mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-08 04:54:47 +08:00
Add networkx stubs (#10544)
Co-authored-by: Avasam <samuel.06@hotmail.com> Co-authored-by: Audrey Dutcher <audrey@rhelmot.io>
This commit is contained in:
@@ -49,6 +49,7 @@
|
||||
"stubs/mysqlclient",
|
||||
"stubs/oauthlib",
|
||||
"stubs/openpyxl",
|
||||
"stubs/networkx",
|
||||
"stubs/passlib",
|
||||
"stubs/peewee",
|
||||
"stubs/pexpect",
|
||||
|
||||
9
stubs/networkx/METADATA.toml
Normal file
9
stubs/networkx/METADATA.toml
Normal file
@@ -0,0 +1,9 @@
|
||||
version = "3.1"
|
||||
upstream_repository = "https://github.com/networkx/networkx"
|
||||
requires = ["numpy"]
|
||||
partial_stub = true
|
||||
|
||||
[tool.stubtest]
|
||||
ignore_missing_stub = true
|
||||
# stub_uploader won't allow pandas-stubs in the requires field https://github.com/typeshed-internal/stub_uploader/issues/90
|
||||
stubtest_requirements = ["pandas"]
|
||||
24
stubs/networkx/networkx/__init__.pyi
Normal file
24
stubs/networkx/networkx/__init__.pyi
Normal file
@@ -0,0 +1,24 @@
|
||||
from networkx.algorithms import *
|
||||
from networkx.classes import *
|
||||
from networkx.classes import filters as filters
|
||||
from networkx.convert import *
|
||||
from networkx.convert_matrix import *
|
||||
from networkx.drawing import *
|
||||
from networkx.exception import *
|
||||
from networkx.generators import *
|
||||
from networkx.linalg import *
|
||||
from networkx.readwrite import *
|
||||
from networkx.relabel import *
|
||||
|
||||
from . import (
|
||||
algorithms as algorithms,
|
||||
classes as classes,
|
||||
convert as convert,
|
||||
convert_matrix as convert_matrix,
|
||||
drawing as drawing,
|
||||
generators as generators,
|
||||
linalg as linalg,
|
||||
readwrite as readwrite,
|
||||
relabel as relabel,
|
||||
utils as utils,
|
||||
)
|
||||
135
stubs/networkx/networkx/algorithms/__init__.pyi
Normal file
135
stubs/networkx/networkx/algorithms/__init__.pyi
Normal file
@@ -0,0 +1,135 @@
|
||||
from networkx.algorithms import (
|
||||
approximation as approximation,
|
||||
assortativity as assortativity,
|
||||
bipartite as bipartite,
|
||||
centrality as centrality,
|
||||
chordal as chordal,
|
||||
clique as clique,
|
||||
cluster as cluster,
|
||||
coloring as coloring,
|
||||
community as community,
|
||||
components as components,
|
||||
connectivity as connectivity,
|
||||
flow as flow,
|
||||
isomorphism as isomorphism,
|
||||
link_analysis as link_analysis,
|
||||
lowest_common_ancestors as lowest_common_ancestors,
|
||||
node_classification as node_classification,
|
||||
operators as operators,
|
||||
shortest_paths as shortest_paths,
|
||||
tournament as tournament,
|
||||
traversal as traversal,
|
||||
tree as tree,
|
||||
)
|
||||
from networkx.algorithms.assortativity import *
|
||||
from networkx.algorithms.asteroidal import *
|
||||
from networkx.algorithms.bipartite import (
|
||||
complete_bipartite_graph as complete_bipartite_graph,
|
||||
is_bipartite as is_bipartite,
|
||||
projected_graph as projected_graph,
|
||||
)
|
||||
from networkx.algorithms.boundary import *
|
||||
from networkx.algorithms.bridges import *
|
||||
from networkx.algorithms.centrality import *
|
||||
from networkx.algorithms.chains import *
|
||||
from networkx.algorithms.chordal import *
|
||||
from networkx.algorithms.clique import *
|
||||
from networkx.algorithms.cluster import *
|
||||
from networkx.algorithms.coloring import *
|
||||
from networkx.algorithms.communicability_alg import *
|
||||
from networkx.algorithms.components import *
|
||||
from networkx.algorithms.connectivity import (
|
||||
all_node_cuts as all_node_cuts,
|
||||
all_pairs_node_connectivity as all_pairs_node_connectivity,
|
||||
average_node_connectivity as average_node_connectivity,
|
||||
edge_connectivity as edge_connectivity,
|
||||
edge_disjoint_paths as edge_disjoint_paths,
|
||||
is_k_edge_connected as is_k_edge_connected,
|
||||
k_components as k_components,
|
||||
k_edge_augmentation as k_edge_augmentation,
|
||||
k_edge_components as k_edge_components,
|
||||
k_edge_subgraphs as k_edge_subgraphs,
|
||||
minimum_edge_cut as minimum_edge_cut,
|
||||
minimum_node_cut as minimum_node_cut,
|
||||
node_connectivity as node_connectivity,
|
||||
node_disjoint_paths as node_disjoint_paths,
|
||||
stoer_wagner as stoer_wagner,
|
||||
)
|
||||
from networkx.algorithms.core import *
|
||||
from networkx.algorithms.covering import *
|
||||
from networkx.algorithms.cuts import *
|
||||
from networkx.algorithms.cycles import *
|
||||
from networkx.algorithms.d_separation import *
|
||||
from networkx.algorithms.dag import *
|
||||
from networkx.algorithms.distance_measures import *
|
||||
from networkx.algorithms.distance_regular import *
|
||||
from networkx.algorithms.dominance import *
|
||||
from networkx.algorithms.dominating import *
|
||||
from networkx.algorithms.efficiency_measures import *
|
||||
from networkx.algorithms.euler import *
|
||||
from networkx.algorithms.flow import (
|
||||
capacity_scaling as capacity_scaling,
|
||||
cost_of_flow as cost_of_flow,
|
||||
gomory_hu_tree as gomory_hu_tree,
|
||||
max_flow_min_cost as max_flow_min_cost,
|
||||
maximum_flow as maximum_flow,
|
||||
maximum_flow_value as maximum_flow_value,
|
||||
min_cost_flow as min_cost_flow,
|
||||
min_cost_flow_cost as min_cost_flow_cost,
|
||||
minimum_cut as minimum_cut,
|
||||
minimum_cut_value as minimum_cut_value,
|
||||
network_simplex as network_simplex,
|
||||
)
|
||||
from networkx.algorithms.graph_hashing import *
|
||||
from networkx.algorithms.graphical import *
|
||||
from networkx.algorithms.hierarchy import *
|
||||
from networkx.algorithms.hybrid import *
|
||||
from networkx.algorithms.isolate import *
|
||||
from networkx.algorithms.isomorphism import (
|
||||
could_be_isomorphic as could_be_isomorphic,
|
||||
fast_could_be_isomorphic as fast_could_be_isomorphic,
|
||||
faster_could_be_isomorphic as faster_could_be_isomorphic,
|
||||
is_isomorphic as is_isomorphic,
|
||||
)
|
||||
from networkx.algorithms.isomorphism.vf2pp import *
|
||||
from networkx.algorithms.link_analysis import *
|
||||
from networkx.algorithms.link_prediction import *
|
||||
from networkx.algorithms.lowest_common_ancestors import *
|
||||
from networkx.algorithms.matching import *
|
||||
from networkx.algorithms.minors import *
|
||||
from networkx.algorithms.mis import *
|
||||
from networkx.algorithms.moral import *
|
||||
from networkx.algorithms.non_randomness import *
|
||||
from networkx.algorithms.operators import *
|
||||
from networkx.algorithms.planar_drawing import *
|
||||
from networkx.algorithms.planarity import *
|
||||
from networkx.algorithms.polynomials import *
|
||||
from networkx.algorithms.reciprocity import *
|
||||
from networkx.algorithms.regular import *
|
||||
from networkx.algorithms.richclub import *
|
||||
from networkx.algorithms.shortest_paths import *
|
||||
from networkx.algorithms.similarity import *
|
||||
from networkx.algorithms.simple_paths import *
|
||||
from networkx.algorithms.smallworld import *
