Protobuf library provides support to pack/unpack Any values in the form
of utility functions or additional generated methods of the Any type.
Example 1: Pack and unpack a message in C++.
Foo foo = ...;
Any any;
any.PackFrom(foo);
...
if (any.UnpackTo(&foo)) {
...
}
Example 2: Pack and unpack a message in Java.
Foo foo = ...;
Any any = Any.pack(foo);
...
if (any.is(Foo.class)) {
foo = any.unpack(Foo.class);
}
Example 3: Pack and unpack a message in Python.
foo = Foo(...)
any = Any()
any.Pack(foo)
...
if any.Is(Foo.DESCRIPTOR):
any.Unpack(foo)
...
Example 4: Pack and unpack a message in Go
foo := &pb.Foo{...}
any, err := anypb.New(foo)
if err != nil {
...
}
...
foo := &pb.Foo{}
if err := any.UnmarshalTo(foo); err != nil {
...
}
The pack methods provided by protobuf library will by default use
'type.googleapis.com/full.type.name' as the type URL and the unpack
methods only use the fully qualified type name after the last '/'
in the type URL, for example "foo.bar.com/x/y.z" will yield type
name "y.z".
JSON
====
The JSON representation of an `Any` value uses the regular
representation of the deserialized, embedded message, with an
additional field `@type` which contains the type URL. Example:
package google.profile;
message Person {
string first_name = 1;
string last_name = 2;
}
{
"@type": "type.googleapis.com/google.profile.Person",
"firstName": <string>,
"lastName": <string>
}
If the embedded message type is well-known and has a custom JSON
representation, that representation will be embedded adding a field
`value` which holds the custom JSON in addition to the `@type`
field. Example (for message [google.protobuf.Duration][]):
{
"@type": "type.googleapis.com/google.protobuf.Duration",
"value": "1.212s"
}
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
TYPE_URL_FIELD_NUMBER: builtins.int
VALUE_FIELD_NUMBER: builtins.int
# A URL/resource name that uniquely identifies the type of the serialized
# protocol buffer message. This string must contain at least
# one "/" character. The last segment of the URL's path must represent
# the fully qualified name of the type (as in
# `path/google.protobuf.Duration`). The name should be in a canonical form
# (e.g., leading "." is not accepted).
#
# In practice, teams usually precompile into the binary all types that they
# expect it to use in the context of Any. However, for URLs which use the
# scheme `http`, `https`, or no scheme, one can optionally set up a type
# server that maps type URLs to message definitions as follows:
#
# * If no scheme is provided, `https` is assumed.
# * An HTTP GET on the URL must yield a [google.protobuf.Type][]
# value in binary format, or produce an error.
# * Applications are allowed to cache lookup results based on the
# URL, or have them precompiled into a binary to avoid any
# lookup. Therefore, binary compatibility needs to be preserved
# on changes to types. (Use versioned type names to manage
# breaking changes.)
#
# Note: this functionality is not currently available in the official
# protobuf release, and it is not used for type URLs beginning with
# type.googleapis.com.
#
# Schemes other than `http`, `https` (or the empty scheme) might be
# used with implementation specific semantics.
type_url: typing.Text = ...
# Must be a valid serialized protocol buffer of the above specified type.
"""A URL/resource name that uniquely identifies the type of the serialized
protocol buffer message. This string must contain at least
one "/" character. The last segment of the URL's path must represent
the fully qualified name of the type (as in
`path/google.protobuf.Duration`). The name should be in a canonical form
(e.g., leading "." is not accepted).
In practice, teams usually precompile into the binary all types that they
expect it to use in the context of Any. However, for URLs which use the
scheme `http`, `https`, or no scheme, one can optionally set up a type
server that maps type URLs to message definitions as follows:
* If no scheme is provided, `https` is assumed.
* An HTTP GET on the URL must yield a [google.protobuf.Type][]
value in binary format, or produce an error.
* Applications are allowed to cache lookup results based on the
URL, or have them precompiled into a binary to avoid any
lookup. Therefore, binary compatibility needs to be preserved
on changes to types. (Use versioned type names to manage
breaking changes.)
Note: this functionality is not currently available in the official
protobuf release, and it is not used for type URLs beginning with
type.googleapis.com.
Schemes other than `http`, `https` (or the empty scheme) might be
used with implementation specific semantics.
"""
value: builtins.bytes = ...
"""Must be a valid serialized protocol buffer of the above specified type."""
def __init__(self,
*,
type_url : typing.Text = ...,
value : builtins.bytes = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"type_url",b"type_url",u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["type_url",b"type_url","value",b"value"]) -> None: ...
global___Any = Any

