mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-07 12:44:28 +08:00
tensorflow: bump version to 2.15 (#11352)
This commit is contained in:
@@ -21,6 +21,12 @@ tensorflow.GradientTape.__getattr__
|
||||
tensorflow.data.Dataset.__getattr__
|
||||
tensorflow.experimental.Optional.__getattr__
|
||||
|
||||
# The Tensor methods below were removed in 2.14, however they are still defined for the
|
||||
# internal subclasses that are used at runtime/in practice.
|
||||
tensorflow.Tensor.consumers
|
||||
tensorflow.Tensor.graph
|
||||
tensorflow.Tensor.op
|
||||
|
||||
# Internal undocumented API
|
||||
tensorflow.RaggedTensor.__init__
|
||||
tensorflow.data.Dataset.__init__
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
version = "2.12.*"
|
||||
version = "2.15.*"
|
||||
upstream_repository = "https://github.com/tensorflow/tensorflow"
|
||||
# requires a version of numpy with a `py.typed` file
|
||||
requires = ["numpy>=1.20", "types-protobuf"]
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from _typeshed import Incomplete
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Callable, Iterator as _Iterator, Sequence
|
||||
from collections.abc import Callable, Collection, Iterator as _Iterator, Sequence
|
||||
from typing import Any, Generic, TypeVar, overload
|
||||
from typing_extensions import Self
|
||||
from typing_extensions import Self, Unpack
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
@@ -223,8 +223,19 @@ class Dataset(ABC, Generic[_T1]):
|
||||
name: str | None = None,
|
||||
) -> Dataset[Dataset[_T1]]: ...
|
||||
def with_options(self, options: Options, name: str | None = None) -> Dataset[_T1]: ...
|
||||
@overload
|
||||
@staticmethod
|
||||
def zip(datasets: tuple[Dataset[_T2], Dataset[_T3]], name: str | None = None) -> Dataset[tuple[_T2, _T3]]: ...
|
||||
def zip(
|
||||
*args: Collection[Dataset[Any]] | ContainerGeneric[Dataset[Any]], name: str | None = None
|
||||
) -> Dataset[tuple[Any, ...]]: ...
|
||||
@overload
|
||||
@staticmethod
|
||||
def zip(*args: Unpack[tuple[Dataset[_T2], Dataset[_T3]]], name: str | None = None) -> Dataset[tuple[_T2, _T3]]: ...
|
||||
@overload
|
||||
@staticmethod
|
||||
def zip(
|
||||
*, datasets: tuple[Dataset[_T2], Dataset[_T3]] | None = None, name: str | None = None
|
||||
) -> Dataset[tuple[_T2, _T3]]: ...
|
||||
def __len__(self) -> int: ...
|
||||
def __nonzero__(self) -> bool: ...
|
||||
def __getattr__(self, name: str) -> Incomplete: ...
|
||||
|
||||
@@ -5,10 +5,12 @@ from typing import Any
|
||||
|
||||
import numpy as np
|
||||
from tensorflow._aliases import DTypeLike
|
||||
from tensorflow.python.framework.dtypes import HandleData
|
||||
|
||||
class _DTypeMeta(ABCMeta): ...
|
||||
|
||||
class DType(metaclass=_DTypeMeta):
|
||||
def __init__(self, type_enum: int, handle_data: HandleData | None = None) -> None: ...
|
||||
@property
|
||||
def name(self) -> str: ...
|
||||
@property
|
||||
|
||||
@@ -91,5 +91,5 @@ def sequence_categorical_column_with_vocabulary_list(
|
||||
num_oov_buckets: int = 0,
|
||||
) -> fc.SequenceCategoricalColumn: ...
|
||||
def make_parse_example_spec(
|
||||
feature_columns: Iterable[fc.FeatureColumn],
|
||||
feature_columns: Iterable[fc._FeatureColumn],
|
||||
) -> dict[str, tf.io.FixedLenFeature | tf.io.VarLenFeature]: ...