|
||||
from networkx.algorithms.smetric import *
|
||||
from networkx.algorithms.sparsifiers import *
|
||||
from networkx.algorithms.structuralholes import *
|
||||
from networkx.algorithms.summarization import *
|
||||
from networkx.algorithms.swap import *
|
||||
from networkx.algorithms.traversal import *
|
||||
from networkx.algorithms.tree.branchings import (
|
||||
ArborescenceIterator as ArborescenceIterator,
|
||||
maximum_branching as maximum_branching,
|
||||
maximum_spanning_arborescence as maximum_spanning_arborescence,
|
||||
minimum_branching as minimum_branching,
|
||||
minimum_spanning_arborescence as minimum_spanning_arborescence,
|
||||
)
|
||||
from networkx.algorithms.tree.coding import *
|
||||
from networkx.algorithms.tree.decomposition import *
|
||||
from networkx.algorithms.tree.mst import *
|
||||
from networkx.algorithms.tree.operations import *
|
||||
from networkx.algorithms.tree.recognition import *
|
||||
from networkx.algorithms.triads import *
|
||||
from networkx.algorithms.vitality import *
|
||||
from networkx.algorithms.voronoi import *
|
||||
from networkx.algorithms.wiener import *
|
||||
@@ -0,0 +1,13 @@
|
||||
from networkx.algorithms.approximation.clique import *
|
||||
from networkx.algorithms.approximation.clustering_coefficient import *
|
||||
from networkx.algorithms.approximation.connectivity import *
|
||||
from networkx.algorithms.approximation.distance_measures import *
|
||||
from networkx.algorithms.approximation.dominating_set import *
|
||||
from networkx.algorithms.approximation.kcomponents import *
|
||||
from networkx.algorithms.approximation.matching import *
|
||||
from networkx.algorithms.approximation.maxcut import *
|
||||
from networkx.algorithms.approximation.ramsey import *
|
||||
from networkx.algorithms.approximation.steinertree import *
|
||||
from networkx.algorithms.approximation.traveling_salesman import *
|
||||
from networkx.algorithms.approximation.treewidth import *
|
||||
from networkx.algorithms.approximation.vertex_cover import *
|
||||
@@ -0,0 +1,4 @@
|
||||
def maximum_independent_set(G): ...
|
||||
def max_clique(G): ...
|
||||
def clique_removal(G): ...
|
||||
def large_clique_size(G): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def average_clustering(G, trials: int = 1000, seed: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,5 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def local_node_connectivity(G, source, target, cutoff: Incomplete | None = None): ...
|
||||
def node_connectivity(G, s: Incomplete | None = None, t: Incomplete | None = None): ...
|
||||
def all_pairs_node_connectivity(G, nbunch: Incomplete | None = None, cutoff: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def diameter(G, seed: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,4 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def min_weighted_dominating_set(G, weight: Incomplete | None = None): ...
|
||||
def min_edge_dominating_set(G): ...
|
||||
@@ -0,0 +1 @@
|
||||
def k_components(G, min_density: float = 0.95): ...
|
||||
@@ -0,0 +1 @@
|
||||
def min_maximal_matching(G): ...
|
||||
@@ -0,0 +1,4 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def randomized_partitioning(G, seed: Incomplete | None = None, p: float = 0.5, weight: Incomplete | None = None): ...
|
||||
def one_exchange(G, initial_cut: Incomplete | None = None, seed: Incomplete | None = None, weight: Incomplete | None = None): ...
|
||||
@@ -0,0 +1 @@
|
||||
def ramsey_R2(G): ...
|
||||
@@ -0,0 +1,4 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def metric_closure(G, weight: str = "weight"): ...
|
||||
def steiner_tree(G, terminal_nodes, weight: str = "weight", method: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,33 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def christofides(G, weight: str = "weight", tree: Incomplete | None = None): ...
|
||||
def traveling_salesman_problem(
|
||||
G, weight: str = "weight", nodes: Incomplete | None = None, cycle: bool = True, method: Incomplete | None = None
|
||||
): ...
|
||||
def asadpour_atsp(G, weight: str = "weight", seed: Incomplete | None = None, source: Incomplete | None = None): ...
|
||||
def greedy_tsp(G, weight: str = "weight", source: Incomplete | None = None): ...
|
||||
def simulated_annealing_tsp(
|
||||
G,
|
||||
init_cycle,
|
||||
weight: str = "weight",
|
||||
source: Incomplete | None = None,
|
||||
# docstring says int, but it can be a float and does become a float mid-equation if alpha is also a float
|
||||
temp: float = 100,
|
||||
move: str = "1-1",
|
||||
max_iterations: int = 10,
|
||||
N_inner: int = 100,
|
||||
alpha: float = 0.01,
|
||||
seed: Incomplete | None = None,
|
||||
): ...
|
||||
def threshold_accepting_tsp(
|
||||
G,
|
||||
init_cycle,
|
||||
weight: str = "weight",
|
||||
source: Incomplete | None = None,
|
||||
threshold: float = 1,
|
||||
move: str = "1-1",
|
||||
max_iterations: int = 10,
|
||||
N_inner: int = 100,
|
||||
alpha: float = 0.1,
|
||||
seed: Incomplete | None = None,
|
||||
): ...
|
||||
@@ -0,0 +1,11 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
__all__ = ["treewidth_min_degree", "treewidth_min_fill_in"]
|
||||
|
||||
def treewidth_min_degree(G): ...
|
||||
def treewidth_min_fill_in(G): ...
|
||||
|
||||
class MinDegreeHeuristic:
|
||||
count: Incomplete
|
||||
def __init__(self, graph) -> None: ...
|
||||
def best_node(self, graph): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def min_weighted_vertex_cover(G, weight: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,5 @@
|
||||
from networkx.algorithms.assortativity.connectivity import *
|
||||
from networkx.algorithms.assortativity.correlation import *
|
||||
from networkx.algorithms.assortativity.mixing import *
|
||||
from networkx.algorithms.assortativity.neighbor_degree import *
|
||||
from networkx.algorithms.assortativity.pairs import *
|
||||
@@ -0,0 +1,5 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def average_degree_connectivity(
|
||||
G, source: str = "in+out", target: str = "in+out", nodes: Incomplete | None = None, weight: Incomplete | None = None
|
||||
): ...
|
||||
@@ -0,0 +1,10 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def degree_assortativity_coefficient(
|
||||
G, x: str = "out", y: str = "in", weight: Incomplete | None = None, nodes: Incomplete | None = None
|
||||
): ...
|
||||
def degree_pearson_correlation_coefficient(
|
||||
G, x: str = "out", y: str = "in", weight: Incomplete | None = None, nodes: Incomplete | None = None
|
||||
): ...
|
||||
def attribute_assortativity_coefficient(G, attribute, nodes: Incomplete | None = None): ...
|
||||
def numeric_assortativity_coefficient(G, attribute, nodes: Incomplete | None = None): ...
|
||||
19
stubs/networkx/networkx/algorithms/assortativity/mixing.pyi
Normal file
19
stubs/networkx/networkx/algorithms/assortativity/mixing.pyi
Normal file
@@ -0,0 +1,19 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def attribute_mixing_dict(G, attribute, nodes: Incomplete | None = None, normalized: bool = False): ...