View File

@@ -13,16 +13,17 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# Api is a light-weight descriptor for an API Interface.
#
# Interfaces are also described as "protocol buffer services" in some contexts,
# such as by the "service" keyword in a .proto file, but they are different
# from API Services, which represent a concrete implementation of an interface
# as opposed to simply a description of methods and bindings. They are also
# sometimes simply referred to as "APIs" in other contexts, such as the name of
# this message itself. See https://cloud.google.com/apis/design/glossary for
# detailed terminology.
class Api(google.protobuf.message.Message):
"""Api is a light-weight descriptor for an API Interface.
Interfaces are also described as "protocol buffer services" in some contexts,
such as by the "service" keyword in a .proto file, but they are different
from API Services, which represent a concrete implementation of an interface
as opposed to simply a description of methods and bindings. They are also
sometimes simply referred to as "APIs" in other contexts, such as the name of
this message itself. See https://cloud.google.com/apis/design/glossary for
detailed terminology.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
NAME_FIELD_NUMBER: builtins.int
METHODS_FIELD_NUMBER: builtins.int
@@ -31,44 +32,54 @@ class Api(google.protobuf.message.Message):
SOURCE_CONTEXT_FIELD_NUMBER: builtins.int
MIXINS_FIELD_NUMBER: builtins.int
SYNTAX_FIELD_NUMBER: builtins.int
# The fully qualified name of this interface, including package name
# followed by the interface's simple name.
name: typing.Text = ...
# The methods of this interface, in unspecified order.
"""The fully qualified name of this interface, including package name
followed by the interface's simple name.
"""
@property
def methods(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Method]: ...
# Any metadata attached to the interface.
def methods(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Method]:
"""The methods of this interface, in unspecified order."""
pass
@property
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[google.protobuf.type_pb2.Option]: ...
# A version string for this interface. If specified, must have the form
# `major-version.minor-version`, as in `1.10`. If the minor version is
# omitted, it defaults to zero. If the entire version field is empty, the
# major version is derived from the package name, as outlined below. If the
# field is not empty, the version in the package name will be verified to be
# consistent with what is provided here.
#
# The versioning schema uses [semantic
# versioning](http://semver.org) where the major version number
# indicates a breaking change and the minor version an additive,
# non-breaking change. Both version numbers are signals to users
# what to expect from different versions, and should be carefully
# chosen based on the product plan.
#
# The major version is also reflected in the package name of the
# interface, which must end in `v<major-version>`, as in
# `google.feature.v1`. For major versions 0 and 1, the suffix can
# be omitted. Zero major versions must only be used for
# experimental, non-GA interfaces.
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[google.protobuf.type_pb2.Option]:
"""Any metadata attached to the interface."""
pass
version: typing.Text = ...
# Source context for the protocol buffer service represented by this
# message.
"""A version string for this interface. If specified, must have the form
`major-version.minor-version`, as in `1.10`. If the minor version is
omitted, it defaults to zero. If the entire version field is empty, the
major version is derived from the package name, as outlined below. If the
field is not empty, the version in the package name will be verified to be
consistent with what is provided here.
The versioning schema uses [semantic
versioning](http://semver.org) where the major version number
indicates a breaking change and the minor version an additive,
non-breaking change. Both version numbers are signals to users
what to expect from different versions, and should be carefully
chosen based on the product plan.
The major version is also reflected in the package name of the
interface, which must end in `v<major-version>`, as in
`google.feature.v1`. For major versions 0 and 1, the suffix can
be omitted. Zero major versions must only be used for
experimental, non-GA interfaces.
"""
@property
def source_context(self) -> google.protobuf.source_context_pb2.SourceContext: ...
# Included interfaces. See [Mixin][].
def source_context(self) -> google.protobuf.source_context_pb2.SourceContext:
"""Source context for the protocol buffer service represented by this
message.
"""
pass
@property
def mixins(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Mixin]: ...
# The source syntax of the service.
def mixins(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Mixin]:
"""Included interfaces. See [Mixin][]."""
pass
syntax: google.protobuf.type_pb2.Syntax.V = ...
"""The source syntax of the service."""
def __init__(self,
*,
name : typing.Text = ...,
@@ -79,12 +90,12 @@ class Api(google.protobuf.message.Message):
mixins : typing.Optional[typing.Iterable[global___Mixin]] = ...,
syntax : google.protobuf.type_pb2.Syntax.V = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"source_context",b"source_context"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"methods",b"methods",u"mixins",b"mixins",u"name",b"name",u"options",b"options",u"source_context",b"source_context",u"syntax",b"syntax",u"version",b"version"]) -> None: ...
def HasField(self, field_name: typing_extensions.Literal["source_context",b"source_context"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["methods",b"methods","mixins",b"mixins","name",b"name","options",b"options","source_context",b"source_context","syntax",b"syntax","version",b"version"]) -> None: ...
global___Api = Api
# Method represents a method of an API interface.
class Method(google.protobuf.message.Message):
"""Method represents a method of an API interface."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
NAME_FIELD_NUMBER: builtins.int
REQUEST_TYPE_URL_FIELD_NUMBER: builtins.int
@@ -93,21 +104,28 @@ class Method(google.protobuf.message.Message):
RESPONSE_STREAMING_FIELD_NUMBER: builtins.int
OPTIONS_FIELD_NUMBER: builtins.int
SYNTAX_FIELD_NUMBER: builtins.int
# The simple name of this method.
name: typing.Text = ...
# A URL of the input message type.
"""The simple name of this method."""
request_type_url: typing.Text = ...
# If true, the request is streamed.
"""A URL of the input message type."""
request_streaming: builtins.bool = ...
# The URL of the output message type.
"""If true, the request is streamed."""
response_type_url: typing.Text = ...
# If true, the response is streamed.
"""The URL of the output message type."""
response_streaming: builtins.bool = ...
# Any metadata attached to the method.
"""If true, the response is streamed."""
@property
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[google.protobuf.type_pb2.Option]: ...
# The source syntax of this method.
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[google.protobuf.type_pb2.Option]:
"""Any metadata attached to the method."""
pass
syntax: google.protobuf.type_pb2.Syntax.V = ...
"""The source syntax of this method."""
def __init__(self,
*,
name : typing.Text = ...,
@@ -118,100 +136,104 @@ class Method(google.protobuf.message.Message):
options : typing.Optional[typing.Iterable[google.protobuf.type_pb2.Option]] = ...,
syntax : google.protobuf.type_pb2.Syntax.V = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"name",b"name",u"options",b"options",u"request_streaming",b"request_streaming",u"request_type_url",b"request_type_url",u"response_streaming",b"response_streaming",u"response_type_url",b"response_type_url",u"syntax",b"syntax"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["name",b"name","options",b"options","request_streaming",b"request_streaming","request_type_url",b"request_type_url","response_streaming",b"response_streaming","response_type_url",b"response_type_url","syntax",b"syntax"]) -> None: ...
global___Method = Method
# Declares an API Interface to be included in this interface. The including
# interface must redeclare all the methods from the included interface, but
# documentation and options are inherited as follows:
#
# - If after comment and whitespace stripping, the documentation
# string of the redeclared method is empty, it will be inherited
# from the original method.
#
# - Each annotation belonging to the service config (http,
# visibility) which is not set in the redeclared method will be
# inherited.
#
# - If an http annotation is inherited, the path pattern will be
# modified as follows. Any version prefix will be replaced by the
# version of the including interface plus the [root][] path if
# specified.
#
# Example of a simple mixin:
#
# package google.acl.v1;
# service AccessControl {
# // Get the underlying ACL object.
# rpc GetAcl(GetAclRequest) returns (Acl) {
# option (google.api.http).get = "/v1/{resource=**}:getAcl";
# }
# }
#
# package google.storage.v2;
# service Storage {
# rpc GetAcl(GetAclRequest) returns (Acl);
#
# // Get a data record.
# rpc GetData(GetDataRequest) returns (Data) {
# option (google.api.http).get = "/v2/{resource=**}";
# }
# }
#
# Example of a mixin configuration:
#
# apis:
# - name: google.storage.v2.Storage
# mixins:
# - name: google.acl.v1.AccessControl
#
# The mixin construct implies that all methods in `AccessControl` are
# also declared with same name and request/response types in
# `Storage`. A documentation generator or annotation processor will
# see the effective `Storage.GetAcl` method after inheriting
# documentation and annotations as follows:
#
# service Storage {
# // Get the underlying ACL object.
# rpc GetAcl(GetAclRequest) returns (Acl) {
# option (google.api.http).get = "/v2/{resource=**}:getAcl";
# }
# ...
# }
#
# Note how the version in the path pattern changed from `v1` to `v2`.
#
# If the `root` field in the mixin is specified, it should be a
# relative path under which inherited HTTP paths are placed. Example:
#
# apis:
# - name: google.storage.v2.Storage
# mixins:
# - name: google.acl.v1.AccessControl
# root: acls
#
# This implies the following inherited HTTP annotation:
#
# service Storage {
# // Get the underlying ACL object.
# rpc GetAcl(GetAclRequest) returns (Acl) {
# option (google.api.http).get = "/v2/acls/{resource=**}:getAcl";
# }
# ...
# }
class Mixin(google.protobuf.message.Message):
"""Declares an API Interface to be included in this interface. The including
interface must redeclare all the methods from the included interface, but
documentation and options are inherited as follows:
- If after comment and whitespace stripping, the documentation
string of the redeclared method is empty, it will be inherited
from the original method.
- Each annotation belonging to the service config (http,
visibility) which is not set in the redeclared method will be
inherited.
- If an http annotation is inherited, the path pattern will be
modified as follows. Any version prefix will be replaced by the
version of the including interface plus the [root][] path if
specified.
Example of a simple mixin:
package google.acl.v1;
service AccessControl {
// Get the underlying ACL object.
rpc GetAcl(GetAclRequest) returns (Acl) {
option (google.api.http).get = "/v1/{resource=**}:getAcl";
}
}
package google.storage.v2;
service Storage {
rpc GetAcl(GetAclRequest) returns (Acl);
// Get a data record.
rpc GetData(GetDataRequest) returns (Data) {
option (google.api.http).get = "/v2/{resource=**}";
}
}
Example of a mixin configuration:
apis:
- name: google.storage.v2.Storage
mixins:
- name: google.acl.v1.AccessControl
The mixin construct implies that all methods in `AccessControl` are
also declared with same name and request/response types in
`Storage`. A documentation generator or annotation processor will
see the effective `Storage.GetAcl` method after inheriting
documentation and annotations as follows:
service Storage {
// Get the underlying ACL object.
rpc GetAcl(GetAclRequest) returns (Acl) {
option (google.api.http).get = "/v2/{resource=**}:getAcl";
}
...
}
Note how the version in the path pattern changed from `v1` to `v2`.
If the `root` field in the mixin is specified, it should be a
relative path under which inherited HTTP paths are placed. Example:
apis:
- name: google.storage.v2.Storage
mixins:
- name: google.acl.v1.AccessControl
root: acls
This implies the following inherited HTTP annotation:
service Storage {
// Get the underlying ACL object.
rpc GetAcl(GetAclRequest) returns (Acl) {
option (google.api.http).get = "/v2/acls/{resource=**}:getAcl";
}
...
}
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
NAME_FIELD_NUMBER: builtins.int
ROOT_FIELD_NUMBER: builtins.int
# The fully qualified name of the interface which is included.
name: typing.Text = ...
# If non-empty specifies a path under which inherited HTTP paths
# are rooted.
"""The fully qualified name of the interface which is included."""
root: typing.Text = ...
"""If non-empty specifies a path under which inherited HTTP paths
are rooted.
"""
def __init__(self,
*,
name : typing.Text = ...,
root : typing.Text = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"name",b"name",u"root",b"root"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["name",b"name","root",b"root"]) -> None: ...
global___Mixin = Mixin