|
||||
|
||||
@@ -57,7 +57,13 @@ class PolynomialDecay(LearningRateSchedule):
|
||||
|
||||
class CosineDecay(LearningRateSchedule):
|
||||
def __init__(
|
||||
self, initial_learning_rate: float | tf.Tensor, decay_steps: int, alpha: float | tf.Tensor = 0.0, name: str | None = None
|
||||
self,
|
||||
initial_learning_rate: float | tf.Tensor,
|
||||
decay_steps: int,
|
||||
alpha: float | tf.Tensor = 0.0,
|
||||
name: str | None = None,
|
||||
warmup_target: int | tf.Tensor | None = None, # float32 or float64 Tensor
|
||||
warmup_steps: int | tf.Tensor = 0, # int32 or int64 Tensor
|
||||
) -> None: ...
|
||||
def __call__(self, step: int | tf.Tensor) -> float | tf.Tensor: ...
|
||||
def get_config(self) -> dict[str, Any]: ...
|
||||
|
||||
@@ -14,21 +14,21 @@ from tensorflow._aliases import ShapeLike
|
||||
_Combiners: TypeAlias = Literal["mean", "sqrtn", "sum"]
|
||||
_ExampleSpec: TypeAlias = dict[str, tf.io.FixedLenFeature | tf.io.VarLenFeature]
|
||||
|
||||
class FeatureColumn(ABC):
|
||||
class _FeatureColumn(ABC):
|
||||
@property
|
||||
@abstractmethod
|
||||
def name(self) -> str: ...
|
||||
@property
|
||||
@abstractmethod
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
def __lt__(self, other: FeatureColumn) -> bool: ...
|
||||
def __gt__(self, other: FeatureColumn) -> bool: ...
|
||||
def __lt__(self, other: _FeatureColumn) -> bool: ...
|
||||
def __gt__(self, other: _FeatureColumn) -> bool: ...
|
||||
@property
|
||||
@abstractmethod
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class DenseColumn(FeatureColumn, metaclass=ABCMeta): ...
|
||||
class SequenceDenseColumn(FeatureColumn, metaclass=ABCMeta): ...
|
||||
class DenseColumn(_FeatureColumn, metaclass=ABCMeta): ...
|
||||
class SequenceDenseColumn(_FeatureColumn, metaclass=ABCMeta): ...
|
||||
|
||||
# These classes are mostly subclasses of collections.namedtuple but we can't use
|
||||
# typing.NamedTuple because they use multiple inheritance with other non namedtuple classes.
|
||||
@@ -53,9 +53,9 @@ class NumericColumn(DenseColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class CategoricalColumn(FeatureColumn):
|
||||
class CategoricalColumn(_FeatureColumn):
|
||||
@property
|
||||
@abstractmethod
|
||||
def num_buckets(self) -> int: ...
|
||||
@@ -72,7 +72,7 @@ class BucketizedColumn(DenseColumn, CategoricalColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class EmbeddingColumn(DenseColumn, SequenceDenseColumn):
|
||||
categorical_column: CategoricalColumn
|
||||
@@ -103,7 +103,7 @@ class EmbeddingColumn(DenseColumn, SequenceDenseColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class SharedEmbeddingColumnCreator:
|
||||
def __init__(
|
||||
@@ -139,7 +139,7 @@ class SharedEmbeddingColumn(DenseColumn, SequenceDenseColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class CrossedColumn(CategoricalColumn):
|
||||
keys: tuple[str, ...]