|
||||
def attribute_mixing_matrix(
|
||||
G, attribute, nodes: Incomplete | None = None, mapping: Incomplete | None = None, normalized: bool = True
|
||||
): ...
|
||||
def degree_mixing_dict(
|
||||
G, x: str = "out", y: str = "in", weight: Incomplete | None = None, nodes: Incomplete | None = None, normalized: bool = False
|
||||
): ...
|
||||
def degree_mixing_matrix(
|
||||
G,
|
||||
x: str = "out",
|
||||
y: str = "in",
|
||||
weight: Incomplete | None = None,
|
||||
nodes: Incomplete | None = None,
|
||||
normalized: bool = True,
|
||||
mapping: Incomplete | None = None,
|
||||
): ...
|
||||
def mixing_dict(xy, normalized: bool = False): ...
|
||||
@@ -0,0 +1,5 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def average_neighbor_degree(
|
||||
G, source: str = "out", target: str = "out", nodes: Incomplete | None = None, weight: Incomplete | None = None
|
||||
): ...
|
||||
@@ -0,0 +1,7 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def node_attribute_xy(G, attribute, nodes: Incomplete | None = None) -> Generator[Incomplete, None, None]: ...
|
||||
def node_degree_xy(
|
||||
G, x: str = "out", y: str = "in", weight: Incomplete | None = None, nodes: Incomplete | None = None
|
||||
) -> Generator[Incomplete, None, None]: ...
|
||||
2
stubs/networkx/networkx/algorithms/asteroidal.pyi
Normal file
2
stubs/networkx/networkx/algorithms/asteroidal.pyi
Normal file
@@ -0,0 +1,2 @@
|
||||
def find_asteroidal_triple(G): ...
|
||||
def is_at_free(G): ...
|
||||
11
stubs/networkx/networkx/algorithms/bipartite/__init__.pyi
Normal file
11
stubs/networkx/networkx/algorithms/bipartite/__init__.pyi
Normal file
@@ -0,0 +1,11 @@
|
||||
from networkx.algorithms.bipartite.basic import *
|
||||
from networkx.algorithms.bipartite.centrality import *
|
||||
from networkx.algorithms.bipartite.cluster import *
|
||||
from networkx.algorithms.bipartite.covering import *
|
||||
from networkx.algorithms.bipartite.edgelist import *
|
||||
from networkx.algorithms.bipartite.generators import *
|
||||
from networkx.algorithms.bipartite.matching import *
|
||||
from networkx.algorithms.bipartite.matrix import *
|
||||
from networkx.algorithms.bipartite.projection import *
|
||||
from networkx.algorithms.bipartite.redundancy import *
|
||||
from networkx.algorithms.bipartite.spectral import *
|
||||
8
stubs/networkx/networkx/algorithms/bipartite/basic.pyi
Normal file
8
stubs/networkx/networkx/algorithms/bipartite/basic.pyi
Normal file
@@ -0,0 +1,8 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def color(G): ...
|
||||
def is_bipartite(G): ...
|
||||
def is_bipartite_node_set(G, nodes): ...
|
||||
def sets(G, top_nodes: Incomplete | None = None): ...
|
||||
def density(B, nodes): ...
|
||||
def degrees(B, nodes, weight: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
def degree_centrality(G, nodes): ...
|
||||
def betweenness_centrality(G, nodes): ...
|
||||
def closeness_centrality(G, nodes, normalized: bool = True): ...
|
||||
8
stubs/networkx/networkx/algorithms/bipartite/cluster.pyi
Normal file
8
stubs/networkx/networkx/algorithms/bipartite/cluster.pyi
Normal file
@@ -0,0 +1,8 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def latapy_clustering(G, nodes: Incomplete | None = None, mode: str = "dot"): ...
|
||||
|
||||
clustering = latapy_clustering
|
||||
|
||||
def average_clustering(G, nodes: Incomplete | None = None, mode: str = "dot"): ...
|
||||
def robins_alexander_clustering(G): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def min_edge_cover(G, matching_algorithm: Incomplete | None = None): ...
|
||||
23
stubs/networkx/networkx/algorithms/bipartite/edgelist.pyi
Normal file
23
stubs/networkx/networkx/algorithms/bipartite/edgelist.pyi
Normal file
@@ -0,0 +1,23 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def write_edgelist(G, path, comments: str = "#", delimiter: str = " ", data: bool = True, encoding: str = "utf-8") -> None: ...
|
||||
def generate_edgelist(G, delimiter: str = " ", data: bool = True) -> Generator[Incomplete, None, None]: ...
|
||||
def parse_edgelist(
|
||||
lines,
|
||||
comments: str = "#",
|
||||
delimiter: Incomplete | None = None,
|
||||
create_using: Incomplete | None = None,
|
||||
nodetype: Incomplete | None = None,
|
||||
data: bool = True,
|
||||
): ...
|
||||
def read_edgelist(
|
||||
path,
|
||||
comments: str = "#",
|
||||
delimiter: Incomplete | None = None,
|
||||
create_using: Incomplete | None = None,
|
||||
nodetype: Incomplete | None = None,
|
||||
data: bool = True,
|
||||
edgetype: Incomplete | None = None,
|
||||
encoding: str = "utf-8",
|
||||
): ...
|
||||
10
stubs/networkx/networkx/algorithms/bipartite/generators.pyi
Normal file
10
stubs/networkx/networkx/algorithms/bipartite/generators.pyi
Normal file
@@ -0,0 +1,10 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def complete_bipartite_graph(n1, n2, create_using: Incomplete | None = None): ...
|
||||
def configuration_model(aseq, bseq, create_using: Incomplete | None = None, seed: Incomplete | None = None): ...
|
||||
def havel_hakimi_graph(aseq, bseq, create_using: Incomplete | None = None): ...
|
||||
def reverse_havel_hakimi_graph(aseq, bseq, create_using: Incomplete | None = None): ...
|
||||
def alternating_havel_hakimi_graph(aseq, bseq, create_using: Incomplete | None = None): ...
|
||||
def preferential_attachment_graph(aseq, p, create_using: Incomplete | None = None, seed: Incomplete | None = None): ...
|
||||
def random_graph(n, m, p, seed: Incomplete | None = None, directed: bool = False): ...
|
||||
def gnmk_random_graph(n, m, k, seed: Incomplete | None = None, directed: bool = False): ...
|
||||
@@ -0,0 +1,9 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def hopcroft_karp_matching(G, top_nodes: Incomplete | None = None): ...
|
||||
def eppstein_matching(G, top_nodes: Incomplete | None = None): ...
|
||||
def to_vertex_cover(G, matching, top_nodes: Incomplete | None = None): ...
|
||||
|
||||
maximum_matching = hopcroft_karp_matching
|
||||
|
||||
def minimum_weight_full_matching(G, top_nodes: Incomplete | None = None, weight: str = "weight"): ...
|
||||
11
stubs/networkx/networkx/algorithms/bipartite/matrix.pyi
Normal file
11
stubs/networkx/networkx/algorithms/bipartite/matrix.pyi
Normal file
@@ -0,0 +1,11 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def biadjacency_matrix(
|
||||
G,
|
||||
row_order,
|
||||
column_order: Incomplete | None = None,
|
||||
dtype: Incomplete | None = None,
|
||||
weight: str = "weight",
|
||||
format: str = "csr",
|
||||
): ...
|
||||
def from_biadjacency_matrix(A, create_using: Incomplete | None = None, edge_attribute: str = "weight"): ...
|
||||
@@ -0,0 +1,7 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def projected_graph(B, nodes, multigraph: bool = False): ...
|
||||
def weighted_projected_graph(B, nodes, ratio: bool = False): ...
|
||||
def collaboration_weighted_projected_graph(B, nodes): ...
|
||||
def overlap_weighted_projected_graph(B, nodes, jaccard: bool = True): ...