View File

@@ -13,8 +13,8 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# The version number of protocol compiler.
class Version(google.protobuf.message.Message):
"""The version number of protocol compiler."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
MAJOR_FIELD_NUMBER: builtins.int
MINOR_FIELD_NUMBER: builtins.int
@@ -23,9 +23,11 @@ class Version(google.protobuf.message.Message):
major: builtins.int = ...
minor: builtins.int = ...
patch: builtins.int = ...
# A suffix for alpha, beta or rc release, e.g., "alpha-1", "rc2". It should
# be empty for mainline stable releases.
suffix: typing.Text = ...
"""A suffix for alpha, beta or rc release, e.g., "alpha-1", "rc2". It should
be empty for mainline stable releases.
"""
def __init__(self,
*,
major : typing.Optional[builtins.int] = ...,
@@ -33,43 +35,49 @@ class Version(google.protobuf.message.Message):
patch : typing.Optional[builtins.int] = ...,
suffix : typing.Optional[typing.Text] = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"major",b"major",u"minor",b"minor",u"patch",b"patch",u"suffix",b"suffix"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"major",b"major",u"minor",b"minor",u"patch",b"patch",u"suffix",b"suffix"]) -> None: ...
def HasField(self, field_name: typing_extensions.Literal["major",b"major","minor",b"minor","patch",b"patch","suffix",b"suffix"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["major",b"major","minor",b"minor","patch",b"patch","suffix",b"suffix"]) -> None: ...
global___Version = Version
# An encoded CodeGeneratorRequest is written to the plugin's stdin.
class CodeGeneratorRequest(google.protobuf.message.Message):
"""An encoded CodeGeneratorRequest is written to the plugin's stdin."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
FILE_TO_GENERATE_FIELD_NUMBER: builtins.int
PARAMETER_FIELD_NUMBER: builtins.int
PROTO_FILE_FIELD_NUMBER: builtins.int
COMPILER_VERSION_FIELD_NUMBER: builtins.int
# The .proto files that were explicitly listed on the command-line. The
# code generator should generate code only for these files. Each file's
# descriptor will be included in proto_file, below.
@property
def file_to_generate(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[typing.Text]: ...
# The generator parameter passed on the command-line.
def file_to_generate(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[typing.Text]:
"""The .proto files that were explicitly listed on the command-line. The
code generator should generate code only for these files. Each file's
descriptor will be included in proto_file, below.
"""
pass
parameter: typing.Text = ...
# FileDescriptorProtos for all files in files_to_generate and everything
# they import. The files will appear in topological order, so each file
# appears before any file that imports it.
#
# protoc guarantees that all proto_files will be written after
# the fields above, even though this is not technically guaranteed by the
# protobuf wire format. This theoretically could allow a plugin to stream
# in the FileDescriptorProtos and handle them one by one rather than read
# the entire set into memory at once. However, as of this writing, this
# is not similarly optimized on protoc's end -- it will store all fields in
# memory at once before sending them to the plugin.
#
# Type names of fields and extensions in the FileDescriptorProto are always
# fully qualified.
"""The generator parameter passed on the command-line."""
@property
def proto_file(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[google.protobuf.descriptor_pb2.FileDescriptorProto]: ...
# The version number of protocol compiler.
def proto_file(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[google.protobuf.descriptor_pb2.FileDescriptorProto]:
"""FileDescriptorProtos for all files in files_to_generate and everything
they import. The files will appear in topological order, so each file
appears before any file that imports it.
protoc guarantees that all proto_files will be written after
the fields above, even though this is not technically guaranteed by the
protobuf wire format. This theoretically could allow a plugin to stream
in the FileDescriptorProtos and handle them one by one rather than read
the entire set into memory at once. However, as of this writing, this
is not similarly optimized on protoc's end -- it will store all fields in
memory at once before sending them to the plugin.
Type names of fields and extensions in the FileDescriptorProto are always
fully qualified.
"""
pass
@property
def compiler_version(self) -> global___Version: ...
def compiler_version(self) -> global___Version:
"""The version number of protocol compiler."""
pass
def __init__(self,
*,
file_to_generate : typing.Optional[typing.Iterable[typing.Text]] = ...,
@@ -77,15 +85,15 @@ class CodeGeneratorRequest(google.protobuf.message.Message):
proto_file : typing.Optional[typing.Iterable[google.protobuf.descriptor_pb2.FileDescriptorProto]] = ...,
compiler_version : typing.Optional[global___Version] = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"compiler_version",b"compiler_version",u"parameter",b"parameter"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"compiler_version",b"compiler_version",u"file_to_generate",b"file_to_generate",u"parameter",b"parameter",u"proto_file",b"proto_file"]) -> None: ...
def HasField(self, field_name: typing_extensions.Literal["compiler_version",b"compiler_version","parameter",b"parameter"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["compiler_version",b"compiler_version","file_to_generate",b"file_to_generate","parameter",b"parameter","proto_file",b"proto_file"]) -> None: ...
global___CodeGeneratorRequest = CodeGeneratorRequest
# The plugin writes an encoded CodeGeneratorResponse to stdout.
class CodeGeneratorResponse(google.protobuf.message.Message):
"""The plugin writes an encoded CodeGeneratorResponse to stdout."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
# Sync with code_generator.h.
class Feature(_Feature, metaclass=_FeatureEnumTypeWrapper):
"""Sync with code_generator.h."""
pass
class _Feature:
V = typing.NewType('V', builtins.int)
@@ -97,70 +105,77 @@ class CodeGeneratorResponse(google.protobuf.message.Message):
FEATURE_NONE = CodeGeneratorResponse.Feature.V(0)
FEATURE_PROTO3_OPTIONAL = CodeGeneratorResponse.Feature.V(1)
# Represents a single generated file.
class File(google.protobuf.message.Message):
"""Represents a single generated file."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
NAME_FIELD_NUMBER: builtins.int
INSERTION_POINT_FIELD_NUMBER: builtins.int
CONTENT_FIELD_NUMBER: builtins.int
GENERATED_CODE_INFO_FIELD_NUMBER: builtins.int
# The file name, relative to the output directory. The name must not
# contain "." or ".." components and must be relative, not be absolute (so,
# the file cannot lie outside the output directory). "/" must be used as
# the path separator, not "\".
#
# If the name is omitted, the content will be appended to the previous
# file. This allows the generator to break large files into small chunks,
# and allows the generated text to be streamed back to protoc so that large
# files need not reside completely in memory at one time. Note that as of
# this writing protoc does not optimize for this -- it will read the entire
# CodeGeneratorResponse before writing files to disk.
name: typing.Text = ...
# If non-empty, indicates that the named file should already exist, and the
# content here is to be inserted into that file at a defined insertion
# point. This feature allows a code generator to extend the output
# produced by another code generator. The original generator may provide
# insertion points by placing special annotations in the file that look
# like:
# @@protoc_insertion_point(NAME)
# The annotation can have arbitrary text before and after it on the line,
# which allows it to be placed in a comment. NAME should be replaced with
# an identifier naming the point -- this is what other generators will use
# as the insertion_point. Code inserted at this point will be placed
# immediately above the line containing the insertion point (thus multiple
# insertions to the same point will come out in the order they were added).
# The double-@ is intended to make it unlikely that the generated code
# could contain things that look like insertion points by accident.
#
# For example, the C++ code generator places the following line in the
# .pb.h files that it generates:
# // @@protoc_insertion_point(namespace_scope)
# This line appears within the scope of the file's package namespace, but
# outside of any particular class. Another plugin can then specify the
# insertion_point "namespace_scope" to generate additional classes or
# other declarations that should be placed in this scope.
#
# Note that if the line containing the insertion point begins with
# whitespace, the same whitespace will be added to every line of the
# inserted text. This is useful for languages like Python, where
# indentation matters. In these languages, the insertion point comment
# should be indented the same amount as any inserted code will need to be
# in order to work correctly in that context.
#
# The code generator that generates the initial file and the one which
# inserts into it must both run as part of a single invocation of protoc.
# Code generators are executed in the order in which they appear on the
# command line.
#
# If |insertion_point| is present, |name| must also be present.
"""The file name, relative to the output directory. The name must not
contain "." or ".." components and must be relative, not be absolute (so,
the file cannot lie outside the output directory). "/" must be used as
the path separator, not "\\".
If the name is omitted, the content will be appended to the previous
file. This allows the generator to break large files into small chunks,
and allows the generated text to be streamed back to protoc so that large
files need not reside completely in memory at one time. Note that as of
this writing protoc does not optimize for this -- it will read the entire
CodeGeneratorResponse before writing files to disk.
"""
insertion_point: typing.Text = ...
# The file contents.
"""If non-empty, indicates that the named file should already exist, and the
content here is to be inserted into that file at a defined insertion
point. This feature allows a code generator to extend the output
produced by another code generator. The original generator may provide
insertion points by placing special annotations in the file that look
like:
@@protoc_insertion_point(NAME)
The annotation can have arbitrary text before and after it on the line,
which allows it to be placed in a comment. NAME should be replaced with
an identifier naming the point -- this is what other generators will use
as the insertion_point. Code inserted at this point will be placed
immediately above the line containing the insertion point (thus multiple
insertions to the same point will come out in the order they were added).
The double-@ is intended to make it unlikely that the generated code
could contain things that look like insertion points by accident.
For example, the C++ code generator places the following line in the
.pb.h files that it generates:
// @@protoc_insertion_point(namespace_scope)
This line appears within the scope of the file's package namespace, but
outside of any particular class. Another plugin can then specify the
insertion_point "namespace_scope" to generate additional classes or
other declarations that should be placed in this scope.
Note that if the line containing the insertion point begins with
whitespace, the same whitespace will be added to every line of the
inserted text. This is useful for languages like Python, where
indentation matters. In these languages, the insertion point comment
should be indented the same amount as any inserted code will need to be
in order to work correctly in that context.
The code generator that generates the initial file and the one which
inserts into it must both run as part of a single invocation of protoc.
Code generators are executed in the order in which they appear on the
command line.
If |insertion_point| is present, |name| must also be present.
"""
content: typing.Text = ...
# Information describing the file content being inserted. If an insertion
# point is used, this information will be appropriately offset and inserted
# into the code generation metadata for the generated files.
"""The file contents."""
@property
def generated_code_info(self) -> google.protobuf.descriptor_pb2.GeneratedCodeInfo: ...
def generated_code_info(self) -> google.protobuf.descriptor_pb2.GeneratedCodeInfo:
"""Information describing the file content being inserted. If an insertion
point is used, this information will be appropriately offset and inserted
into the code generation metadata for the generated files.
"""
pass
def __init__(self,
*,
name : typing.Optional[typing.Text] = ...,
@@ -168,24 +183,28 @@ class CodeGeneratorResponse(google.protobuf.message.Message):
content : typing.Optional[typing.Text] = ...,
generated_code_info : typing.Optional[google.protobuf.descriptor_pb2.GeneratedCodeInfo] = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"content",b"content",u"generated_code_info",b"generated_code_info",u"insertion_point",b"insertion_point",u"name",b"name"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"content",b"content",u"generated_code_info",b"generated_code_info",u"insertion_point",b"insertion_point",u"name",b"name"]) -> None: ...
def HasField(self, field_name: typing_extensions.Literal["content",b"content","generated_code_info",b"generated_code_info","insertion_point",b"insertion_point","name",b"name"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["content",b"content","generated_code_info",b"generated_code_info","insertion_point",b"insertion_point","name",b"name"]) -> None: ...
ERROR_FIELD_NUMBER: builtins.int
SUPPORTED_FEATURES_FIELD_NUMBER: builtins.int
FILE_FIELD_NUMBER: builtins.int
# Error message. If non-empty, code generation failed. The plugin process
# should exit with status code zero even if it reports an error in this way.
#
# This should be used to indicate errors in .proto files which prevent the
# code generator from generating correct code. Errors which indicate a
# problem in protoc itself -- such as the input CodeGeneratorRequest being
# unparseable -- should be reported by writing a message to stderr and
# exiting with a non-zero status code.
error: typing.Text = ...
# A bitmask of supported features that the code generator supports.
# This is a bitwise "or" of values from the Feature enum.
"""Error message. If non-empty, code generation failed. The plugin process
should exit with status code zero even if it reports an error in this way.
This should be used to indicate errors in .proto files which prevent the
code generator from generating correct code. Errors which indicate a
problem in protoc itself -- such as the input CodeGeneratorRequest being
unparseable -- should be reported by writing a message to stderr and
exiting with a non-zero status code.
"""
supported_features: builtins.int = ...
"""A bitmask of supported features that the code generator supports.
This is a bitwise "or" of values from the Feature enum.
"""
@property
def file(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___CodeGeneratorResponse.File]: ...
def __init__(self,
@@ -194,6 +213,6 @@ class CodeGeneratorResponse(google.protobuf.message.Message):
supported_features : typing.Optional[builtins.int] = ...,
file : typing.Optional[typing.Iterable[global___CodeGeneratorResponse.File]] = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"error",b"error",u"supported_features",b"supported_features"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"error",b"error",u"file",b"file",u"supported_features",b"supported_features"]) -> None: ...
def HasField(self, field_name: typing_extensions.Literal["error",b"error","supported_features",b"supported_features"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["error",b"error","file",b"file","supported_features",b"supported_features"]) -> None: ...
global___CodeGeneratorResponse = CodeGeneratorResponse