|
||||
@@ -154,7 +154,7 @@ class CrossedColumn(CategoricalColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class IdentityCategoricalColumn(CategoricalColumn):
|
||||
key: str
|
||||
@@ -169,7 +169,7 @@ class IdentityCategoricalColumn(CategoricalColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class HashedCategoricalColumn(CategoricalColumn):
|
||||
key: str
|
||||
@@ -184,7 +184,7 @@ class HashedCategoricalColumn(CategoricalColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class VocabularyFileCategoricalColumn(CategoricalColumn):
|
||||
key: str
|
||||
@@ -212,7 +212,7 @@ class VocabularyFileCategoricalColumn(CategoricalColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class VocabularyListCategoricalColumn(CategoricalColumn):
|
||||
key: str
|
||||
@@ -231,7 +231,7 @@ class VocabularyListCategoricalColumn(CategoricalColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class WeightedCategoricalColumn(CategoricalColumn):
|
||||
categorical_column: CategoricalColumn
|
||||
@@ -246,7 +246,7 @@ class WeightedCategoricalColumn(CategoricalColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class IndicatorColumn(DenseColumn, SequenceDenseColumn):
|
||||
categorical_column: CategoricalColumn
|
||||
@@ -257,7 +257,7 @@ class IndicatorColumn(DenseColumn, SequenceDenseColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
class SequenceCategoricalColumn(CategoricalColumn):
|
||||
categorical_column: CategoricalColumn
|
||||
@@ -270,4 +270,4 @@ class SequenceCategoricalColumn(CategoricalColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
@@ -3,7 +3,7 @@ from typing_extensions import Self
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow._aliases import ShapeLike
|
||||
from tensorflow.python.feature_column.feature_column_v2 import FeatureColumn, SequenceDenseColumn, _ExampleSpec
|
||||
from tensorflow.python.feature_column.feature_column_v2 import SequenceDenseColumn, _ExampleSpec, _FeatureColumn
|
||||
|
||||
# Strangely at runtime most of Sequence feature columns are defined in feature_column_v2 except
|
||||
# for this one.
|
||||
@@ -27,4 +27,4 @@ class SequenceNumericColumn(SequenceDenseColumn):
|
||||
@property
|
||||
def parse_example_spec(self) -> _ExampleSpec: ...
|
||||
@property
|
||||
def parents(self) -> list[FeatureColumn | str]: ...
|
||||
def parents(self) -> list[_FeatureColumn | str]: ...
|
||||
|
||||
7
stubs/tensorflow/tensorflow/python/framework/dtypes.pyi
Normal file
7
stubs/tensorflow/tensorflow/python/framework/dtypes.pyi
Normal file
@@ -0,0 +1,7 @@
|
||||
import dataclasses
|
||||
from _typeshed import Incomplete
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class HandleData:
|
||||
shape_inference: Incomplete | None = None
|
||||
alias_id: int | None = None
|
||||
@@ -20,16 +20,14 @@ from tensorflow.python.trackable.base import Trackable
|
||||
class CheckpointOptions:
|
||||
experimental_io_device: None | str
|
||||
experimental_enable_async_checkpoint: bool
|
||||
# Uncomment when the stubs' TF version is updated to 2.15
|
||||
# experimental_write_callbacks: None | list[Callable[[str], Any] | Callable[[], Any]]
|
||||
experimental_write_callbacks: None | list[Callable[[str], object] | Callable[[], object]]
|
||||
enable_async: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
experimental_io_device: None | str = None,
|
||||
experimental_enable_async_checkpoint: bool = False,
|
||||
# Uncomment when the stubs' TF version is updated to 2.15
|
||||
# experimental_write_callbacks: None | list[Callable[[str], Any] | Callable[[], Any]] = None,
|
||||
experimental_write_callbacks: None | list[Callable[[str], object] | Callable[[], object]] = None,
|
||||
enable_async: bool = False,
|
||||
) -> None: ...
|
||||
|
||||
@@ -51,7 +49,7 @@ class Checkpoint:
|
||||
def read(self, save_path: str, options: CheckpointOptions | None = None) -> _CheckpointLoadStatus: ...
|
||||
def restore(self, save_path: str, options: CheckpointOptions | None = None) -> _CheckpointLoadStatus: ...
|
||||
def save(self, file_prefix: str, options: CheckpointOptions | None = None) -> str: ...
|
||||
# def sync(self) -> None: ... # Uncomment when the stubs' TF version is updated to 2.15
|
||||
def sync(self) -> None: ...
|
||||
def write(self, file_prefix: str, options: CheckpointOptions | None = None) -> str: ...
|
||||
|
||||
class CheckpointManager:
|
||||
|
||||
Reference in New Issue
Block a user