|
||||
def generic_weighted_projected_graph(B, nodes, weight_function: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def node_redundancy(G, nodes: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def spectral_bipartivity(G, nodes: Incomplete | None = None, weight: str = "weight"): ...
|
||||
114
stubs/networkx/networkx/algorithms/boundary.pyi
Normal file
114
stubs/networkx/networkx/algorithms/boundary.pyi
Normal file
@@ -0,0 +1,114 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator, Iterable
|
||||
from typing import TypeVar, overload
|
||||
from typing_extensions import Literal
|
||||
|
||||
from networkx.classes.graph import Graph, _Node
|
||||
|
||||
_U = TypeVar("_U")
|
||||
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None = None,
|
||||
data: Literal[False] = False,
|
||||
keys: Literal[False] = False,
|
||||
default=None,
|
||||
) -> Generator[tuple[_Node, _Node], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None,
|
||||
data: Literal[True],
|
||||
keys: Literal[False] = False,
|
||||
default=None,
|
||||
) -> Generator[tuple[_Node, _Node, dict[str, Incomplete]], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None = None,
|
||||
*,
|
||||
data: Literal[True],
|
||||
keys: Literal[False] = False,
|
||||
default=None,
|
||||
) -> Generator[tuple[_Node, _Node, dict[str, Incomplete]], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None,
|
||||
data: str,
|
||||
keys: Literal[False] = False,
|
||||
default: _U | None = None,
|
||||
) -> Generator[tuple[_Node, _Node, dict[str, _U]], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None = None,
|
||||
*,
|
||||
data: str,
|
||||
keys: Literal[False] = False,
|
||||
default: _U | None = None,
|
||||
) -> Generator[tuple[_Node, _Node, dict[str, _U]], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None,
|
||||
data: Literal[False],
|
||||
keys: Literal[True],
|
||||
default=None,
|
||||
) -> Generator[tuple[_Node, _Node, int], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None = None,
|
||||
data: Literal[False] = False,
|
||||
*,
|
||||
keys: Literal[True],
|
||||
default=None,
|
||||
) -> Generator[tuple[_Node, _Node, int], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None,
|
||||
data: Literal[True],
|
||||
keys: Literal[True],
|
||||
default=None,
|
||||
) -> Generator[tuple[_Node, _Node, int, dict[str, Incomplete]], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None = None,
|
||||
*,
|
||||
data: Literal[True],
|
||||
keys: Literal[True],
|
||||
default=None,
|
||||
) -> Generator[tuple[_Node, _Node, int, dict[str, Incomplete]], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None,
|
||||
data: str,
|
||||
keys: Literal[True],
|
||||
default: _U | None = None,
|
||||
) -> Generator[tuple[_Node, _Node, int, dict[str, _U]], None, None]: ...
|
||||
@overload
|
||||
def edge_boundary(
|
||||
G: Graph[_Node],
|
||||
nbunch1: Iterable[_Node],
|
||||
nbunch2: Iterable[_Node] | None = None,
|
||||
*,
|
||||
data: str,
|
||||
keys: Literal[True],
|
||||
default: _U | None = None,
|
||||
) -> Generator[tuple[_Node, _Node, int, dict[str, _U]], None, None]: ...
|
||||
def node_boundary(G: Graph[_Node], nbunch1: Iterable[_Node], nbunch2: Iterable[_Node] | None = None) -> set[_Node]: ...
|
||||
17
stubs/networkx/networkx/algorithms/bridges.pyi
Normal file
17
stubs/networkx/networkx/algorithms/bridges.pyi
Normal file
@@ -0,0 +1,17 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Callable, Generator
|
||||
from typing import overload
|
||||
from typing_extensions import Literal
|
||||
|
||||
from networkx.classes.graph import Graph, _Node
|
||||
|
||||
def bridges(G: Graph[_Node], root: _Node | None = None) -> Generator[_Node, None, None]: ...
|
||||
def has_bridges(G: Graph[_Node], root: Incomplete | None = None) -> bool: ...
|
||||
@overload
|
||||
def local_bridges(
|
||||
G: Graph[_Node], with_span: Literal[False], weight: str | Callable[[_Node], float] | None = None
|
||||
) -> Generator[tuple[_Node, _Node], None, None]: ...
|
||||
@overload
|
||||
def local_bridges(
|
||||
G: Graph[_Node], with_span: Literal[True] = True, weight: str | Callable[[_Node], float] | None = None
|
||||
) -> Generator[tuple[_Node, _Node, int], None, None]: ...
|
||||
20
stubs/networkx/networkx/algorithms/centrality/__init__.pyi
Normal file
20
stubs/networkx/networkx/algorithms/centrality/__init__.pyi
Normal file
@@ -0,0 +1,20 @@
|
||||
from .betweenness import *
|
||||
from .betweenness_subset import *
|
||||
from .closeness import *
|
||||
from .current_flow_betweenness import *
|
||||
from .current_flow_betweenness_subset import *
|
||||
from .current_flow_closeness import *
|
||||
from .degree_alg import *
|
||||
from .dispersion import *
|
||||
from .eigenvector import *
|
||||
from .group import *
|
||||
from .harmonic import *
|
||||
from .katz import *
|
||||
from .laplacian import *
|
||||
from .load import *
|
||||
from .percolation import *
|
||||
from .reaching import *
|
||||
from .second_order import *
|
||||
from .subgraph_alg import *
|
||||
from .trophic import *
|
||||
from .voterank_alg import *
|
||||
@@ -0,0 +1,13 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def betweenness_centrality(
|
||||
G,
|
||||
k: Incomplete | None = None,
|
||||
normalized: bool = True,
|
||||
weight: Incomplete | None = None,
|
||||
endpoints: bool = False,
|
||||
seed: Incomplete | None = None,
|
||||
): ...
|
||||
def edge_betweenness_centrality(
|
||||
G, k: Incomplete | None = None, normalized: bool = True, weight: Incomplete | None = None, seed: Incomplete | None = None
|
||||
): ...
|
||||
@@ -0,0 +1,4 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def betweenness_centrality_subset(G, sources, targets, normalized: bool = False, weight: Incomplete | None = None): ...
|
||||
def edge_betweenness_centrality_subset(G, sources, targets, normalized: bool = False, weight: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,6 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def closeness_centrality(G, u: Incomplete | None = None, distance: Incomplete | None = None, wf_improved: bool = True): ...
|
||||
def incremental_closeness_centrality(
|
||||
G, edge, prev_cc: Incomplete | None = None, insertion: bool = True, wf_improved: bool = True
|
||||
): ...
|
||||
@@ -0,0 +1,18 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def approximate_current_flow_betweenness_centrality(
|
||||
G,
|
||||
normalized: bool = True,
|
||||
weight: Incomplete | None = None,
|
||||
dtype=...,
|
||||
solver: str = "full",
|
||||
epsilon: float = 0.5,
|
||||
kmax: int = 10000,
|
||||
seed: Incomplete | None = None,
|
||||
): ...
|
||||
def current_flow_betweenness_centrality(
|
||||
G, normalized: bool = True, weight: Incomplete | None = None, dtype=..., solver: str = "full"
|
||||
): ...
|
||||
def edge_current_flow_betweenness_centrality(
|
||||
G, normalized: bool = True, weight: Incomplete | None = None, dtype=..., solver: str = "full"
|
||||
): ...
|
||||
@@ -0,0 +1,8 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def current_flow_betweenness_centrality_subset(
|
||||
G, sources, targets, normalized: bool = True, weight: Incomplete | None = None, dtype=..., solver: str = "lu"
|
||||
): ...
|
||||
def edge_current_flow_betweenness_centrality_subset(
|
||||
G, sources, targets, normalized: bool = True, weight: Incomplete | None = None, dtype=..., solver: str = "lu"
|
||||
): ...