File diff suppressed because it is too large Load Diff

View File

@@ -10,83 +10,88 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# A Duration represents a signed, fixed-length span of time represented
# as a count of seconds and fractions of seconds at nanosecond
# resolution. It is independent of any calendar and concepts like "day"
# or "month". It is related to Timestamp in that the difference between
# two Timestamp values is a Duration and it can be added or subtracted
# from a Timestamp. Range is approximately +-10,000 years.
#
# # Examples
#
# Example 1: Compute Duration from two Timestamps in pseudo code.
#
# Timestamp start = ...;
# Timestamp end = ...;
# Duration duration = ...;
#
# duration.seconds = end.seconds - start.seconds;
# duration.nanos = end.nanos - start.nanos;
#
# if (duration.seconds < 0 && duration.nanos > 0) {
# duration.seconds += 1;
# duration.nanos -= 1000000000;
# } else if (duration.seconds > 0 && duration.nanos < 0) {
# duration.seconds -= 1;
# duration.nanos += 1000000000;
# }
#
# Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
#
# Timestamp start = ...;
# Duration duration = ...;
# Timestamp end = ...;
#
# end.seconds = start.seconds + duration.seconds;
# end.nanos = start.nanos + duration.nanos;
#
# if (end.nanos < 0) {
# end.seconds -= 1;
# end.nanos += 1000000000;
# } else if (end.nanos >= 1000000000) {
# end.seconds += 1;
# end.nanos -= 1000000000;
# }
#
# Example 3: Compute Duration from datetime.timedelta in Python.
#
# td = datetime.timedelta(days=3, minutes=10)
# duration = Duration()
# duration.FromTimedelta(td)
#
# # JSON Mapping
#
# In JSON format, the Duration type is encoded as a string rather than an
# object, where the string ends in the suffix "s" (indicating seconds) and
# is preceded by the number of seconds, with nanoseconds expressed as
# fractional seconds. For example, 3 seconds with 0 nanoseconds should be
# encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should
# be expressed in JSON format as "3.000000001s", and 3 seconds and 1
# microsecond should be expressed in JSON format as "3.000001s".
class Duration(google.protobuf.message.Message, google.protobuf.internal.well_known_types.Duration):
"""A Duration represents a signed, fixed-length span of time represented
as a count of seconds and fractions of seconds at nanosecond
resolution. It is independent of any calendar and concepts like "day"
or "month". It is related to Timestamp in that the difference between
two Timestamp values is a Duration and it can be added or subtracted
from a Timestamp. Range is approximately +-10,000 years.
# Examples
Example 1: Compute Duration from two Timestamps in pseudo code.
Timestamp start = ...;
Timestamp end = ...;
Duration duration = ...;
duration.seconds = end.seconds - start.seconds;
duration.nanos = end.nanos - start.nanos;
if (duration.seconds < 0 && duration.nanos > 0) {
duration.seconds += 1;
duration.nanos -= 1000000000;
} else if (duration.seconds > 0 && duration.nanos < 0) {
duration.seconds -= 1;
duration.nanos += 1000000000;
}
Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
Timestamp start = ...;
Duration duration = ...;
Timestamp end = ...;
end.seconds = start.seconds + duration.seconds;
end.nanos = start.nanos + duration.nanos;
if (end.nanos < 0) {
end.seconds -= 1;
end.nanos += 1000000000;
} else if (end.nanos >= 1000000000) {
end.seconds += 1;
end.nanos -= 1000000000;
}
Example 3: Compute Duration from datetime.timedelta in Python.
td = datetime.timedelta(days=3, minutes=10)
duration = Duration()
duration.FromTimedelta(td)
# JSON Mapping
In JSON format, the Duration type is encoded as a string rather than an
object, where the string ends in the suffix "s" (indicating seconds) and
is preceded by the number of seconds, with nanoseconds expressed as
fractional seconds. For example, 3 seconds with 0 nanoseconds should be
encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should
be expressed in JSON format as "3.000000001s", and 3 seconds and 1
microsecond should be expressed in JSON format as "3.000001s".
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
SECONDS_FIELD_NUMBER: builtins.int
NANOS_FIELD_NUMBER: builtins.int
# Signed seconds of the span of time. Must be from -315,576,000,000
# to +315,576,000,000 inclusive. Note: these bounds are computed from:
# 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
seconds: builtins.int = ...
# Signed fractions of a second at nanosecond resolution of the span
# of time. Durations less than one second are represented with a 0
# `seconds` field and a positive or negative `nanos` field. For durations
# of one second or more, a non-zero value for the `nanos` field must be
# of the same sign as the `seconds` field. Must be from -999,999,999
# to +999,999,999 inclusive.
"""Signed seconds of the span of time. Must be from -315,576,000,000
to +315,576,000,000 inclusive. Note: these bounds are computed from:
60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
"""
nanos: builtins.int = ...
"""Signed fractions of a second at nanosecond resolution of the span
of time. Durations less than one second are represented with a 0
`seconds` field and a positive or negative `nanos` field. For durations
of one second or more, a non-zero value for the `nanos` field must be
of the same sign as the `seconds` field. Must be from -999,999,999
to +999,999,999 inclusive.
"""
def __init__(self,
*,
seconds : builtins.int = ...,
nanos : builtins.int = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"nanos",b"nanos",u"seconds",b"seconds"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["nanos",b"nanos","seconds",b"seconds"]) -> None: ...
global___Duration = Duration

View File

@@ -7,16 +7,17 @@ import google.protobuf.message
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# A generic empty message that you can re-use to avoid defining duplicated
# empty messages in your APIs. A typical example is to use it as the request
# or the response type of an API method. For instance:
#
# service Foo {
# rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
# }
#
# The JSON representation for `Empty` is empty JSON object `{}`.
class Empty(google.protobuf.message.Message):
"""A generic empty message that you can re-use to avoid defining duplicated
empty messages in your APIs. A typical example is to use it as the request
or the response type of an API method. For instance:
service Foo {
rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
}
The JSON representation for `Empty` is empty JSON object `{}`.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
def __init__(self,
) -> None: ...

