mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-08 13:04:46 +08:00
seaborn: fix and complete seaborn.regression (#11043)
This commit is contained in:
@@ -1,3 +1,5 @@
|
||||
seaborn._core.scales.(Pipeline|TransFuncs) # aliases defined in `if TYPE_CHECKING` block
|
||||
seaborn.external.docscrape.ClassDoc.__init__ # stubtest doesn't like ABC class as default value
|
||||
seaborn.external.docscrape.NumpyDocString.__str__ # weird signature
|
||||
|
||||
seaborn(\.regression)?\.lmplot # the `data` argument is required but it defaults to `None` at runtime
|
||||
|
||||
@@ -1,19 +1,22 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Iterable
|
||||
from typing import Any
|
||||
from typing_extensions import Literal
|
||||
from collections.abc import Callable, Iterable
|
||||
from typing import Any, overload
|
||||
from typing_extensions import Literal, TypeAlias
|
||||
|
||||
import pandas as pd
|
||||
from matplotlib.axes import Axes
|
||||
from matplotlib.typing import ColorType
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from .axisgrid import FacetGrid
|
||||
from .utils import _Palette, _Seed
|
||||
|
||||
__all__ = ["lmplot", "regplot", "residplot"]
|
||||
|
||||
_Vector: TypeAlias = list[Incomplete] | pd.Series[Incomplete] | pd.Index[Incomplete] | NDArray[Incomplete]
|
||||
|
||||
def lmplot(
|
||||
data: Incomplete | None = None,
|
||||
data: pd.DataFrame,
|
||||
*,
|
||||
x: str | None = None,
|
||||
y: str | None = None,
|
||||
@@ -25,15 +28,15 @@ def lmplot(
|
||||
height: float = 5,
|
||||
aspect: float = 1,
|
||||
markers: str = "o",
|
||||
sharex: bool | Literal["col", "row"] | None = None,
|
||||
sharey: bool | Literal["col", "row"] | None = None,
|
||||
sharex: bool | Literal["col", "row"] | None = None, # deprecated
|
||||
sharey: bool | Literal["col", "row"] | None = None, # deprecated
|
||||
hue_order: Iterable[str] | None = None,
|
||||
col_order: Iterable[str] | None = None,
|
||||
row_order: Iterable[str] | None = None,
|
||||
legend: bool = True,
|
||||
legend_out: Incomplete | None = None,
|
||||
x_estimator: Incomplete | None = None,
|
||||
x_bins: Incomplete | None = None,
|
||||
legend_out: bool | None = None, # deprecated
|
||||
x_estimator: Callable[[Incomplete], Incomplete] | None = None,
|
||||
x_bins: int | _Vector | None = None,
|
||||
x_ci: Literal["ci", "sd"] | int | None = "ci",
|
||||
scatter: bool = True,
|
||||
fit_reg: bool = True,
|
||||
@@ -55,27 +58,28 @@ def lmplot(
|
||||
line_kws: dict[str, Any] | None = None,
|
||||
facet_kws: dict[str, Any] | None = None,
|
||||
) -> FacetGrid: ...
|
||||
@overload
|
||||
def regplot(
|
||||
data: pd.DataFrame | None = None,
|
||||
data: None = None,
|
||||
*,
|
||||
x: Incomplete | None = None,
|
||||
y: Incomplete | None = None,
|
||||
x_estimator: Incomplete | None = None,
|
||||
x_bins: Incomplete | None = None,
|
||||
x: _Vector | None = None,
|
||||
y: _Vector | None = None,
|
||||
x_estimator: Callable[[Incomplete], Incomplete] | None = None,
|
||||
x_bins: int | _Vector | None = None,
|
||||
x_ci: Literal["ci", "sd"] | int | None = "ci",
|
||||
scatter: bool = True,
|
||||
fit_reg: bool = True,
|
||||
ci: int | None = 95,
|
||||
n_boot: int = 1000,
|
||||
units: str | None = None,
|
||||
units: _Vector | None = None,
|
||||
seed: _Seed | None = None,
|
||||
order: int = 1,
|
||||
logistic: bool = False,
|
||||
lowess: bool = False,
|
||||
robust: bool = False,
|
||||
logx: bool = False,
|
||||
x_partial: str | None = None,
|
||||
y_partial: str | None = None,
|
||||
x_partial: _Vector | None = None,
|
||||
y_partial: _Vector | None = None,
|
||||
truncate: bool = True,
|
||||
dropna: bool = True,
|
||||
x_jitter: float | None = None,
|
||||
@@ -87,13 +91,65 @@ def regplot(
|
||||
line_kws: dict[str, Any] | None = None,
|
||||
ax: Axes | None = None,
|
||||
) -> Axes: ...
|
||||
def residplot(
|
||||
data: Incomplete | None = None,
|
||||
@overload
|
||||
def regplot(
|
||||
data: pd.DataFrame,
|
||||
*,
|
||||
x: Incomplete | None = None,
|
||||
y: Incomplete | None = None,
|
||||
x_partial: Incomplete | None = None,
|
||||
y_partial: Incomplete | None = None,
|
||||
x: str | _Vector | None = None,
|
||||
y: str | _Vector | None = None,
|
||||
x_estimator: Callable[[Incomplete], Incomplete] | None = None,
|
||||
x_bins: int | _Vector | None = None,
|
||||
x_ci: Literal["ci", "sd"] | int | None = "ci",
|
||||
scatter: bool = True,
|
||||
fit_reg: bool = True,
|
||||
ci: int | None = 95,
|
||||
n_boot: int = 1000,
|
||||
units: str | _Vector | None = None,
|
||||
seed: _Seed | None = None,
|
||||
order: int = 1,
|
||||
logistic: bool = False,
|
||||
lowess: bool = False,
|
||||
robust: bool = False,
|
||||
logx: bool = False,
|
||||
x_partial: str | _Vector | None = None,
|
||||
y_partial: str | _Vector | None = None,
|
||||
truncate: bool = True,
|
||||
dropna: bool = True,
|
||||
x_jitter: float | None = None,
|
||||
y_jitter: float | None = None,
|
||||
label: str | None = None,
|
||||
color: ColorType | None = None,
|
||||
marker: str = "o",
|
||||
scatter_kws: dict[str, Any] | None = None,
|
||||
line_kws: dict[str, Any] | None = None,
|
||||
ax: Axes | None = None,
|
||||
) -> Axes: ...
|
||||
@overload
|
||||
def residplot(
|
||||
data: None = None,
|
||||
*,
|
||||
x: _Vector | None = None,
|
||||
y: _Vector | None = None,
|
||||
x_partial: _Vector | None = None,
|
||||
y_partial: _Vector | None = None,
|
||||
lowess: bool = False,
|
||||
order: int = 1,
|
||||
robust: bool = False,
|
||||
dropna: bool = True,
|
||||
label: str | None = None,
|
||||
color: ColorType | None = None,
|
||||
scatter_kws: dict[str, Any] | None = None,
|
||||
line_kws: dict[str, Any] | None = None,
|
||||
ax: Axes | None = None,
|
||||
) -> Axes: ...
|
||||
@overload
|
||||
def residplot(
|
||||
data: pd.DataFrame,
|
||||
*,
|
||||
x: str | _Vector | None = None,
|
||||
y: str | _Vector | None = None,
|
||||
x_partial: str | _Vector | None = None,
|
||||
y_partial: str | _Vector | None = None,
|
||||
lowess: bool = False,
|
||||
order: int = 1,
|
||||
robust: bool = False,
|
||||
|
||||
Reference in New Issue
Block a user