|
||||
@@ -0,0 +1,5 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def current_flow_closeness_centrality(G, weight: Incomplete | None = None, dtype=..., solver: str = "lu"): ...
|
||||
|
||||
information_centrality = current_flow_closeness_centrality
|
||||
@@ -0,0 +1,3 @@
|
||||
def degree_centrality(G): ...
|
||||
def in_degree_centrality(G): ...
|
||||
def out_degree_centrality(G): ...
|
||||
11
stubs/networkx/networkx/algorithms/centrality/dispersion.pyi
Normal file
11
stubs/networkx/networkx/algorithms/centrality/dispersion.pyi
Normal file
@@ -0,0 +1,11 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def dispersion(
|
||||
G,
|
||||
u: Incomplete | None = None,
|
||||
v: Incomplete | None = None,
|
||||
normalized: bool = True,
|
||||
alpha: float = 1.0,
|
||||
b: float = 0.0,
|
||||
c: float = 0.0,
|
||||
): ...
|
||||
@@ -0,0 +1,6 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def eigenvector_centrality(
|
||||
G, max_iter: int = 100, tol: float = 1e-06, nstart: Incomplete | None = None, weight: Incomplete | None = None
|
||||
): ...
|
||||
def eigenvector_centrality_numpy(G, weight: Incomplete | None = None, max_iter: int = 50, tol: float = 0): ...
|
||||
@@ -0,0 +1,36 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def flow_matrix_row(G, weight: Incomplete | None = None, dtype=..., solver: str = "lu") -> Generator[Incomplete, None, None]: ...
|
||||
|
||||
class InverseLaplacian:
|
||||
dtype: Incomplete
|
||||
n: Incomplete
|
||||
w: Incomplete
|
||||
C: Incomplete
|
||||
L1: Incomplete
|
||||
def __init__(self, L, width: Incomplete | None = None, dtype: Incomplete | None = None) -> None: ...
|
||||
def init_solver(self, L) -> None: ...
|
||||
def solve(self, r) -> None: ...
|
||||
def solve_inverse(self, r) -> None: ...
|
||||
def get_rows(self, r1, r2): ...
|
||||
def get_row(self, r): ...
|
||||
def width(self, L): ...
|
||||
|
||||
class FullInverseLaplacian(InverseLaplacian):
|
||||
IL: Incomplete
|
||||
def init_solver(self, L) -> None: ...
|
||||
def solve(self, rhs): ...
|
||||
def solve_inverse(self, r): ...
|
||||
|
||||
class SuperLUInverseLaplacian(InverseLaplacian):
|
||||
lusolve: Incomplete
|
||||
def init_solver(self, L) -> None: ...
|
||||
def solve_inverse(self, r): ...
|
||||
def solve(self, rhs): ...
|
||||
|
||||
class CGInverseLaplacian(InverseLaplacian):
|
||||
M: Incomplete
|
||||
def init_solver(self, L) -> None: ...
|
||||
def solve(self, rhs): ...
|
||||
def solve_inverse(self, r): ...
|
||||
16
stubs/networkx/networkx/algorithms/centrality/group.pyi
Normal file
16
stubs/networkx/networkx/algorithms/centrality/group.pyi
Normal file
@@ -0,0 +1,16 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def group_betweenness_centrality(G, C, normalized: bool = True, weight: Incomplete | None = None, endpoints: bool = False): ...
|
||||
def prominent_group(
|
||||
G,
|
||||
k,
|
||||
weight: Incomplete | None = None,
|
||||
C: Incomplete | None = None,
|
||||
endpoints: bool = False,
|
||||
normalized: bool = True,
|
||||
greedy: bool = False,
|
||||
): ...
|
||||
def group_closeness_centrality(G, S, weight: Incomplete | None = None): ...
|
||||
def group_degree_centrality(G, S): ...
|
||||
def group_in_degree_centrality(G, S): ...
|
||||
def group_out_degree_centrality(G, S): ...
|
||||
@@ -0,0 +1,5 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def harmonic_centrality(
|
||||
G, nbunch: Incomplete | None = None, distance: Incomplete | None = None, sources: Incomplete | None = None
|
||||
): ...
|
||||
15
stubs/networkx/networkx/algorithms/centrality/katz.pyi
Normal file
15
stubs/networkx/networkx/algorithms/centrality/katz.pyi
Normal file
@@ -0,0 +1,15 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def katz_centrality(
|
||||
G,
|
||||
alpha: float = 0.1,
|
||||
beta: float = 1.0,
|
||||
max_iter: int = 1000,
|
||||
tol: float = 1e-06,
|
||||
nstart: Incomplete | None = None,
|
||||
normalized: bool = True,
|
||||
weight: Incomplete | None = None,
|
||||
): ...
|
||||
def katz_centrality_numpy(
|
||||
G, alpha: float = 0.1, beta: float = 1.0, normalized: bool = True, weight: Incomplete | None = None
|
||||
): ...
|
||||
10
stubs/networkx/networkx/algorithms/centrality/laplacian.pyi
Normal file
10
stubs/networkx/networkx/algorithms/centrality/laplacian.pyi
Normal file
@@ -0,0 +1,10 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def laplacian_centrality(
|
||||
G,
|
||||
normalized: bool = True,
|
||||
nodelist: Incomplete | None = None,
|
||||
weight: str = "weight",
|
||||
walk_type: Incomplete | None = None,
|
||||
alpha: float = 0.95,
|
||||
): ...
|
||||
11
stubs/networkx/networkx/algorithms/centrality/load.pyi
Normal file
11
stubs/networkx/networkx/algorithms/centrality/load.pyi
Normal file
@@ -0,0 +1,11 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
__all__ = ["load_centrality", "edge_load_centrality"]
|
||||
|
||||
def newman_betweenness_centrality(
|
||||
G, v: Incomplete | None = None, cutoff: Incomplete | None = None, normalized: bool = True, weight: Incomplete | None = None
|
||||
): ...
|
||||
|
||||
load_centrality = newman_betweenness_centrality
|
||||
|
||||
def edge_load_centrality(G, cutoff: bool = False): ...
|
||||
@@ -0,0 +1,5 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def percolation_centrality(
|
||||
G, attribute: str = "percolation", states: Incomplete | None = None, weight: Incomplete | None = None
|
||||
): ...
|
||||
@@ -0,0 +1,6 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def global_reaching_centrality(G, weight: Incomplete | None = None, normalized: bool = True): ...
|
||||
def local_reaching_centrality(
|
||||
G, v, paths: Incomplete | None = None, weight: Incomplete | None = None, normalized: bool = True
|
||||
): ...
|
||||
@@ -0,0 +1 @@
|
||||
def second_order_centrality(G): ...
|
||||
@@ -0,0 +1,4 @@
|
||||
def subgraph_centrality_exp(G): ...
|
||||
def subgraph_centrality(G): ...
|
||||
def communicability_betweenness_centrality(G): ...
|
||||
def estrada_index(G): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
def trophic_levels(G, weight: str = "weight"): ...
|
||||
def trophic_differences(G, weight: str = "weight"): ...
|
||||
def trophic_incoherence_parameter(G, weight: str = "weight", cannibalism: bool = False): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def voterank(G, number_of_nodes: Incomplete | None = None): ...
|
||||
5
stubs/networkx/networkx/algorithms/chains.pyi
Normal file
5
stubs/networkx/networkx/algorithms/chains.pyi
Normal file
@@ -0,0 +1,5 @@
|
||||
from collections.abc import Generator
|
||||
|
||||
from networkx.classes.graph import Graph, _Node
|
||||
|
||||
def chain_decomposition(G: Graph[_Node], root: _Node | None = None) -> Generator[list[tuple[_Node, _Node]], None, None]: ...