View File

@@ -12,214 +12,216 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# `FieldMask` represents a set of symbolic field paths, for example:
#
# paths: "f.a"
# paths: "f.b.d"
#
# Here `f` represents a field in some root message, `a` and `b`
# fields in the message found in `f`, and `d` a field found in the
# message in `f.b`.
#
# Field masks are used to specify a subset of fields that should be
# returned by a get operation or modified by an update operation.
# Field masks also have a custom JSON encoding (see below).
#
# # Field Masks in Projections
#
# When used in the context of a projection, a response message or
# sub-message is filtered by the API to only contain those fields as
# specified in the mask. For example, if the mask in the previous
# example is applied to a response message as follows:
#
# f {
# a : 22
# b {
# d : 1
# x : 2
# }
# y : 13
# }
# z: 8
#
# The result will not contain specific values for fields x,y and z
# (their value will be set to the default, and omitted in proto text
# output):
#
#
# f {
# a : 22
# b {
# d : 1
# }
# }
#
# A repeated field is not allowed except at the last position of a
# paths string.
#
# If a FieldMask object is not present in a get operation, the
# operation applies to all fields (as if a FieldMask of all fields
# had been specified).
#
# Note that a field mask does not necessarily apply to the
# top-level response message. In case of a REST get operation, the
# field mask applies directly to the response, but in case of a REST
# list operation, the mask instead applies to each individual message
# in the returned resource list. In case of a REST custom method,
# other definitions may be used. Where the mask applies will be
# clearly documented together with its declaration in the API. In
# any case, the effect on the returned resource/resources is required
# behavior for APIs.
#
# # Field Masks in Update Operations
#
# A field mask in update operations specifies which fields of the
# targeted resource are going to be updated. The API is required
# to only change the values of the fields as specified in the mask
# and leave the others untouched. If a resource is passed in to
# describe the updated values, the API ignores the values of all
# fields not covered by the mask.
#
# If a repeated field is specified for an update operation, new values will
# be appended to the existing repeated field in the target resource. Note that
# a repeated field is only allowed in the last position of a `paths` string.
#
# If a sub-message is specified in the last position of the field mask for an
# update operation, then new value will be merged into the existing sub-message
# in the target resource.
#
# For example, given the target message:
#
# f {
# b {
# d: 1
# x: 2
# }
# c: [1]
# }
#
# And an update message:
#
# f {
# b {
# d: 10
# }
# c: [2]
# }
#
# then if the field mask is:
#
# paths: ["f.b", "f.c"]
#
# then the result will be:
#
# f {
# b {
# d: 10
# x: 2
# }
# c: [1, 2]
# }
#
# An implementation may provide options to override this default behavior for
# repeated and message fields.
#
# In order to reset a field's value to the default, the field must
# be in the mask and set to the default value in the provided resource.
# Hence, in order to reset all fields of a resource, provide a default
# instance of the resource and set all fields in the mask, or do
# not provide a mask as described below.
#
# If a field mask is not present on update, the operation applies to
# all fields (as if a field mask of all fields has been specified).
# Note that in the presence of schema evolution, this may mean that
# fields the client does not know and has therefore not filled into
# the request will be reset to their default. If this is unwanted
# behavior, a specific service may require a client to always specify
# a field mask, producing an error if not.
#
# As with get operations, the location of the resource which
# describes the updated values in the request message depends on the
# operation kind. In any case, the effect of the field mask is
# required to be honored by the API.
#
# ## Considerations for HTTP REST
#
# The HTTP kind of an update operation which uses a field mask must
# be set to PATCH instead of PUT in order to satisfy HTTP semantics
# (PUT must only be used for full updates).
#
# # JSON Encoding of Field Masks
#
# In JSON, a field mask is encoded as a single string where paths are
# separated by a comma. Fields name in each path are converted
# to/from lower-camel naming conventions.
#
# As an example, consider the following message declarations:
#
# message Profile {
# User user = 1;
# Photo photo = 2;
# }
# message User {
# string display_name = 1;
# string address = 2;
# }
#
# In proto a field mask for `Profile` may look as such:
#
# mask {
# paths: "user.display_name"
# paths: "photo"
# }
#
# In JSON, the same mask is represented as below:
#
# {
# mask: "user.displayName,photo"
# }
#
# # Field Masks and Oneof Fields
#
# Field masks treat fields in oneofs just as regular fields. Consider the
# following message:
#
# message SampleMessage {
# oneof test_oneof {
# string name = 4;
# SubMessage sub_message = 9;
# }
# }
#
# The field mask can be:
#
# mask {
# paths: "name"
# }
#
# Or:
#
# mask {
# paths: "sub_message"
# }
#
# Note that oneof type names ("test_oneof" in this case) cannot be used in
# paths.
#
# ## Field Mask Verification
#
# The implementation of any API method which has a FieldMask type field in the
# request should verify the included field paths, and return an
# `INVALID_ARGUMENT` error if any path is unmappable.
class FieldMask(google.protobuf.message.Message, google.protobuf.internal.well_known_types.FieldMask):
"""`FieldMask` represents a set of symbolic field paths, for example:
paths: "f.a"
paths: "f.b.d"
Here `f` represents a field in some root message, `a` and `b`
fields in the message found in `f`, and `d` a field found in the
message in `f.b`.
Field masks are used to specify a subset of fields that should be
returned by a get operation or modified by an update operation.
Field masks also have a custom JSON encoding (see below).
# Field Masks in Projections
When used in the context of a projection, a response message or
sub-message is filtered by the API to only contain those fields as
specified in the mask. For example, if the mask in the previous
example is applied to a response message as follows:
f {
a : 22
b {
d : 1
x : 2
}
y : 13
}
z: 8
The result will not contain specific values for fields x,y and z
(their value will be set to the default, and omitted in proto text
output):
f {
a : 22
b {
d : 1
}
}
A repeated field is not allowed except at the last position of a
paths string.
If a FieldMask object is not present in a get operation, the
operation applies to all fields (as if a FieldMask of all fields
had been specified).
Note that a field mask does not necessarily apply to the
top-level response message. In case of a REST get operation, the
field mask applies directly to the response, but in case of a REST
list operation, the mask instead applies to each individual message
in the returned resource list. In case of a REST custom method,
other definitions may be used. Where the mask applies will be
clearly documented together with its declaration in the API. In
any case, the effect on the returned resource/resources is required
behavior for APIs.
# Field Masks in Update Operations
A field mask in update operations specifies which fields of the
targeted resource are going to be updated. The API is required
to only change the values of the fields as specified in the mask
and leave the others untouched. If a resource is passed in to
describe the updated values, the API ignores the values of all
fields not covered by the mask.
If a repeated field is specified for an update operation, new values will
be appended to the existing repeated field in the target resource. Note that
a repeated field is only allowed in the last position of a `paths` string.
If a sub-message is specified in the last position of the field mask for an
update operation, then new value will be merged into the existing sub-message
in the target resource.
For example, given the target message:
f {
b {
d: 1
x: 2
}
c: [1]
}
And an update message:
f {
b {
d: 10
}
c: [2]
}
then if the field mask is:
paths: ["f.b", "f.c"]
then the result will be:
f {
b {
d: 10
x: 2
}
c: [1, 2]
}
An implementation may provide options to override this default behavior for
repeated and message fields.
In order to reset a field's value to the default, the field must
be in the mask and set to the default value in the provided resource.
Hence, in order to reset all fields of a resource, provide a default
instance of the resource and set all fields in the mask, or do
not provide a mask as described below.
If a field mask is not present on update, the operation applies to
all fields (as if a field mask of all fields has been specified).
Note that in the presence of schema evolution, this may mean that
fields the client does not know and has therefore not filled into
the request will be reset to their default. If this is unwanted
behavior, a specific service may require a client to always specify
a field mask, producing an error if not.
As with get operations, the location of the resource which
describes the updated values in the request message depends on the
operation kind. In any case, the effect of the field mask is
required to be honored by the API.
## Considerations for HTTP REST
The HTTP kind of an update operation which uses a field mask must
be set to PATCH instead of PUT in order to satisfy HTTP semantics
(PUT must only be used for full updates).
# JSON Encoding of Field Masks
In JSON, a field mask is encoded as a single string where paths are
separated by a comma. Fields name in each path are converted
to/from lower-camel naming conventions.
As an example, consider the following message declarations:
message Profile {
User user = 1;
Photo photo = 2;
}
message User {
string display_name = 1;
string address = 2;
}
In proto a field mask for `Profile` may look as such:
mask {
paths: "user.display_name"
paths: "photo"
}
In JSON, the same mask is represented as below:
{
mask: "user.displayName,photo"
}
# Field Masks and Oneof Fields
Field masks treat fields in oneofs just as regular fields. Consider the
following message:
message SampleMessage {
oneof test_oneof {
string name = 4;
SubMessage sub_message = 9;
}
}
The field mask can be:
mask {
paths: "name"
}
Or:
mask {
paths: "sub_message"
}
Note that oneof type names ("test_oneof" in this case) cannot be used in
paths.
## Field Mask Verification
The implementation of any API method which has a FieldMask type field in the
request should verify the included field paths, and return an
`INVALID_ARGUMENT` error if any path is unmappable.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
PATHS_FIELD_NUMBER: builtins.int
# The set of field mask paths.
@property
def paths(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[typing.Text]: ...
def paths(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[typing.Text]:
"""The set of field mask paths."""
pass
def __init__(self,
*,
paths : typing.Optional[typing.Iterable[typing.Text]] = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"paths",b"paths"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["paths",b"paths"]) -> None: ...
global___FieldMask = FieldMask

View File

@@ -10,17 +10,20 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# `SourceContext` represents information about the source of a
# protobuf element, like the file in which it is defined.
class SourceContext(google.protobuf.message.Message):
"""`SourceContext` represents information about the source of a
protobuf element, like the file in which it is defined.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
FILE_NAME_FIELD_NUMBER: builtins.int
# The path-qualified name of the .proto file that contained the associated
# protobuf element. For example: `"google/protobuf/source_context.proto"`.
file_name: typing.Text = ...
"""The path-qualified name of the .proto file that contained the associated
protobuf element. For example: `"google/protobuf/source_context.proto"`.
"""
def __init__(self,
*,
file_name : typing.Text = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"file_name",b"file_name"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["file_name",b"file_name"]) -> None: ...
global___SourceContext = SourceContext

View File

@@ -13,33 +13,37 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# `NullValue` is a singleton enumeration to represent the null value for the
# `Value` type union.
#
# The JSON representation for `NullValue` is JSON `null`.
class NullValue(_NullValue, metaclass=_NullValueEnumTypeWrapper):
"""`NullValue` is a singleton enumeration to represent the null value for the
`Value` type union.
The JSON representation for `NullValue` is JSON `null`.
"""
pass
class _NullValue:
V = typing.NewType('V', builtins.int)
class _NullValueEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_NullValue.V], builtins.type):
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor = ...
# Null value.
NULL_VALUE = NullValue.V(0)
"""Null value."""
# Null value.
NULL_VALUE = NullValue.V(0)
"""Null value."""
global___NullValue = NullValue
# `Struct` represents a structured data value, consisting of fields
# which map to dynamically typed values. In some languages, `Struct`
# might be supported by a native representation. For example, in
# scripting languages like JS a struct is represented as an
# object. The details of that representation are described together
# with the proto support for the language.
#
# The JSON representation for `Struct` is JSON object.
class Struct(google.protobuf.message.Message, google.protobuf.internal.well_known_types.Struct):
"""`Struct` represents a structured data value, consisting of fields
which map to dynamically typed values. In some languages, `Struct`
might be supported by a native representation. For example, in
scripting languages like JS a struct is represented as an
object. The details of that representation are described together
with the proto support for the language.
The JSON representation for `Struct` is JSON object.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
class FieldsEntry(google.protobuf.message.Message):
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
@@ -53,27 +57,29 @@ class Struct(google.protobuf.message.Message, google.protobuf.internal.well_know
key : typing.Text = ...,
value : typing.Optional[global___Value] = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"key",b"key",u"value",b"value"]) -> None: ...
def HasField(self, field_name: typing_extensions.Literal["value",b"value"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["key",b"key","value",b"value"]) -> None: ...
FIELDS_FIELD_NUMBER: builtins.int
# Unordered map of dynamically typed values.
@property
def fields(self) -> google.protobuf.internal.containers.MessageMap[typing.Text, global___Value]: ...
def fields(self) -> google.protobuf.internal.containers.MessageMap[typing.Text, global___Value]:
"""Unordered map of dynamically typed values."""
pass
def __init__(self,
*,
fields : typing.Optional[typing.Mapping[typing.Text, global___Value]] = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"fields",b"fields"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["fields",b"fields"]) -> None: ...
global___Struct = Struct
# `Value` represents a dynamically typed value which can be either
# null, a number, a string, a boolean, a recursive struct value, or a
# list of values. A producer of value is expected to set one of that
# variants, absence of any variant indicates an error.
#
# The JSON representation for `Value` is JSON value.
class Value(google.protobuf.message.Message):
"""`Value` represents a dynamically typed value which can be either
null, a number, a string, a boolean, a recursive struct value, or a
list of values. A producer of value is expected to set one of that
variants, absence of any variant indicates an error.
The JSON representation for `Value` is JSON value.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
NULL_VALUE_FIELD_NUMBER: builtins.int
NUMBER_VALUE_FIELD_NUMBER: builtins.int
@@ -81,20 +87,26 @@ class Value(google.protobuf.message.Message):
BOOL_VALUE_FIELD_NUMBER: builtins.int
STRUCT_VALUE_FIELD_NUMBER: builtins.int
LIST_VALUE_FIELD_NUMBER: builtins.int
# Represents a null value.
null_value: global___NullValue.V = ...
# Represents a double value.
"""Represents a null value."""
number_value: builtins.float = ...
# Represents a string value.
"""Represents a double value."""
string_value: typing.Text = ...
# Represents a boolean value.
"""Represents a string value."""
bool_value: builtins.bool = ...
# Represents a structured value.
"""Represents a boolean value."""
@property
def struct_value(self) -> global___Struct: ...
# Represents a repeated `Value`.
def struct_value(self) -> global___Struct:
"""Represents a structured value."""
pass
@property
def list_value(self) -> global___ListValue: ...
def list_value(self) -> global___ListValue:
"""Represents a repeated `Value`."""
pass
def __init__(self,
*,
null_value : global___NullValue.V = ...,
@@ -104,23 +116,25 @@ class Value(google.protobuf.message.Message):
struct_value : typing.Optional[global___Struct] = ...,
list_value : typing.Optional[global___ListValue] = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"bool_value",b"bool_value",u"kind",b"kind",u"list_value",b"list_value",u"null_value",b"null_value",u"number_value",b"number_value",u"string_value",b"string_value",u"struct_value",b"struct_value"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"bool_value",b"bool_value",u"kind",b"kind",u"list_value",b"list_value",u"null_value",b"null_value",u"number_value",b"number_value",u"string_value",b"string_value",u"struct_value",b"struct_value"]) -> None: ...
def WhichOneof(self, oneof_group: typing_extensions.Literal[u"kind",b"kind"]) -> typing.Optional[typing_extensions.Literal["null_value","number_value","string_value","bool_value","struct_value","list_value"]]: ...
def HasField(self, field_name: typing_extensions.Literal["bool_value",b"bool_value","kind",b"kind","list_value",b"list_value","null_value",b"null_value","number_value",b"number_value","string_value",b"string_value","struct_value",b"struct_value"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["bool_value",b"bool_value","kind",b"kind","list_value",b"list_value","null_value",b"null_value","number_value",b"number_value","string_value",b"string_value","struct_value",b"struct_value"]) -> None: ...
def WhichOneof(self, oneof_group: typing_extensions.Literal["kind",b"kind"]) -> typing.Optional[typing_extensions.Literal["null_value","number_value","string_value","bool_value","struct_value","list_value"]]: ...
global___Value = Value
# `ListValue` is a wrapper around a repeated field of values.
#
# The JSON representation for `ListValue` is JSON array.
class ListValue(google.protobuf.message.Message, google.protobuf.internal.well_known_types.ListValue):
"""`ListValue` is a wrapper around a repeated field of values.
The JSON representation for `ListValue` is JSON array.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUES_FIELD_NUMBER: builtins.int
# Repeated field of dynamically typed values.
@property
def values(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Value]: ...
def values(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Value]:
"""Repeated field of dynamically typed values."""
pass
def __init__(self,
*,
values : typing.Optional[typing.Iterable[global___Value]] = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"values",b"values"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["values",b"values"]) -> None: ...
global___ListValue = ListValue