|
||||
12
stubs/networkx/networkx/algorithms/chordal.pyi
Normal file
12
stubs/networkx/networkx/algorithms/chordal.pyi
Normal file
@@ -0,0 +1,12 @@
|
||||
import sys
|
||||
from collections.abc import Generator, Hashable
|
||||
|
||||
from networkx.classes.graph import Graph, _Node
|
||||
from networkx.exception import NetworkXException
|
||||
|
||||
class NetworkXTreewidthBoundExceeded(NetworkXException): ...
|
||||
|
||||
def is_chordal(G: Graph[Hashable]) -> bool: ...
|
||||
def find_induced_nodes(G: Graph[_Node], s: _Node, t: _Node, treewidth_bound: float = sys.maxsize) -> set[_Node]: ...
|
||||
def chordal_graph_cliques(G: Graph[_Node]) -> Generator[frozenset[_Node], None, None]: ...
|
||||
def chordal_graph_treewidth(G: Graph[Hashable]) -> int: ...
|
||||
40
stubs/networkx/networkx/algorithms/clique.pyi
Normal file
40
stubs/networkx/networkx/algorithms/clique.pyi
Normal file
@@ -0,0 +1,40 @@
|
||||
from _typeshed import SupportsGetItem, Unused
|
||||
from collections.abc import Container, Generator, Iterable, Iterator, Sized
|
||||
from typing import overload
|
||||
|
||||
from networkx.classes.graph import Graph, _Node
|
||||
|
||||
def enumerate_all_cliques(G: Graph[_Node]) -> Generator[list[_Node], None, None]: ...
|
||||
def find_cliques(G: Graph[_Node], nodes: SupportsGetItem[slice, _Node] | None = None) -> Generator[list[_Node], None, None]: ...
|
||||
def find_cliques_recursive(G: Graph[_Node], nodes: SupportsGetItem[slice, _Node] | None = None) -> Iterator[list[_Node]]: ...
|
||||
def make_max_clique_graph(G: Graph[_Node], create_using: type[Graph[_Node]] | None = None) -> Graph[_Node]: ...
|
||||
def make_clique_bipartite(
|
||||
G: Graph[_Node], fpos: Unused = None, create_using: type[Graph[_Node]] | None = None, name: Unused = None
|
||||
) -> Graph[_Node]: ...
|
||||
def graph_clique_number(G: Graph[_Node], cliques: Iterable[_Node] | None = None) -> int: ...
|
||||
def graph_number_of_cliques(G: Graph[_Node], cliques: Sized | None = None) -> int: ...
|
||||
@overload
|
||||
def node_clique_number( # type: ignore[misc] # Incompatible return types
|
||||
G: Graph[_Node],
|
||||
nodes: Iterable[_Node] | None = None,
|
||||
cliques: Iterable[Iterable[_Node]] | None = None,
|
||||
separate_nodes: Unused = False,
|
||||
) -> dict[_Node, int]: ...
|
||||
@overload
|
||||
def node_clique_number(
|
||||
G: Graph[_Node], nodes: _Node, cliques: Iterable[Sized] | None = None, separate_nodes: Unused = False
|
||||
) -> int: ...
|
||||
@overload
|
||||
def number_of_cliques( # type: ignore[misc] # Incompatible return types
|
||||
G: Graph[_Node], nodes: list[_Node] | None = None, cliques: Iterable[Container[_Node]] | None = None
|
||||
) -> dict[_Node, int]: ...
|
||||
@overload
|
||||
def number_of_cliques(G: Graph[_Node], nodes: _Node, cliques: Iterable[Container[_Node]] | None = None) -> int: ...
|
||||
@overload
|
||||
def cliques_containing_node( # type: ignore[misc] # Incompatible return types
|
||||
G: Graph[_Node], nodes: list[_Node] | None = None, cliques: Iterable[Container[_Node]] | None = None
|
||||
) -> dict[_Node, list[_Node]]: ...
|
||||
@overload
|
||||
def cliques_containing_node(
|
||||
G: Graph[_Node], nodes: _Node, cliques: Iterable[Container[_Node]] | None = None
|
||||
) -> Generator[list[_Node], None, None]: ...
|
||||
8
stubs/networkx/networkx/algorithms/cluster.pyi
Normal file
8
stubs/networkx/networkx/algorithms/cluster.pyi
Normal file
@@ -0,0 +1,8 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def triangles(G, nodes: Incomplete | None = None): ...
|
||||
def average_clustering(G, nodes: Incomplete | None = None, weight: Incomplete | None = None, count_zeros: bool = True): ...
|
||||
def clustering(G, nodes: Incomplete | None = None, weight: Incomplete | None = None): ...
|
||||
def transitivity(G): ...
|
||||
def square_clustering(G, nodes: Incomplete | None = None): ...
|
||||
def generalized_degree(G, nodes: Incomplete | None = None): ...
|
||||
4
stubs/networkx/networkx/algorithms/coloring/__init__.pyi
Normal file
4
stubs/networkx/networkx/algorithms/coloring/__init__.pyi
Normal file
@@ -0,0 +1,4 @@
|
||||
from networkx.algorithms.coloring.equitable_coloring import equitable_color as equitable_color
|
||||
from networkx.algorithms.coloring.greedy_coloring import *
|
||||
|
||||
__all__ = ["greedy_color", "equitable_color"]
|
||||
@@ -0,0 +1 @@
|
||||
def equitable_color(G, num_colors): ...
|
||||
@@ -0,0 +1,43 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
__all__ = [
|
||||
"greedy_color",
|
||||
"strategy_connected_sequential",
|
||||
"strategy_connected_sequential_bfs",
|
||||
"strategy_connected_sequential_dfs",
|
||||
"strategy_independent_set",
|
||||
"strategy_largest_first",
|
||||
"strategy_random_sequential",
|
||||
"strategy_saturation_largest_first",
|
||||
"strategy_smallest_last",
|
||||
]
|
||||
|
||||
def strategy_largest_first(G, colors): ...
|
||||
def strategy_random_sequential(G, colors, seed: Incomplete | None = None): ...
|
||||
def strategy_smallest_last(G, colors): ...
|
||||
def strategy_independent_set(G, colors) -> Generator[Incomplete, Incomplete, None]: ...
|
||||
def strategy_connected_sequential_bfs(G, colors): ...
|
||||
def strategy_connected_sequential_dfs(G, colors): ...
|
||||
def strategy_connected_sequential(G, colors, traversal: str = "bfs") -> Generator[Incomplete, None, None]: ...
|
||||
def strategy_saturation_largest_first(G, colors) -> Generator[Incomplete, None, Incomplete]: ...
|
||||
def greedy_color(G, strategy: str = "largest_first", interchange: bool = False): ...
|
||||
|
||||
class _Node:
|
||||
node_id: Incomplete
|
||||
color: int
|
||||
adj_list: Incomplete
|
||||
adj_color: Incomplete
|
||||
def __init__(self, node_id, n) -> None: ...
|
||||
def assign_color(self, adj_entry, color) -> None: ...
|
||||
def clear_color(self, adj_entry, color) -> None: ...
|
||||
def iter_neighbors(self) -> Generator[Incomplete, None, None]: ...
|
||||
def iter_neighbors_color(self, color) -> Generator[Incomplete, None, None]: ...
|
||||
|
||||
class _AdjEntry:
|
||||
node_id: Incomplete
|
||||
next: Incomplete
|
||||
mate: Incomplete
|
||||
col_next: Incomplete
|
||||
col_prev: Incomplete
|
||||
def __init__(self, node_id) -> None: ...
|
||||
@@ -0,0 +1,2 @@
|
||||
def communicability(G): ...
|
||||
def communicability_exp(G): ...