View File

@@ -200,7 +200,7 @@ class Tokenizer:
def TryConsumeIdentifierOrNumber(self) -> bool: ...
def ConsumeIdentifierOrNumber(self) -> str: ...
def TryConsumeInteger(self) -> bool: ...
def ConsumeInteger(self, is_long: bool = ...) -> int: ...
def ConsumeInteger(self) -> int: ...
def TryConsumeFloat(self) -> bool: ...
def ConsumeFloat(self) -> float: ...
def ConsumeBool(self) -> bool: ...

View File

@@ -10,114 +10,119 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# A Timestamp represents a point in time independent of any time zone or local
# calendar, encoded as a count of seconds and fractions of seconds at
# nanosecond resolution. The count is relative to an epoch at UTC midnight on
# January 1, 1970, in the proleptic Gregorian calendar which extends the
# Gregorian calendar backwards to year one.
#
# All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
# second table is needed for interpretation, using a [24-hour linear
# smear](https://developers.google.com/time/smear).
#
# The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
# restricting to that range, we ensure that we can convert to and from [RFC
# 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings.
#
# # Examples
#
# Example 1: Compute Timestamp from POSIX `time()`.
#
# Timestamp timestamp;
# timestamp.set_seconds(time(NULL));
# timestamp.set_nanos(0);
#
# Example 2: Compute Timestamp from POSIX `gettimeofday()`.
#
# struct timeval tv;
# gettimeofday(&tv, NULL);
#
# Timestamp timestamp;
# timestamp.set_seconds(tv.tv_sec);
# timestamp.set_nanos(tv.tv_usec * 1000);
#
# Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
#
# FILETIME ft;
# GetSystemTimeAsFileTime(&ft);
# UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
#
# // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
# // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
# Timestamp timestamp;
# timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
# timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
#
# Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
#
# long millis = System.currentTimeMillis();
#
# Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
# .setNanos((int) ((millis % 1000) * 1000000)).build();
#
#
# Example 5: Compute Timestamp from Java `Instant.now()`.
#
# Instant now = Instant.now();
#
# Timestamp timestamp =
# Timestamp.newBuilder().setSeconds(now.getEpochSecond())
# .setNanos(now.getNano()).build();
#
#
# Example 6: Compute Timestamp from current time in Python.
#
# timestamp = Timestamp()
# timestamp.GetCurrentTime()
#
# # JSON Mapping
#
# In JSON format, the Timestamp type is encoded as a string in the
# [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the
# format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z"
# where {year} is always expressed using four digits while {month}, {day},
# {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
# seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
# are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
# is required. A proto3 JSON serializer should always use UTC (as indicated by
# "Z") when printing the Timestamp type and a proto3 JSON parser should be
# able to accept both UTC and other timezones (as indicated by an offset).
#
# For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
# 01:30 UTC on January 15, 2017.
#
# In JavaScript, one can convert a Date object to this format using the
# standard
# [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString)
# method. In Python, a standard `datetime.datetime` object can be converted
# to this format using
# [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with
# the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
# the Joda Time's [`ISODateTimeFormat.dateTime()`](
# http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D
# ) to obtain a formatter capable of generating timestamps in this format.
class Timestamp(google.protobuf.message.Message, google.protobuf.internal.well_known_types.Timestamp):
"""A Timestamp represents a point in time independent of any time zone or local
calendar, encoded as a count of seconds and fractions of seconds at
nanosecond resolution. The count is relative to an epoch at UTC midnight on
January 1, 1970, in the proleptic Gregorian calendar which extends the
Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
second table is needed for interpretation, using a [24-hour linear
smear](https://developers.google.com/time/smear).
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
restricting to that range, we ensure that we can convert to and from [RFC
3339](https://www.ietf.org/rfc/rfc3339.txt) date strings.
# Examples
Example 1: Compute Timestamp from POSIX `time()`.
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX `gettimeofday()`.
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from Java `Instant.now()`.
Instant now = Instant.now();
Timestamp timestamp =
Timestamp.newBuilder().setSeconds(now.getEpochSecond())
.setNanos(now.getNano()).build();
Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()
# JSON Mapping
In JSON format, the Timestamp type is encoded as a string in the
[RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the
format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z"
where {year} is always expressed using four digits while {month}, {day},
{hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
is required. A proto3 JSON serializer should always use UTC (as indicated by
"Z") when printing the Timestamp type and a proto3 JSON parser should be
able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
[toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString)
method. In Python, a standard `datetime.datetime` object can be converted
to this format using
[`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's [`ISODateTimeFormat.dateTime()`](
http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D
) to obtain a formatter capable of generating timestamps in this format.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
SECONDS_FIELD_NUMBER: builtins.int
NANOS_FIELD_NUMBER: builtins.int
# Represents seconds of UTC time since Unix epoch
# 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
# 9999-12-31T23:59:59Z inclusive.
seconds: builtins.int = ...
# Non-negative fractions of a second at nanosecond resolution. Negative
# second values with fractions must still have non-negative nanos values
# that count forward in time. Must be from 0 to 999,999,999
# inclusive.
"""Represents seconds of UTC time since Unix epoch
1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
9999-12-31T23:59:59Z inclusive.
"""
nanos: builtins.int = ...
"""Non-negative fractions of a second at nanosecond resolution. Negative
second values with fractions must still have non-negative nanos values
that count forward in time. Must be from 0 to 999,999,999
inclusive.
"""
def __init__(self,
*,
seconds : builtins.int = ...,
nanos : builtins.int = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"nanos",b"nanos",u"seconds",b"seconds"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["nanos",b"nanos","seconds",b"seconds"]) -> None: ...
global___Timestamp = Timestamp