|
||||
10
stubs/networkx/networkx/algorithms/community/__init__.pyi
Normal file
10
stubs/networkx/networkx/algorithms/community/__init__.pyi
Normal file
@@ -0,0 +1,10 @@
|
||||
from networkx.algorithms.community.asyn_fluid import *
|
||||
from networkx.algorithms.community.centrality import *
|
||||
from networkx.algorithms.community.community_utils import *
|
||||
from networkx.algorithms.community.kclique import *
|
||||
from networkx.algorithms.community.kernighan_lin import *
|
||||
from networkx.algorithms.community.label_propagation import *
|
||||
from networkx.algorithms.community.louvain import *
|
||||
from networkx.algorithms.community.lukes import *
|
||||
from networkx.algorithms.community.modularity_max import *
|
||||
from networkx.algorithms.community.quality import *
|
||||
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def asyn_fluidc(G, k, max_iter: int = 100, seed: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,4 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def girvan_newman(G, most_valuable_edge: Incomplete | None = None) -> Generator[Incomplete, None, Incomplete]: ...
|
||||
@@ -0,0 +1 @@
|
||||
def is_partition(G, communities): ...
|
||||
4
stubs/networkx/networkx/algorithms/community/kclique.pyi
Normal file
4
stubs/networkx/networkx/algorithms/community/kclique.pyi
Normal file
@@ -0,0 +1,4 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def k_clique_communities(G, k, cliques: Incomplete | None = None) -> Generator[Incomplete, None, None]: ...
|
||||
@@ -0,0 +1,5 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def kernighan_lin_bisection(
|
||||
G, partition: Incomplete | None = None, max_iter: int = 10, weight: str = "weight", seed: Incomplete | None = None
|
||||
): ...
|
||||
@@ -0,0 +1,7 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def asyn_lpa_communities(
|
||||
G, weight: Incomplete | None = None, seed: Incomplete | None = None
|
||||
) -> Generator[Incomplete, Incomplete, None]: ...
|
||||
def label_propagation_communities(G): ...
|
||||
9
stubs/networkx/networkx/algorithms/community/louvain.pyi
Normal file
9
stubs/networkx/networkx/algorithms/community/louvain.pyi
Normal file
@@ -0,0 +1,9 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def louvain_communities(
|
||||
G, weight: str = "weight", resolution: float = 1, threshold: float = 1e-07, seed: Incomplete | None = None
|
||||
): ...
|
||||
def louvain_partitions(
|
||||
G, weight: str = "weight", resolution: float = 1, threshold: float = 1e-07, seed: Incomplete | None = None
|
||||
) -> Generator[Incomplete, None, None]: ...
|
||||
3
stubs/networkx/networkx/algorithms/community/lukes.pyi
Normal file
3
stubs/networkx/networkx/algorithms/community/lukes.pyi
Normal file
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def lukes_partitioning(G, max_size, node_weight: Incomplete | None = None, edge_weight: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,6 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def greedy_modularity_communities(
|
||||
G, weight: Incomplete | None = None, resolution: float = 1, cutoff: int = 1, best_n: Incomplete | None = None
|
||||
): ...
|
||||
def naive_greedy_modularity_communities(G, resolution: float = 1, weight: Incomplete | None = None): ...
|
||||
9
stubs/networkx/networkx/algorithms/community/quality.pyi
Normal file
9
stubs/networkx/networkx/algorithms/community/quality.pyi
Normal file
@@ -0,0 +1,9 @@
|
||||
from networkx.exception import NetworkXError
|
||||
|
||||
__all__ = ["modularity", "partition_quality"]
|
||||
|
||||
class NotAPartition(NetworkXError):
|
||||
def __init__(self, G, collection) -> None: ...
|
||||
|
||||
def modularity(G, communities, weight: str = "weight", resolution: float = 1): ...
|
||||
def partition_quality(G, partition): ...
|
||||
@@ -0,0 +1,6 @@
|
||||
from .attracting import *
|
||||
from .biconnected import *
|
||||
from .connected import *
|
||||
from .semiconnected import *
|
||||
from .strongly_connected import *
|
||||
from .weakly_connected import *
|
||||
@@ -0,0 +1,6 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def attracting_components(G) -> Generator[Incomplete, None, None]: ...
|
||||
def number_attracting_components(G): ...
|
||||
def is_attracting_component(G): ...
|
||||
@@ -0,0 +1,7 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def is_biconnected(G): ...
|
||||
def biconnected_component_edges(G) -> Generator[Incomplete, Incomplete, None]: ...
|
||||
def biconnected_components(G) -> Generator[Incomplete, None, None]: ...
|
||||
def articulation_points(G) -> Generator[Incomplete, None, None]: ...
|
||||
@@ -0,0 +1,7 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def connected_components(G) -> Generator[Incomplete, None, None]: ...
|
||||
def number_connected_components(G): ...
|
||||
def is_connected(G): ...
|
||||
def node_connected_component(G, n): ...
|
||||
@@ -0,0 +1,3 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def is_semiconnected(G, topo_order: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,11 @@
|
||||
from collections.abc import Generator, Hashable, Iterable
|
||||
|
||||
from networkx.classes.digraph import DiGraph
|
||||
from networkx.classes.graph import Graph, _Node
|
||||
|
||||
def strongly_connected_components(G: Graph[_Node]) -> Generator[set[_Node], None, None]: ...
|
||||
def kosaraju_strongly_connected_components(G: Graph[_Node], source: _Node | None = None) -> Generator[set[_Node], None, None]: ...
|
||||
def strongly_connected_components_recursive(G: Graph[_Node]) -> Generator[set[_Node], None, None]: ...
|
||||
def number_strongly_connected_components(G: Graph[Hashable]) -> int: ...
|
||||
def is_strongly_connected(G: Graph[Hashable]) -> bool: ...
|
||||
def condensation(G: DiGraph[_Node], scc: Iterable[Iterable[_Node]] | None = None) -> DiGraph[int]: ...
|
||||
@@ -0,0 +1,7 @@
|
||||
from collections.abc import Generator, Hashable
|
||||
|
||||
from networkx.classes.graph import Graph, _Node
|
||||
|
||||
def weakly_connected_components(G: Graph[_Node]) -> Generator[set[_Node], None, None]: ...
|
||||
def number_weakly_connected_components(G: Graph[Hashable]) -> int: ...
|
||||
def is_weakly_connected(G: Graph[Hashable]) -> bool: ...
|
||||
@@ -0,0 +1,9 @@
|
||||
from .connectivity import *
|
||||
from .cuts import *
|
||||
from .disjoint_paths import *
|
||||
from .edge_augmentation import *
|
||||
from .edge_kcomponents import *
|
||||
from .kcomponents import *
|
||||
from .kcutsets import *
|
||||
from .stoerwagner import *
|
||||
from .utils import *
|
||||
@@ -0,0 +1,43 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
from networkx.algorithms.flow import edmonds_karp
|
||||
|
||||
__all__ = [
|
||||
"average_node_connectivity",
|
||||
"local_node_connectivity",
|
||||
"node_connectivity",
|
||||
"local_edge_connectivity",
|
||||
"edge_connectivity",
|
||||
"all_pairs_node_connectivity",
|
||||
]
|
||||
|
||||
default_flow_func = edmonds_karp
|
||||
|
||||
def local_node_connectivity(
|
||||
G,
|
||||
s,
|
||||
t,
|
||||
flow_func: Incomplete | None = None,
|
||||
auxiliary: Incomplete | None = None,
|
||||
residual: Incomplete | None = None,
|
||||
cutoff: Incomplete | None = None,
|
||||
): ...
|
||||
def node_connectivity(G, s: Incomplete | None = None, t: Incomplete | None = None, flow_func: Incomplete | None = None): ...
|
||||
def average_node_connectivity(G, flow_func: Incomplete | None = None): ...
|
||||
def all_pairs_node_connectivity(G, nbunch: Incomplete | None = None, flow_func: Incomplete | None = None): ...
|
||||
def local_edge_connectivity(
|
||||
G,
|
||||
s,
|
||||
t,
|
||||
flow_func: Incomplete | None = None,
|
||||
auxiliary: Incomplete | None = None,
|
||||
residual: Incomplete | None = None,
|
||||
cutoff: Incomplete | None = None,
|
||||
): ...
|
||||
def edge_connectivity(
|
||||
G,
|
||||
s: Incomplete | None = None,
|
||||
t: Incomplete | None = None,
|
||||
flow_func: Incomplete | None = None,
|
||||
cutoff: Incomplete | None = None,
|
||||
): ...
|
||||
16
stubs/networkx/networkx/algorithms/connectivity/cuts.pyi
Normal file
16
stubs/networkx/networkx/algorithms/connectivity/cuts.pyi
Normal file
@@ -0,0 +1,16 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
from networkx.algorithms.flow import edmonds_karp
|
||||
|
||||
__all__ = ["minimum_st_node_cut", "minimum_node_cut", "minimum_st_edge_cut", "minimum_edge_cut"]
|
||||
|
||||
default_flow_func = edmonds_karp
|
||||
|
||||
def minimum_st_edge_cut(
|
||||
G, s, t, flow_func: Incomplete | None = None, auxiliary: Incomplete | None = None, residual: Incomplete | None = None
|
||||
): ...
|
||||
def minimum_st_node_cut(
|
||||
G, s, t, flow_func: Incomplete | None = None, auxiliary: Incomplete | None = None, residual: Incomplete | None = None
|
||||
): ...
|
||||
def minimum_node_cut(G, s: Incomplete | None = None, t: Incomplete | None = None, flow_func: Incomplete | None = None): ...
|
||||
def minimum_edge_cut(G, s: Incomplete | None = None, t: Incomplete | None = None, flow_func: Incomplete | None = None): ...
|
||||
@@ -0,0 +1,27 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
from networkx.algorithms.flow import edmonds_karp
|
||||
|
||||
__all__ = ["edge_disjoint_paths", "node_disjoint_paths"]
|
||||
|
||||
default_flow_func = edmonds_karp
|
||||
|
||||
def edge_disjoint_paths(
|
||||
G,
|
||||
s,
|
||||
t,
|
||||
flow_func: Incomplete | None = None,
|
||||
cutoff: Incomplete | None = None,
|
||||
auxiliary: Incomplete | None = None,
|
||||
residual: Incomplete | None = None,
|
||||
) -> Generator[Incomplete, None, None]: ...
|
||||
def node_disjoint_paths(
|
||||
G,
|
||||
s,
|
||||
t,
|
||||
flow_func: Incomplete | None = None,
|
||||
cutoff: Incomplete | None = None,
|
||||
auxiliary: Incomplete | None = None,
|
||||
residual: Incomplete | None = None,
|
||||
) -> Generator[Incomplete, None, None]: ...
|
||||
@@ -0,0 +1,13 @@
|
||||
from collections.abc import Generator, Hashable
|
||||
|
||||
from networkx.classes.graph import Graph, _Node
|
||||
|
||||
def is_k_edge_connected(G: Graph[Hashable], k: int): ...
|
||||
def is_locally_k_edge_connected(G, s, t, k): ...
|
||||
def k_edge_augmentation(
|
||||
G: Graph[_Node],
|
||||
k: int,
|
||||
avail: tuple[_Node, _Node] | tuple[_Node, _Node, dict[str, int]] | None = None,
|
||||
weight: str | None = None,
|
||||
partial: bool = False,
|
||||
) -> Generator[tuple[_Node, _Node], None, None]: ...
|
||||
@@ -0,0 +1,14 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
def k_edge_components(G, k): ...
|
||||
def k_edge_subgraphs(G, k): ...
|
||||
def bridge_components(G) -> Generator[Incomplete, Incomplete, None]: ...
|
||||
|
||||
class EdgeComponentAuxGraph:
|
||||
A: Incomplete
|
||||
H: Incomplete
|
||||
@classmethod
|
||||
def construct(cls, G): ...
|
||||
def k_edge_components(self, k) -> Generator[Incomplete, Incomplete, None]: ...
|
||||
def k_edge_subgraphs(self, k) -> Generator[Incomplete, Incomplete, None]: ...
|
||||
@@ -0,0 +1,9 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
from networkx.algorithms.flow import edmonds_karp
|
||||
|
||||
__all__ = ["k_components"]
|
||||
|
||||
default_flow_func = edmonds_karp
|
||||
|
||||
def k_components(G, flow_func: Incomplete | None = None): ...
|
||||
10
stubs/networkx/networkx/algorithms/connectivity/kcutsets.pyi
Normal file
10
stubs/networkx/networkx/algorithms/connectivity/kcutsets.pyi
Normal file
@@ -0,0 +1,10 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Generator
|
||||
|
||||
from networkx.algorithms.flow import edmonds_karp
|
||||
|
||||
__all__ = ["all_node_cuts"]
|
||||
|
||||
default_flow_func = edmonds_karp
|
||||
|
||||
def all_node_cuts(G, k: Incomplete | None = None, flow_func: Incomplete | None = None) -> Generator[Incomplete, None, None]: ...
|
||||
@@ -0,0 +1 @@
|
||||
def stoer_wagner(G, weight: str = "weight", heap=...): ...
|
||||
@@ -0,0 +1,2 @@
|
||||
def build_auxiliary_node_connectivity(G): ...
|
||||
def build_auxiliary_edge_connectivity(G): ...
|
||||
9
stubs/networkx/networkx/algorithms/core.pyi
Normal file
9
stubs/networkx/networkx/algorithms/core.pyi
Normal file
@@ -0,0 +1,9 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def core_number(G): ...
|
||||
def k_core(G, k: Incomplete | None = None, core_number: Incomplete | None = None): ...
|
||||
def k_shell(G, k: Incomplete | None = None, core_number: Incomplete | None = None): ...
|
||||
def k_crust(G, k: Incomplete | None = None, core_number: Incomplete | None = None): ...
|
||||
def k_corona(G, k, core_number: Incomplete | None = None): ...
|
||||
def k_truss(G, k): ...
|
||||
def onion_layers(G): ...
|
||||
4
stubs/networkx/networkx/algorithms/covering.pyi
Normal file
4
stubs/networkx/networkx/algorithms/covering.pyi
Normal file
@@ -0,0 +1,4 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def min_edge_cover(G, matching_algorithm: Incomplete | None = None): ...
|
||||
def is_edge_cover(G, cover): ...
|
||||
10
stubs/networkx/networkx/algorithms/cuts.pyi
Normal file
10
stubs/networkx/networkx/algorithms/cuts.pyi
Normal file
@@ -0,0 +1,10 @@
|
||||
from _typeshed import Incomplete
|
||||
|
||||
def cut_size(G, S, T: Incomplete | None = None, weight: Incomplete | None = None): ...
|
||||
def volume(G, S, weight: Incomplete | None = None): ...
|
||||
def normalized_cut_size(G, S, T: Incomplete | None = None, weight: Incomplete | None = None): ...
|
||||
def conductance(G, S, T: Incomplete | None = None, weight: Incomplete | None = None): ...
|
||||
def edge_expansion(G, S, T: Incomplete | None = None, weight: Incomplete | None = None): ...
|
||||
def mixing_expansion(G, S, T: Incomplete | None = None, weight: Incomplete | None = None): ...
|
||||
def node_expansion(G, S): ...
|
||||
def boundary_expansion(G, S): ...
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user