View File

@@ -14,27 +14,31 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# The syntax in which a protocol buffer element is defined.
class Syntax(_Syntax, metaclass=_SyntaxEnumTypeWrapper):
"""The syntax in which a protocol buffer element is defined."""
pass
class _Syntax:
V = typing.NewType('V', builtins.int)
class _SyntaxEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_Syntax.V], builtins.type):
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor = ...
# Syntax `proto2`.
SYNTAX_PROTO2 = Syntax.V(0)
# Syntax `proto3`.
SYNTAX_PROTO3 = Syntax.V(1)
"""Syntax `proto2`."""
SYNTAX_PROTO3 = Syntax.V(1)
"""Syntax `proto3`."""
# Syntax `proto2`.
SYNTAX_PROTO2 = Syntax.V(0)
# Syntax `proto3`.
"""Syntax `proto2`."""
SYNTAX_PROTO3 = Syntax.V(1)
"""Syntax `proto3`."""
global___Syntax = Syntax
# A protocol buffer message type.
class Type(google.protobuf.message.Message):
"""A protocol buffer message type."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
NAME_FIELD_NUMBER: builtins.int
FIELDS_FIELD_NUMBER: builtins.int
@@ -42,22 +46,28 @@ class Type(google.protobuf.message.Message):
OPTIONS_FIELD_NUMBER: builtins.int
SOURCE_CONTEXT_FIELD_NUMBER: builtins.int
SYNTAX_FIELD_NUMBER: builtins.int
# The fully qualified message name.
name: typing.Text = ...
# The list of fields.
"""The fully qualified message name."""
@property
def fields(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Field]: ...
# The list of types appearing in `oneof` definitions in this type.
def fields(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Field]:
"""The list of fields."""
pass
@property
def oneofs(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[typing.Text]: ...
# The protocol buffer options.
def oneofs(self) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[typing.Text]:
"""The list of types appearing in `oneof` definitions in this type."""
pass
@property
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Option]: ...
# The source context.
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Option]:
"""The protocol buffer options."""
pass
@property
def source_context(self) -> google.protobuf.source_context_pb2.SourceContext: ...
# The source syntax.
def source_context(self) -> google.protobuf.source_context_pb2.SourceContext:
"""The source context."""
pass
syntax: global___Syntax.V = ...
"""The source syntax."""
def __init__(self,
*,
name : typing.Text = ...,
@@ -67,122 +77,168 @@ class Type(google.protobuf.message.Message):
source_context : typing.Optional[google.protobuf.source_context_pb2.SourceContext] = ...,
syntax : global___Syntax.V = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"source_context",b"source_context"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"fields",b"fields",u"name",b"name",u"oneofs",b"oneofs",u"options",b"options",u"source_context",b"source_context",u"syntax",b"syntax"]) -> None: ...
def HasField(self, field_name: typing_extensions.Literal["source_context",b"source_context"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["fields",b"fields","name",b"name","oneofs",b"oneofs","options",b"options","source_context",b"source_context","syntax",b"syntax"]) -> None: ...
global___Type = Type
# A single field of a message type.
class Field(google.protobuf.message.Message):
"""A single field of a message type."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
# Basic field types.
class Kind(_Kind, metaclass=_KindEnumTypeWrapper):
"""Basic field types."""
pass
class _Kind:
V = typing.NewType('V', builtins.int)
class _KindEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_Kind.V], builtins.type):
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor = ...
# Field type unknown.
TYPE_UNKNOWN = Field.Kind.V(0)
# Field type double.
"""Field type unknown."""
TYPE_DOUBLE = Field.Kind.V(1)
# Field type float.
"""Field type double."""
TYPE_FLOAT = Field.Kind.V(2)
# Field type int64.
"""Field type float."""
TYPE_INT64 = Field.Kind.V(3)
# Field type uint64.
"""Field type int64."""
TYPE_UINT64 = Field.Kind.V(4)
# Field type int32.
"""Field type uint64."""
TYPE_INT32 = Field.Kind.V(5)
# Field type fixed64.
"""Field type int32."""
TYPE_FIXED64 = Field.Kind.V(6)
# Field type fixed32.
"""Field type fixed64."""
TYPE_FIXED32 = Field.Kind.V(7)
# Field type bool.
"""Field type fixed32."""
TYPE_BOOL = Field.Kind.V(8)
# Field type string.
"""Field type bool."""
TYPE_STRING = Field.Kind.V(9)
# Field type group. Proto2 syntax only, and deprecated.
"""Field type string."""
TYPE_GROUP = Field.Kind.V(10)
# Field type message.
"""Field type group. Proto2 syntax only, and deprecated."""
TYPE_MESSAGE = Field.Kind.V(11)
# Field type bytes.
"""Field type message."""
TYPE_BYTES = Field.Kind.V(12)
# Field type uint32.
"""Field type bytes."""
TYPE_UINT32 = Field.Kind.V(13)
# Field type enum.
"""Field type uint32."""
TYPE_ENUM = Field.Kind.V(14)
# Field type sfixed32.
"""Field type enum."""
TYPE_SFIXED32 = Field.Kind.V(15)
# Field type sfixed64.
"""Field type sfixed32."""
TYPE_SFIXED64 = Field.Kind.V(16)
# Field type sint32.
"""Field type sfixed64."""
TYPE_SINT32 = Field.Kind.V(17)
# Field type sint64.
"""Field type sint32."""
TYPE_SINT64 = Field.Kind.V(18)
"""Field type sint64."""
# Field type unknown.
TYPE_UNKNOWN = Field.Kind.V(0)
# Field type double.
TYPE_DOUBLE = Field.Kind.V(1)
# Field type float.
TYPE_FLOAT = Field.Kind.V(2)
# Field type int64.
TYPE_INT64 = Field.Kind.V(3)
# Field type uint64.
TYPE_UINT64 = Field.Kind.V(4)
# Field type int32.
TYPE_INT32 = Field.Kind.V(5)
# Field type fixed64.
TYPE_FIXED64 = Field.Kind.V(6)
# Field type fixed32.
TYPE_FIXED32 = Field.Kind.V(7)
# Field type bool.
TYPE_BOOL = Field.Kind.V(8)
# Field type string.
TYPE_STRING = Field.Kind.V(9)
# Field type group. Proto2 syntax only, and deprecated.
TYPE_GROUP = Field.Kind.V(10)
# Field type message.
TYPE_MESSAGE = Field.Kind.V(11)
# Field type bytes.
TYPE_BYTES = Field.Kind.V(12)
# Field type uint32.
TYPE_UINT32 = Field.Kind.V(13)
# Field type enum.
TYPE_ENUM = Field.Kind.V(14)
# Field type sfixed32.
TYPE_SFIXED32 = Field.Kind.V(15)
# Field type sfixed64.
TYPE_SFIXED64 = Field.Kind.V(16)
# Field type sint32.
TYPE_SINT32 = Field.Kind.V(17)
# Field type sint64.
TYPE_SINT64 = Field.Kind.V(18)
"""Field type unknown."""
TYPE_DOUBLE = Field.Kind.V(1)
"""Field type double."""
TYPE_FLOAT = Field.Kind.V(2)
"""Field type float."""
TYPE_INT64 = Field.Kind.V(3)
"""Field type int64."""
TYPE_UINT64 = Field.Kind.V(4)
"""Field type uint64."""
TYPE_INT32 = Field.Kind.V(5)
"""Field type int32."""
TYPE_FIXED64 = Field.Kind.V(6)
"""Field type fixed64."""
TYPE_FIXED32 = Field.Kind.V(7)
"""Field type fixed32."""
TYPE_BOOL = Field.Kind.V(8)
"""Field type bool."""
TYPE_STRING = Field.Kind.V(9)
"""Field type string."""
TYPE_GROUP = Field.Kind.V(10)
"""Field type group. Proto2 syntax only, and deprecated."""
TYPE_MESSAGE = Field.Kind.V(11)
"""Field type message."""
TYPE_BYTES = Field.Kind.V(12)
"""Field type bytes."""
TYPE_UINT32 = Field.Kind.V(13)
"""Field type uint32."""
TYPE_ENUM = Field.Kind.V(14)
"""Field type enum."""
TYPE_SFIXED32 = Field.Kind.V(15)
"""Field type sfixed32."""
TYPE_SFIXED64 = Field.Kind.V(16)
"""Field type sfixed64."""
TYPE_SINT32 = Field.Kind.V(17)
"""Field type sint32."""
TYPE_SINT64 = Field.Kind.V(18)
"""Field type sint64."""
# Whether a field is optional, required, or repeated.
class Cardinality(_Cardinality, metaclass=_CardinalityEnumTypeWrapper):
"""Whether a field is optional, required, or repeated."""
pass
class _Cardinality:
V = typing.NewType('V', builtins.int)
class _CardinalityEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_Cardinality.V], builtins.type):
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor = ...
# For fields with unknown cardinality.
CARDINALITY_UNKNOWN = Field.Cardinality.V(0)
# For optional fields.
CARDINALITY_OPTIONAL = Field.Cardinality.V(1)
# For required fields. Proto2 syntax only.
CARDINALITY_REQUIRED = Field.Cardinality.V(2)
# For repeated fields.
CARDINALITY_REPEATED = Field.Cardinality.V(3)
"""For fields with unknown cardinality."""
CARDINALITY_OPTIONAL = Field.Cardinality.V(1)
"""For optional fields."""
CARDINALITY_REQUIRED = Field.Cardinality.V(2)
"""For required fields. Proto2 syntax only."""
CARDINALITY_REPEATED = Field.Cardinality.V(3)
"""For repeated fields."""
# For fields with unknown cardinality.
CARDINALITY_UNKNOWN = Field.Cardinality.V(0)
# For optional fields.
"""For fields with unknown cardinality."""
CARDINALITY_OPTIONAL = Field.Cardinality.V(1)
# For required fields. Proto2 syntax only.
"""For optional fields."""
CARDINALITY_REQUIRED = Field.Cardinality.V(2)
# For repeated fields.
"""For required fields. Proto2 syntax only."""
CARDINALITY_REPEATED = Field.Cardinality.V(3)
"""For repeated fields."""
KIND_FIELD_NUMBER: builtins.int
CARDINALITY_FIELD_NUMBER: builtins.int
@@ -194,29 +250,41 @@ class Field(google.protobuf.message.Message):
OPTIONS_FIELD_NUMBER: builtins.int
JSON_NAME_FIELD_NUMBER: builtins.int
DEFAULT_VALUE_FIELD_NUMBER: builtins.int
# The field type.
kind: global___Field.Kind.V = ...
# The field cardinality.
"""The field type."""
cardinality: global___Field.Cardinality.V = ...
# The field number.
"""The field cardinality."""
number: builtins.int = ...
# The field name.
"""The field number."""
name: typing.Text = ...
# The field type URL, without the scheme, for message or enumeration
# types. Example: `"type.googleapis.com/google.protobuf.Timestamp"`.
"""The field name."""
type_url: typing.Text = ...
# The index of the field type in `Type.oneofs`, for message or enumeration
# types. The first type has index 1; zero means the type is not in the list.
"""The field type URL, without the scheme, for message or enumeration
types. Example: `"type.googleapis.com/google.protobuf.Timestamp"`.
"""
oneof_index: builtins.int = ...
# Whether to use alternative packed wire representation.
"""The index of the field type in `Type.oneofs`, for message or enumeration
types. The first type has index 1; zero means the type is not in the list.
"""
packed: builtins.bool = ...
# The protocol buffer options.
"""Whether to use alternative packed wire representation."""
@property
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Option]: ...
# The field JSON name.
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Option]:
"""The protocol buffer options."""
pass
json_name: typing.Text = ...
# The string value of the default value of this field. Proto2 syntax only.
"""The field JSON name."""
default_value: typing.Text = ...
"""The string value of the default value of this field. Proto2 syntax only."""
def __init__(self,
*,
kind : global___Field.Kind.V = ...,
@@ -230,30 +298,35 @@ class Field(google.protobuf.message.Message):
json_name : typing.Text = ...,
default_value : typing.Text = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"cardinality",b"cardinality",u"default_value",b"default_value",u"json_name",b"json_name",u"kind",b"kind",u"name",b"name",u"number",b"number",u"oneof_index",b"oneof_index",u"options",b"options",u"packed",b"packed",u"type_url",b"type_url"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["cardinality",b"cardinality","default_value",b"default_value","json_name",b"json_name","kind",b"kind","name",b"name","number",b"number","oneof_index",b"oneof_index","options",b"options","packed",b"packed","type_url",b"type_url"]) -> None: ...
global___Field = Field
# Enum type definition.
class Enum(google.protobuf.message.Message):
"""Enum type definition."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
NAME_FIELD_NUMBER: builtins.int
ENUMVALUE_FIELD_NUMBER: builtins.int
OPTIONS_FIELD_NUMBER: builtins.int
SOURCE_CONTEXT_FIELD_NUMBER: builtins.int
SYNTAX_FIELD_NUMBER: builtins.int
# Enum type name.
name: typing.Text = ...
# Enum value definitions.
"""Enum type name."""
@property
def enumvalue(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___EnumValue]: ...
# Protocol buffer options.
def enumvalue(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___EnumValue]:
"""Enum value definitions."""
pass
@property
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Option]: ...
# The source context.
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Option]:
"""Protocol buffer options."""
pass
@property
def source_context(self) -> google.protobuf.source_context_pb2.SourceContext: ...
# The source syntax.
def source_context(self) -> google.protobuf.source_context_pb2.SourceContext:
"""The source context."""
pass
syntax: global___Syntax.V = ...
"""The source syntax."""
def __init__(self,
*,
name : typing.Text = ...,
@@ -262,54 +335,62 @@ class Enum(google.protobuf.message.Message):
source_context : typing.Optional[google.protobuf.source_context_pb2.SourceContext] = ...,
syntax : global___Syntax.V = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"source_context",b"source_context"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"enumvalue",b"enumvalue",u"name",b"name",u"options",b"options",u"source_context",b"source_context",u"syntax",b"syntax"]) -> None: ...
def HasField(self, field_name: typing_extensions.Literal["source_context",b"source_context"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["enumvalue",b"enumvalue","name",b"name","options",b"options","source_context",b"source_context","syntax",b"syntax"]) -> None: ...
global___Enum = Enum
# Enum value definition.
class EnumValue(google.protobuf.message.Message):
"""Enum value definition."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
NAME_FIELD_NUMBER: builtins.int
NUMBER_FIELD_NUMBER: builtins.int
OPTIONS_FIELD_NUMBER: builtins.int
# Enum value name.
name: typing.Text = ...
# Enum value number.
"""Enum value name."""
number: builtins.int = ...
# Protocol buffer options.
"""Enum value number."""
@property
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Option]: ...
def options(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___Option]:
"""Protocol buffer options."""
pass
def __init__(self,
*,
name : typing.Text = ...,
number : builtins.int = ...,
options : typing.Optional[typing.Iterable[global___Option]] = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"name",b"name",u"number",b"number",u"options",b"options"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["name",b"name","number",b"number","options",b"options"]) -> None: ...
global___EnumValue = EnumValue
# A protocol buffer option, which can be attached to a message, field,
# enumeration, etc.
class Option(google.protobuf.message.Message):
"""A protocol buffer option, which can be attached to a message, field,
enumeration, etc.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
NAME_FIELD_NUMBER: builtins.int
VALUE_FIELD_NUMBER: builtins.int
# The option's name. For protobuf built-in options (options defined in
# descriptor.proto), this is the short name. For example, `"map_entry"`.
# For custom options, it should be the fully-qualified name. For example,
# `"google.api.http"`.
name: typing.Text = ...
# The option's value packed in an Any message. If the value is a primitive,
# the corresponding wrapper type defined in google/protobuf/wrappers.proto
# should be used. If the value is an enum, it should be stored as an int32
# value using the google.protobuf.Int32Value type.
"""The option's name. For protobuf built-in options (options defined in
descriptor.proto), this is the short name. For example, `"map_entry"`.
For custom options, it should be the fully-qualified name. For example,
`"google.api.http"`.
"""
@property
def value(self) -> google.protobuf.any_pb2.Any: ...
def value(self) -> google.protobuf.any_pb2.Any:
"""The option's value packed in an Any message. If the value is a primitive,
the corresponding wrapper type defined in google/protobuf/wrappers.proto
should be used. If the value is an enum, it should be stored as an int32
value using the google.protobuf.Int32Value type.
"""
pass
def __init__(self,
*,
name : typing.Text = ...,
value : typing.Optional[google.protobuf.any_pb2.Any] = ...,
) -> None: ...
def HasField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal[u"name",b"name",u"value",b"value"]) -> None: ...
def HasField(self, field_name: typing_extensions.Literal["value",b"value"]) -> builtins.bool: ...
def ClearField(self, field_name: typing_extensions.Literal["name",b"name","value",b"value"]) -> None: ...
global___Option = Option

View File

@@ -10,137 +10,155 @@ import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor = ...
# Wrapper message for `double`.
#
# The JSON representation for `DoubleValue` is JSON number.
class DoubleValue(google.protobuf.message.Message):
"""Wrapper message for `double`.
The JSON representation for `DoubleValue` is JSON number.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUE_FIELD_NUMBER: builtins.int
# The double value.
value: builtins.float = ...
"""The double value."""
def __init__(self,
*,
value : builtins.float = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["value",b"value"]) -> None: ...
global___DoubleValue = DoubleValue
# Wrapper message for `float`.
#
# The JSON representation for `FloatValue` is JSON number.
class FloatValue(google.protobuf.message.Message):
"""Wrapper message for `float`.
The JSON representation for `FloatValue` is JSON number.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUE_FIELD_NUMBER: builtins.int
# The float value.
value: builtins.float = ...
"""The float value."""
def __init__(self,
*,
value : builtins.float = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["value",b"value"]) -> None: ...
global___FloatValue = FloatValue
# Wrapper message for `int64`.
#
# The JSON representation for `Int64Value` is JSON string.
class Int64Value(google.protobuf.message.Message):
"""Wrapper message for `int64`.
The JSON representation for `Int64Value` is JSON string.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUE_FIELD_NUMBER: builtins.int
# The int64 value.
value: builtins.int = ...
"""The int64 value."""
def __init__(self,
*,
value : builtins.int = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["value",b"value"]) -> None: ...
global___Int64Value = Int64Value
# Wrapper message for `uint64`.
#
# The JSON representation for `UInt64Value` is JSON string.
class UInt64Value(google.protobuf.message.Message):
"""Wrapper message for `uint64`.
The JSON representation for `UInt64Value` is JSON string.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUE_FIELD_NUMBER: builtins.int
# The uint64 value.
value: builtins.int = ...
"""The uint64 value."""
def __init__(self,
*,
value : builtins.int = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["value",b"value"]) -> None: ...
global___UInt64Value = UInt64Value
# Wrapper message for `int32`.
#
# The JSON representation for `Int32Value` is JSON number.
class Int32Value(google.protobuf.message.Message):
"""Wrapper message for `int32`.
The JSON representation for `Int32Value` is JSON number.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUE_FIELD_NUMBER: builtins.int
# The int32 value.
value: builtins.int = ...
"""The int32 value."""
def __init__(self,
*,
value : builtins.int = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["value",b"value"]) -> None: ...
global___Int32Value = Int32Value
# Wrapper message for `uint32`.
#
# The JSON representation for `UInt32Value` is JSON number.
class UInt32Value(google.protobuf.message.Message):
"""Wrapper message for `uint32`.
The JSON representation for `UInt32Value` is JSON number.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUE_FIELD_NUMBER: builtins.int
# The uint32 value.
value: builtins.int = ...
"""The uint32 value."""
def __init__(self,
*,
value : builtins.int = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["value",b"value"]) -> None: ...
global___UInt32Value = UInt32Value
# Wrapper message for `bool`.
#
# The JSON representation for `BoolValue` is JSON `true` and `false`.
class BoolValue(google.protobuf.message.Message):
"""Wrapper message for `bool`.
The JSON representation for `BoolValue` is JSON `true` and `false`.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUE_FIELD_NUMBER: builtins.int
# The bool value.
value: builtins.bool = ...
"""The bool value."""
def __init__(self,
*,
value : builtins.bool = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["value",b"value"]) -> None: ...
global___BoolValue = BoolValue
# Wrapper message for `string`.
#
# The JSON representation for `StringValue` is JSON string.
class StringValue(google.protobuf.message.Message):
"""Wrapper message for `string`.
The JSON representation for `StringValue` is JSON string.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUE_FIELD_NUMBER: builtins.int
# The string value.
value: typing.Text = ...
"""The string value."""
def __init__(self,
*,
value : typing.Text = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["value",b"value"]) -> None: ...
global___StringValue = StringValue
# Wrapper message for `bytes`.
#
# The JSON representation for `BytesValue` is JSON string.
class BytesValue(google.protobuf.message.Message):
"""Wrapper message for `bytes`.
The JSON representation for `BytesValue` is JSON string.
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor = ...
VALUE_FIELD_NUMBER: builtins.int
# The bytes value.
value: builtins.bytes = ...
"""The bytes value."""
def __init__(self,
*,
value : builtins.bytes = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal[u"value",b"value"]) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["value",b"value"]) -> None: ...
global___BytesValue = BytesValue